1
|
Ganorkar SB, Bobade PS, Prabhu RC, Lokwani DK, Shinde RN, Telange DR, Shirkhedkar AA, Vander Heyden Y. Extension of impurity profiling on eltrombopag olamine to in-silico predictions: An effort to exploit correlated forced degradation products and known drug-related substances in drug discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124367. [PMID: 39547062 DOI: 10.1016/j.jchromb.2024.124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
The recent pandemic has highlighted the impact of diseases on global health and the economy. The rapid discovery of new hit molecules remains a tough challenge. Pharmaceutical impurity profiling can be linked to drug discovery through the identification of new hits from compounds identified during the analytical profiling. The present study demonstrates this linkage through the extension of the impurity (forced degradation) profiling of eltrombopag (ELT) olamine, a thrombopoietin (TPO) receptor agonist. The drug was exposed to standard degradation and the degradation products were primarily resolved and identified by UPLC-ESI-MS. This led to the identification of five forced degradation products (FDP). Thirty-three other known related substances (RS) of ELT, identified in the literature, were also considered. Molecular similarity checks were performed using Tanimoto/Jaccard's similarity searches. A set of structurally and topologically similar molecules, including ELT and 15 RS, was established and subjected to in-silico toxicity-, absorption-, distribution-, metabolism-, and elimination (ADME) predictions. The RS, predicted with similar or lower toxicity than ELT and a comparable ADME profile, were subjected to molecular docking to trace changes in TPO receptor affinity. The results indicated that five RS had a high Jaccard's similarity with ELT and higher or comparable docking scores. These compounds, along with few other impurities were predicted to have lower toxicity, better or comparable absorption, distribution, metabolism, and also a better excretion profile than ELT. This justifies their entry as potential novel TPO receptor agonists in drug discovery.
Collapse
Affiliation(s)
- Saurabh B Ganorkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India.
| | - Preeti S Bobade
- Department of Pharmaceutical Quality Assurance and Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India
| | - Rakesh C Prabhu
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Ranajit N Shinde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur 425 405 India
| | - Darshan R Telange
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, MS, 442 007, India
| | - Atul A Shirkhedkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| |
Collapse
|
2
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Jeliński T, Przybyłek M, Różalski R, Romanek K, Wielewski D, Cysewski P. Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling. Molecules 2024; 29:3841. [PMID: 39202918 PMCID: PMC11357058 DOI: 10.3390/molecules29163841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Deep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors. The results demonstrated that solvents based on choline chloride were more effective than those based on betaine. The optimal ratio of hydrogen bond acceptors to donors was found to be 1:2 molar. The addition of water to the DES resulted in a notable enhancement in the solubility of FA. Among the polyols tested, triethylene glycol was the most effective. Hence, DES composed of choline chloride and triethylene glycol (TEG) (1:2) with added water in a 0.3 molar ration is suggested as an efficient alternative to traditional organic solvents like DMSO. In the second part of this report, the affinities of FA in saturated solutions were computed for solute-solute and all solute-solvent pairs. It was found that self-association of FA leads to a cyclic structure of the C28 type, common among carboxylic acids, which is the strongest type of FA affinity. On the other hand, among all hetero-molecular bi-complexes, the most stable is the FA-TEG pair, which is an interesting congruency with the high solubility of FA in TEG containing liquids. Finally, this work combined COSMO-RS modeling with machine learning for the development of a model predicting ferulic acid solubility in a wide range of solvents, including not only DES but also classical neat and binary mixtures. A machine learning protocol developed a highly accurate model for predicting FA solubility, significantly outperforming the COSMO-RS approach. Based on the obtained results, it is recommended to use the support vector regressor (SVR) for screening new dissolution media as it is not only accurate but also has sound generalization to new systems.
