1
|
Wykoff CC, Holz FG, Chiang A, Boyer D, Dhoot DS, Loewenstein A, Mones J, Heier J, Abbey AM, Singerman LJ, Vajzovic L, Lin J, Li C, Vilupuru A, Baumal CR. Pegcetacoplan Treatment for Geographic Atrophy in Age-Related Macular Degeneration Over 36 Months: Data From OAKS, DERBY, and GALE. Am J Ophthalmol 2025:S0002-9394(25)00193-X. [PMID: 40280279 DOI: 10.1016/j.ajo.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE To report 12-month results from the GALE open-label extension study (NCT04770545), evaluating up to 36 months of intravitreal pegcetacoplan treatment for geographic atrophy (GA) in age-related macular degeneration (AMD). DESIGN GALE is a prospective open-label extension study following the 24-month, sham-controlled, phase 3 OAKS (NCT03525613) and DERBY (NCT03525600) studies of pegcetacoplan. PARTICIPANTS Patients with nonsubfoveal or subfoveal GA who completed OAKS, DERBY, or phase 1b APL2-103 (NCT03777332) studies. METHODS Pegcetacoplan was administered monthly (PM) or every other month (PEOM) to all study eyes in GALE. Eyes receiving pegcetacoplan in OAKS and DERBY continued the same regimen (PM-PM and PEOM-PEOM), while eyes observed with sham in OAKS and DERBY crossed over to receive pegcetacoplan at the same dosing interval in GALE (SM-PM and SEOM-PEOM). Safety and efficacy through the first 12 months of GALE were assessed, reflecting up to 36 months of continuous pegcetacoplan treatment. MAIN OUTCOME MEASURE Mean rate of change in GA area, total number of microperimetry scotomatous points, and adverse events. RESULTS Through the first 12 months of GALE, 92.0% (727/790) patient retention was observed. Across all eyes, including eyes with nonsubfoveal and subfoveal GA, pegcetacoplan reduced the mean rate of change in GA area up to 32% versus projected sham. Year after year, the reductions in the mean rate of change in GA area increased, with up to a 42% reduction observed in eyes with nonsubfoveal GA in the PM-PM group compared with projected sham in the first year of GALE. An 18% reduction in new scotomatous points (P=0.0156) was observed with PM-PM at 36 months, highlighting a significant impact in a prespecified microperimetry analysis. Adverse events included 33 (4.5%) eyes with exudative AMD, 15 (1.9%) intraocular inflammation (classified as mild or moderate in severity), 1 (0.1%) ischemic optic neuropathy, and 1 (0.1%) infectious endophthalmitis. No events of vasculitis were reported. CONCLUSION Over 36 months, pegcetacoplan continued to reduce GA growth with increasing efficacy over time and reduced formation of new scotomatous points. The safety profile of pegcetacoplan in the first 12 months of GALE was consistent with the prior 24-month OAKS and DERBY studies.
Collapse
Affiliation(s)
- Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas, USA; Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA.