Collapse
Affiliation(s)
- Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-950 Bydgoszcz, Poland;
| | - Karolina Romanek
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Daniel Wielewski
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Piotr Cysewski
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| |
Collapse
|
4
|
Czajkowska-Kośnik A, Misztalewska-Turkowicz I, Wilczewska AZ, Basa A, Winnicka K. Solid Dispersions Obtained by Ball Milling as Delivery Platform of Etodolac, a Model Poorly Soluble Drug. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3923. [PMID: 39203102 PMCID: PMC11355714 DOI: 10.3390/ma17163923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Poor water solubility of drugs is a limiting factor for their bioavailability and pharmacological activity. Many approaches are known to improve drug solubility, and among them, the physical method, solid dispersions (SDs), is applied. SDs are physical mixtures of a drug and a carrier, sometimes with the addition of a surfactant, which can be obtained by milling, cryomilling, spray-drying, or lyophilization processes. In this study, solid dispersions with etodolac (ETD-SDs) were prepared by the milling method using different carriers, such as hypromellose, polyvinylpyrrolidone, copovidone, urea, and mannitol. Solubility studies, dissolution tests, morphological assessment, thermal analysis, and FTIR imaging were applied to evaluate the SD properties. It was shown that the ball-milling process can be applied to obtain SDs with ETD. All designed ETD-SDs were characterized by higher water solubility and a faster dissolution rate compared to unprocessed ETD. SDs with amorphous carriers (HPMC, PVP, and PVP/VA) provided greater ETD solubility than dispersions with crystalline features (urea and mannitol). FTIR spectra confirmed the compatibility of ETD with tested carriers.
Collapse
Affiliation(s)
- Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Iwona Misztalewska-Turkowicz
- Department of Organic Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (I.M.-T.); (A.Z.W.); (A.B.)
| | - Agnieszka Zofia Wilczewska
- Department of Organic Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (I.M.-T.); (A.Z.W.); (A.B.)
| | - Anna Basa
- Department of Organic Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (I.M.-T.); (A.Z.W.); (A.B.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| |
Collapse
|
5
|
Kaboudi N, Asl SG, Nourani N, Shayanfar A. Solubilization of drugs using beta-cyclodextrin: Experimental data and modeling. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:663-672. [PMID: 38340807 DOI: 10.1016/j.pharma.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Many drug candidates fail to complete the entire drug development process because of poor physicochemical properties. Solubility is an important physicochemical property which plays a vital role in various stages of drug discovery and development. Several methods have been proposed to enhance the solubility of drugs, and complex formation with cyclodextrins is among them. Beta-cyclodextrin (βCD) is a common excipient for solubilization of drugs. The aim of this study is to develop the mechanistic QSPR models to predict the solubility enhancement of a drug in the presence of βCD. In this study, the solubility enhancement of some drugs in the presence of 10mM βCD at 25°C was experimentally determined or collected from the literature. Two different models to predict the solubilization by βCD were developed by binary logistic regression using structural properties of drugs with more than 80% accuracy. Polar surface area and excess molar refraction are the main parameters for estimating solubilization by βCD. Moreover, other descriptors related to hydrophobicity and the capability of hydrogen bonding formation of molecules could improve the accuracy of the established models.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghasemi Asl
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Cysewski P, Jeliński T, Przybyłek M, Mai A, Kułak J. Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen. Molecules 2024; 29:2296. [PMID: 38792157 PMCID: PMC11124057 DOI: 10.3390/molecules29102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | | | | | |
Collapse
|
7
|
Sharma A, Kumar V, Chakraborty S. Micro-Solvation of Propofol in Propylene Glycol-Water Binary Mixtures: Molecular Dynamics Simulation Studies. J Phys Chem B 2023; 127:11011-11022. [PMID: 37972382 DOI: 10.1021/acs.jpcb.3c04932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The water microstructure around propofol plays a crucial role in controlling their solubility in the binary mixture. The unusual nature of such a water microstructure can influence both translational and reorientational dynamics, as well as the water hydrogen bond network near propofol. We have carried out all-atom molecular dynamics simulations of five different compositions of the propylene glycol (PG)/water binary mixture containing propofol (PFL) molecules to investigate the differential behavior of water microsolvation shells around propofol, which is likely to control the propofol solubility. It is evident from the simulation snapshots for various compositions that the PG at high molecular ratio favors the water cluster and extended chainlike network that percolates within the PG matrix, where the propofol is in the