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Allen Chiang
- Wills Eye Hospital Retina Service, Philadelphia, Pennsylvania, USA; Wills Eye Physicians - Mid Atlantic Retina, Plymouth Meeting, Pennsylvania, USA
| | - David Boyer
- Retina Vitreous Associates Medical Group, Los Angeles, California, USA
| | - Dilsher S Dhoot
- California Retinal Consultants/Retina Consultants of America, Santa Barbara, California, USA
| | | | - Jordi Mones
- Institut de la Màcula, Centro Médico Teknon, Barcelona, Spain; Barcelona Macula Foundation: Research for Vision, Barcelona, Spain; John A Moran Center, University of Utah, USA
| | - Jeffrey Heier
- Ophthalmic Consultants of Boston, Boston, Massachusetts, USA
| | | | - Lawrence J Singerman
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Bascom Palmer Eye Institute of the University of Miami School of Medicine, University of Miami, Miami, Florida, USA
| | - Lejla Vajzovic
- Duke Eye Center, Duke University, Durham, North Carolina, USA
| | - Jason Lin
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Chao Li
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Abhi Vilupuru
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Caroline R Baumal
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA; New England Eye Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hector M, Behnke V, Dabrowska-Schlepp P, Busch A, Schaaf A, Langmann T, Wolf A. Moss-derived human complement factor H modulates retinal immune response and attenuates retinal degeneration. J Neuroinflammation 2025; 22:104. [PMID: 40217267 PMCID: PMC11992837 DOI: 10.1186/s12974-025-03418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND AMD is a multifactorial progressive disease of the central retina that leads to severe vision loss among the elderly. Genome-wide association studies in AMD patients and preclinical data have identified a dysregulated complement system and aberrant microglia responses in the pathogenesis of AMD. Specifically, a genetic variant in the complement factor H (CFH) gene, an important inhibitor of the alternative complement pathway, confers the strongest risk for AMD. Here, we investigated whether moss-derived recombinant human CFH proteins, termed CPV-101 and CPV-104, can modulate microglia reactivity and limit retinal degeneration in a murine light damage paradigm mimicking important features of AMD. METHODS Two glycosylated human recombinant CFH proteins CPV101, and CPV-104 were produced in moss suspension cultures. In addition, glycans of the CPV-104 variant are sialylated, an optimization that makes CPV-104 an analog of human CFH. BALB/cJ mice received intravitreal injections of 5 µg CPV-101 and CPV-104 or vehicle, starting 1 day prior to exposure to 10,000 lx white light for 30 min. The effects of CPV-101 and CPV-104 treatment on mononuclear phagocyte and Müller cell reactivity were analyzed by immunostainings of retinal sections and flat mounts. Gene expression of microglia markers was analyzed using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT); Blue Peak Autofluorescence (BAF); terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis. RESULTS Light-exposed mice treated with moss-derived recombinant human full-length CFH showed reduced complement activation and MAC deposition in the retina. Concomitantly, mononuclear phagocyte and Müller cell reactivity in light-exposed retinas were also ameliorated upon CFH substitution. Moreover, attenuated light-induced retinal degeneration was detected in mice that received moss-derived CFH. CONCLUSION Modulating the alternative complement pathway using moss-derived recombinant human full-length CFH variant CPV-101 and CPV-104 counter-regulate gliosis and attenuates light-induced retinal degeneration, highlighting a promising concept for the treatment of AMD patients.
Collapse
Affiliation(s)
- Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | - Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | | | - Andreas Busch
- Eleva GmbH, Hans-Bunte-Straße 19, 79108, Freiburg, Germany
| | - Andreas Schaaf
- Eleva GmbH, Hans-Bunte-Straße 19, 79108, Freiburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Ricklin D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur J Immunol 2024; 54:e2350816. [PMID: 39263829 PMCID: PMC11628912 DOI: 10.1002/eji.202350816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Therapeutic interventions in the complement system, a key immune-inflammatory mediator and contributor to a broad range of clinical conditions, have long been considered important yet challenging or even unfeasible to achieve. Almost 20 years ago, a spark was lit demonstrating the clinical and commercial viability of complement-targeted therapies. Since then, the field has experienced an impressive expansion of targeted indications and available treatment modalities. Currently, a dozen distinct complement-specific therapeutics covering several intervention points are available in the clinic, benefiting patients suffering from eight disorders, not counting numerous clinical trials and off-label uses. Observing this rapid rise of complement-targeted therapy from obscurity to mainstream with amazement, one might ask whether the peak of this development has now been reached or whether the field will continue marching on to new heights. This review looks at the milestones of complement drug discovery and development achieved so far, surveys the currently approved drug entities and indications, and ventures a glimpse into the future advancements yet to come.