dispersed state. We estimated that the radial distribution function indicates higher ordered water microstructure around propofol for high PG content, as compared to the lower PG content in the PG/water mixture. So, the hydrophilic PG regulates the stability of the water micronetwork around propofol and its solubility in the binary mixture. We observed that the translational and rotational mobility of water belonging to the propofol microsolvation shell is hindered for high PG content and relaxed toward the low PG molecular ratio in the PG/water mixture. It has been noticed that the structural relaxation of the hydrogen bond formed between the propofol and the water molecules present in the propofol microsolvation shell for all five compositions is found to be slower for high PG content and becomes faster on the way to low PG content in the mixture. Simultaneously, we calculated the intermittent residence time correlation function of the water molecules belonging to the microsolvation shell around the propofol for five different compositions and found a faster short time decay followed up with long time components. Again, the origin of such long time decay is primarily from the structural relaxation of the microsolvation shell around the propofol, where the high PG content shows the slower structural relaxation that turns faster as the PG content approaches to the other end of the compositions. So, our studies showed that the slower structural relaxation of the microsolvation shell around propofol for a high PG molecular ratio in the PG/water mixture correlate well with the extensive ordering of the water microstructure and restricted water mobility and facilitates the dissolution process of propofol in the binary mixture.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Vishal Kumar
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
8
|
Jouyban A, Khezri S, Jafari P, Zarghampour A, Acree WE. A new set of solute descriptors to calculate solubility of drugs in mono-solvents. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:1109-1117. [PMID: 37060940 DOI: 10.1016/j.pharma.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
A new set of solute parameters derived from a correlation model using Catalan parameters. The parameters represent the interaction of the solute with the mono-solvents at 298.15K. The computational procedure was adopted from Abraham's solvation model and the obtained results are promising. In this work, the calculated parameters were used to back-calculate the drugs solubility in various mono-solvents at different temperatures employing the van't Hoff's model as the skeleton on the derived model. The obtained mean percentage deviations (MPDs) were in the range of 3.1 to 88.5% with the overall MPD of 29.1%. (1) Derivation of a new set of solute parameters from a correlation model using Catalan parameters; (2) adoption of the calculation method of Abraham's solvation model with the skeleton of van't Hoff's equation; (3) using the achieved parameters for back-calculation of drugs solubility in various mono-solvents; (4) obtaining an overall acceptable mean percentage deviation of 29.1% from calculations.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, 5165665811 Tehran, Iran.
| | - Soma Khezri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Jafari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Zarghampour
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William E Acree
- Department of Chemistry, University of North Texas, 76203-5070 Denton, TX, USA
| |
Collapse
|
9
|
Kara DD, Bangera PD, Mehta CH, Tanvi K, Rathnanand M. In Silico Screening as a Tool to Prepare Drug-Drug Cocrystals of Ibrutinib-Ketoconazole: a Strategy to Enhance Their Solubility Profiles and Oral Bioavailability. AAPS PharmSciTech 2023; 24:164. [PMID: 37552343 DOI: 10.1208/s12249-023-02621-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
Ibrutinib (IBR) is a biopharmaceutical classification system (BCS) class II drug and an irreversible Bruton's tyrosine kinase (BTK) inhibitor. IBR has an extremely low oral bioavailability due to the activity of the CYP3A4 enzyme. The current intention of the research was to enhance solubility followed by oral bioavailability of IBR using the hot melt extrusion (HME) technique by formulating drug-drug cocrystals (DDCs). Ketoconazole (KET) is an active CYP3A4 inhibitor and was selected based on computational studies and solubility parameter prediction. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) evaluations were employed for estimating the formation of IBR-KET DDCs. The IBR-KET DDC system was discovered to have a hydrogen bond (H-bond) and π-π-stacking interactions, in accordance with the computational results. Further, IBR-KET DDCs showed enhanced solubility, stability, powder dissolution, in vitro release, and flow properties. Furthermore, IBR-KET-DDCs were associated with enhanced cytotoxic activity in K562-CCL-243 cancer cell lines when compared with IBR and KET alone. In vivo pharmacokinetic studies have shown an enhanced oral bioavailability of up to 4.30 folds of IBR and 2.31 folds of KET through IBR-KET-DDCs compared to that of the IBR and KET suspension alone. Thus, the prepared IBR-KET-DDCs using the HME technique stand as a favorable drug delivery system that augments the solubility and oral bioavailability of IBR along with KET.
Collapse
Affiliation(s)
- Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
T A, Narayan R, Shenoy PA, Nayak UY. Computational modeling for the design and development of nano based drug delivery systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Ibrahim SF, Pickering J, Ramachandran V, Roberts KJ. Prediction of the Mechanical Deformation Properties of Organic Crystals Based upon their Crystallographic Structures: Case Studies of Pentaerythritol and Pentaerythritol Tetranitrate. Pharm Res 2022; 39:3063-3078. [PMID: 35778633 DOI: 10.1007/s11095-022-03314-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Development of a quantitative model and associated workflow for predicting the mechanical deformation properties (plastic deformation or cleavage fracture) of organic single crystals from their crystallographic structures using molecular and crystallographic modelling. METHODS Intermolecular synthons, hydrogen bonding, crystal morphology and surface chemistry are modelled using empirical force fields with the data integrated into the analysis of lattice deformation as computed using a statistical approach. RESULTS The approach developed comprises three main components. Firstly, the identification of the likely direction of deformation based on lattice unit cell geometry; secondly, the identification of likely lattice planes for deformation through the calculation of the strength and stereochemistry of interplanar intermolecular interactions, surface plane rugosity and surface energy; thirdly, identification of potential crystal planes for cleavage fracture by assessing intermolecular bonding anisotropy. Pentaerythritol is predicted to fracture by brittle cleavage on the {001} lattice planes by strong in-plane hydrogen-bond interactions in the <110>, whereas pentaerythritol tetranitrate is predicted to deform by plastic deformation through the slip system {110} < 001>, with both predictions being in excellent agreement with known experimental data. CONCLUSION A crystallographic framework and associated workflow for predicting the mechanical deformation of molecular crystals is developed through quantitative assessment of lattice energetics, crystal surface chemistry and crystal defects. The potential for the de novo prediction of the mechanical deformation of pharmaceutical materials using this approach is highlighted for its potential importance in the design of formulated drug products process as needed for manufacture by direct compression.
Collapse
Affiliation(s)
- S Fatimah Ibrahim
- Malaysian Institute of Chemical & Bioengineering Technology (MICET), Universiti Kuala Lumpur, 1988, 7800, Vendor City, Taboh Naning, Malaysia. .,Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Jonathan Pickering
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,School of Computing, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK
| | - Vasuki Ramachandran
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Kevin J Roberts
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Li M, Chen H, Zhang H, Zeng M, Chen B, Guan L. Prediction of the Aqueous Solubility of Compounds Based on Light Gradient Boosting Machines with Molecular Fingerprints and the Cuckoo Search Algorithm. ACS OMEGA 2022; 7:42027-42035. [PMID: 36440111 PMCID: PMC9685740 DOI: 10.1021/acsomega.2c03885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aqueous solubility is one of the most important physicochemical properties in drug discovery. At present, the prediction of aqueous solubility of compounds is still a challenging problem. Machine learning has shown great potential in solubility prediction. Most machine learning models largely rely on the setting of hyperparameters, and their performance can be improved by setting the hyperparameters in a better way. In this paper, we used MACCS fingerprints to represent the structural features and optimized the hyperparameters of the light gradient boosting machine (LightGBM) with the cuckoo search algorithm (CS). Based on the above representation and optimization, the CS-LightGBM model was established to predict the aqueous solubility of 2446 organic compounds and the obtained prediction results were compared with those obtained with the other six different machine learning models (RF, GBDT, XGBoost, LightGBM, SVR, and BO-LightGBM). The comparison results showed that the CS-LightGBM model had a better prediction performance than the other six different models. RMSE, MAE, and R 2 of the CS-LightGBM model were, respectively, 0.7785, 0.5117, and 0.8575. In addition, this model has good scalability and can be used to solve solubility prediction problems in other fields such as solvent selection and drug screening.