Collapse
Affiliation(s)
- Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
4
|
Wang H, Zheng J, Zhang Q, Tian Z, Sun Y, Zhu T, Bi Y, Zhang L. Efficacy and safety of complement inhibitors in patients with geographic atrophy associated with age-related macular degeneration: a network meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1410172. [PMID: 39600369 PMCID: PMC11589381 DOI: 10.3389/fphar.2024.1410172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Importance Clinical trials in recent years have shown significant effectiveness of complement inhibitors for geographic atrophy (GA) treatment. Two complement inhibitor drugs have been approved by the Food and Drug Administration (FDA). Objective to compare and rank the different complement inhibitors in the treatment of GA secondary to age-related macular degeneration (AMD). Data sources A systematic literature search was conducted in the Cochrane Central, Web of Science Core Collection, PubMed, LWW Medical Journals, ClinicalTrials.gov, and WHO ICTRP from inception to October 2023. Study selection All randomized clinical trials evaluating the effectiveness of complement inhibitors in patients diagnosed with secondary GA in AMD were identified. Data extraction and synthesis This study followed Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) network meta-analysis Checklist of Items and the Cochrane Risk of Bias Assessment Tool for assessing the study quality. Multiple authors independently coded all titles and abstracts, reviewed full-text articles against the inclusion and exclusion criteria, and resolved all discrepancies by consensus. Random-effects network meta-analyses were applied. Bayesian network meta-analysis was performed using the BUGSnet package in R (4.2.0). Main outcomes and measures The primary efficacy outcome was the change in GA lesion size (mm2) from baseline to month 12. The secondary efficacy outcome was the mean change in best-corrected visual acuity (BCVA) from baseline to month 12. Safety outcome measures included the number of subjects with serious adverse events (SAEs) and macular neovascularization (MNV). Results Ten randomized controlled trials including 4,405 participants and five complement inhibitors were identified. Comparison with sham and SUCRA analysis showed that avacincaptad pegol 2 mg (MD: -0.58, 95% CrI: -0.97 to -0.18, SUCRA: 93.55), pegcetacoplan monthly (MD: -0.38, 95% CrI: -0.57 to -0.20, SUCRA: 81.37), and pegcetacoplan every other month (MD: -0.30, 95% CrI: -0.49 to -0.11, SUCRA: 70.16) have significant changes in GA lesion reduction. No treatments showed significant changes in BCVA and SAE compared with sham. Pegcetacoplan monthly (OR: 4.30, 95% CrI: 1.48-16.72) increased the risk of MNV. Avacincaptad pegol 2 mg demonstrated favorable outcomes in terms of SAE and MNV. Conclusion and relevance Avacincaptad pegol 2 mg is the most effective complement inhibitor with better safety for the treatment of GA secondary to AMD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351515, Identifier PROSPERO CRD42022351515.
Collapse
Affiliation(s)
- Huan Wang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zheng
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Qing Zhang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Tian
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Zhu
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Zhang
- Clinical Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Kambulyan L, Chopikyan A, Iritsyan S, Mkhitaryan A, Hovakimyan A. The Role of Complement System's C3 and C4 Fractions in the Pathogenesis of Uveitis. Ocul Immunol Inflamm 2024; 32:2179-2184. [PMID: 38588040 DOI: 10.1080/09273948.2024.2337838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE To study the role of the complement system's C3 and C4 fractions in the pathogenesis of different types of uveitis. METHODS A prospective case-control study. 118 patients were enrolled. The control group comprised 60 patients who were otherwise healthy people undergoing cataract or pterygium surgery, whereas the uveitis patients group consisted of 58 people. The levels of C3 and C4 fractions in the blood and in the aqueous humor for both groups were evaluated and compared. RESULTS No statistically significant differences were found in the levels of the C3 and C4 fractions in the blood between the groups. However, a statistically significant difference was observed in the levels of C3 and C4 in the aqueous humor between the case and control groups, as C3 and C4 fractions were not detected in the control group. The analysis of the mean gradient between the C4 levels in the blood samples and in the aqueous samples did not reveal a statistically significant difference between the case and control groups. However, upon performing an analogous mean gradient analysis of C3 levels, a statistically significant elevation in the value of the mean gradient was observed in the case group as compared to the control group. CONCLUSION Our findings are in line with our initial hypothesis, that the complement system's C3 and C4 fractions may have a role in the pathogenesis of uveitis.