Collapse
|
13
|
Nel M, Samsodien H, Aucamp ME. Using natural excipients to enhance the solubility of the poorly water-soluble antiretroviral, efavirenz. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
15
|
Phan K, Den Broeck EV, Raes K, De Clerck K, Speybroeck VV, De Meester S. A comparative theoretical study on the solvent dependency of anthocyanin extraction profiles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Sarraguça MC, Ribeiro PRS, Nunes C, Seabra CL. Solids Turn into Liquids—Liquid Eutectic Systems of Pharmaceutics to Improve Drug Solubility. Pharmaceuticals (Basel) 2022; 15:ph15030279. [PMID: 35337077 PMCID: PMC8951776 DOI: 10.3390/ph15030279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The low solubility of active pharmaceutical ingredients (APIs) is a problem in pharmaceutical development. Several methodologies can be used to improve API solubility, including the use of eutectic systems in which one of the constituents is the API. This class of compounds is commonly called Therapeutic Deep Eutectic Systems (THEDES). THEDES has been gaining attention due to their properties such as non-toxicity, biodegradability, and being non-expensive and easy to prepare. Since the knowledge of the solid liquid diagram of the mixture and the ideal eutectic point is necessary to ascertain if a mixture is a deep eutectic or just a eutectic mixture that is liquid at ambient temperature, the systems studied in this work are called Therapeutic Liquid Eutectic Systems (THELES). Therefore, the strategy proposed in this work is to improve the solubility of chlorpropamide and tolbutamide by preparing THELES. Both APIs are sulfonylurea compounds used for the treatment of type 2 diabetes mellitus and have low solubility in water. To prepare the THELES, several coformers were tested, namely, tromethamine, L(+)-arginine, L-tryptophan, citric acid, malic acid, ascorbic acid, and p-aminobenzoic acid, in molar ratios of 1:1 and 1:2. To improve viscosity, water was added in different molar ratios to all systems. THELES were characterized by mid-infrared spectroscopy (MIR), and differential scanning calorimetry. Their viscosity, solubility, and permeability were also determined. Their stability at room temperature and 40 °C was accessed by MIR. Cytocompatibility was performed by metabolic activity and cell lysis evaluation, according to ISO10993-5:2009, and compared with the crystalline APIs. THELES with TRIS were successfully synthesized for both APIs. Results showed an increased solubility without a decrease in the permeability of the APIs in the THELES when compared with the pure APIs. The THELES were also considered stable for 8 weeks at ambient temperature. The cells studied showed that the THELES were not toxic for the cell lines used.
Collapse
Affiliation(s)
- Mafalda C. Sarraguça
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
- Correspondence:
| | - Paulo R. S. Ribeiro
- Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz 65900-410, Brazil;
| | - Cláudia Nunes
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
| | - Catarina Leal Seabra
- LAQV-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.N.); (C.L.S.)
| |
Collapse
|
17
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
18
|
Wuelfing WP, El Marrouni A, Lipert MP, Daublain P, Kesisoglou F, Converso A, Templeton AC. Dose Number as a Tool to Guide Lead Optimization for Orally Bioavailable Compounds in Drug Discovery. J Med Chem 2022; 65:1685-1694. [DOI: 10.1021/acs.jmedchem.1c01687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W. Peter Wuelfing
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | | | - Maya P. Lipert
- AbbVie, Inc., 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Pierre Daublain
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115 United States
| | | | - Antonella Converso
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Allen C. Templeton
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065 United States
| |
Collapse
|
19
|
Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem 2022; 56:116614. [DOI: 10.1016/j.bmc.2022.116614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
|
20
|
Relative bioavailability enhancement of simvastatin via dry emulsion systems: comparison of spray drying and fluid bed layering technology. Eur J Pharm Biopharm 2021; 172:228-239. [PMID: 34942336 DOI: 10.1016/j.ejpb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Comprehensive comparisons of similar lipid based drug delivery systems produced by different technologies are scarce. Spray drying and fluid bed layering technologies were compared with respect to the process and product characteristics of otherwise similar simvastatin loaded dry emulsion systems. Fluid bed layering provided higher process yield (83.3% vs 71.5%), encapsulation efficiency (80.0% vs 68.4 %), relative one month product stability (93.8% vs 85.5%), larger and more circular particles (336 µm vs 56 µm) and lower median oil droplet size after product reconstitution in water (2.85 µm vs 4.27 µm), compared to spray drying. However, spray dried products exhibited higher drug content (22.2 mg/g vs 9.34 mg/g). An in-vivo pharmacokinetic study in rats was performed and a pharmacokinetic model was developed in order to compare the optimised simvastatin loaded dry emulsion systems, a simvastatin glyceride mimetic loaded in the dry emulsion and a simvastatin loaded SMEDDS with a reference physical mixture. Of the formulation tested, fluid bed layered pellets excelled and provided a 115% relative increase in bioavailability. Among the two technologies, fluid bed layering provided dry emulsion products with higher relative bioavailability and better product characteristics for further processing into final dosage forms.
Collapse
|
21
|
Ye Z, Ouyang D. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms. J Cheminform 2021; 13:98. [PMID: 34895323 PMCID: PMC8665485 DOI: 10.1186/s13321-021-00575-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Rapid solvent selection is of great significance in chemistry. However, solubility prediction remains a crucial challenge. This study aimed to develop machine learning models that can accurately predict compound solubility in organic solvents. A dataset containing 5081 experimental temperature and solubility data of compounds in organic solvents was extracted and standardized. Molecular fingerprints were selected to characterize structural features. lightGBM was compared with deep learning and traditional machine learning (PLS, Ridge regression, kNN, DT, ET, RF, SVM) to develop models for predicting solubility in organic solvents at different temperatures. Compared to other models, lightGBM exhibited significantly better overall generalization (logS ± 0.20). For unseen solutes, our model gave a prediction accuracy (logS ± 0.59) close to the expected noise level of experimental solubility data. lightGBM revealed the physicochemical relationship between solubility and structural features. Our method enables rapid solvent screening in chemistry and may be applied to solubility prediction in other solvents.
Collapse
Affiliation(s)
- Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
| |
Collapse
|
22
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
23
|
Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular Simulation and Statistical Learning Methods toward Predicting Drug-Polymer Amorphous Solid Dispersion Miscibility, Stability, and Formulation Design. Molecules 2021; 26:E182. [PMID: 33401494 PMCID: PMC7794704 DOI: 10.3390/molecules26010182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API-carrier mixture and the principal API-carrier non-bonding interactions are critical factors for rational drug development and formulation decisions. Experimental determination of these interactions, solubility, and dissolution mechanisms is time-consuming, costly, and reliant on trial and error. To that end, molecular modeling has been applied to simulate ASD properties and mechanisms. Quantum mechanical methods elucidate the strength of API-carrier non-bonding interactions, while molecular dynamics simulations model and predict ASD physical stability, solubility, and dissolution mechanisms. Statistical learning models have been recently applied to the prediction of a variety of drug formulation properties and show immense potential for continued application in the understanding and prediction of ASD solubility. Continued theoretical progress and computational applications will accelerate lead compound development before clinical trials. This article reviews in silico research for the rational formulation design of low-solubility drugs. Pertinent theoretical groundwork is presented, modeling applications and limitations are discussed, and the prospective clinical benefits of accelerated ASD formulation are envisioned.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyotika Varshney
- VeriSIM Life Inc., 1 Sansome St, Suite 3500, San Francisco, CA 94104, USA; (D.M.W.); (Y.B.); (A.J.); (V.A.); (K.C.)
| |
Collapse
|
24
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|