Collapse
Affiliation(s)
| | - Armine Chopikyan
- Department of the Public Health and Healthcare Organization, Yerevan State Medical University, Yerevan, Armenia
| | - Sevan Iritsyan
- Head of Laboratory Service of Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Armen Mkhitaryan
- HistoGen Practical Scientific Center of Pathology, Yerevan State Medical University, Yerevan, Armenia
| | - Anna Hovakimyan
- Head of Cornea-Uveitis Department at Malayan Ophthalmologic Center, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
6
|
Jiang F, Lei C, Chen Y, Zhou N, Zhang M. The complement system and diabetic retinopathy. Surv Ophthalmol 2024; 69:575-584. [PMID: 38401574 DOI: 10.1016/j.survophthal.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Diabetic retinopathy (DR) is one of the common microvascular complications of diabetes mellitus and is the main cause of visual impairment in diabetic patients. The pathogenesis of DR is still unclear. The complement system, as an important component of the innate immune system in addition to defending against the invasion of foreign microorganisms, is involved in the occurrence and development of DR through 3 widely recognized complement activation pathways, the complement regulatory system, and many other pathways. Molecules such as C3a, C5a, and membrane attacking complex, as important molecules of the complement system, are involved in the pathologenesus of DR, either through direct damaging effects or by activating cells (microglia, macroglia, etc.) in the retinal microenvironment to contribute to the pathological damage of DR indirectly. We review the integral association of the complement system and DR to further understand the pathogenesis of DR and possibly provide a new strategy for itstreatment.
Collapse
Affiliation(s)
- Feipeng Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China.
| |
Collapse
|
7
|
Csaky KG, Miller JML, Martin DF, Johnson MW. Drug Approval for the Treatment of Geographic Atrophy: How We Got Here and Where We Need to Go. Am J Ophthalmol 2024; 263:231-239. [PMID: 38387826 PMCID: PMC11162935 DOI: 10.1016/j.ajo.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To discuss the clinical trial results leading to the US Food and Drug Administration (FDA) approval of anti-complement therapies for geographic atrophy (GA), perspectives on functional data from the GA clinical trials, and how lessons from the FDA approval may guide future directions for basic and clinical research in AMD. DESIGN Selected literature review with analysis and perspective METHODS: We performed a targeted review of publicly available data from the clinical trials of pegcetacoplan and avacincaptad for the treatment of GA, as well as scientific literature on the natural history of GA and the genetics and basic science of complement in AMD. RESULTS The approval of pegcetacoplan and avacincaptad was based on an anatomic endpoint of a reduction in the rate of GA expansion over time. However, functional data from 2 phase 3 clinical trials for each drug demonstrated no visual benefit to patients in the treatment groups. Review of the genetics of AMD and the basic science of the role for complement in AMD provides only modest support for targeting complement as treatment for GA expansion, and alternative molecular targets for GA treatment are therefore discussed. Reasons for the disconnect between anatomic and functional outcomes in the clinical trials of anti-complement therapies are discussed, providing insight to guide the configuration of future clinical studies for GA. CONCLUSION Although avacincaptad and pegcetacoplan are our first FDA-approved treatments for GA, results from the clinical trials failed to show any functional improvement after 1 and 2 years, respectively, calling into question whether the drugs represent a "clinically relevant outcome." To improve the chances of more impactful therapies in the future, we provide basic-science rationale for pursuing non-complement targets; emphasize the importance of ongoing clinical research that more closely pins anatomic features of GA to functional outcomes; and provide suggestions for clinical endpoints for future clinical trials on GA.
Collapse
Affiliation(s)
- Karl G Csaky
- From the Retina Foundation of the Southwest (K.G.C.), Dallas, Texas, USA.
| | - Jason M L Miller
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program (J.M.L.M.), University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Martin
- Cole Eye Institute (D.F.M.), Cleveland Clinic, Cleveland Ohio, USA
| | - Mark W Johnson
- Kellogg Eye Center (J.M.L.M., M.W.J.), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Somers FM, Malek G. Estrogen related receptor alpha: Potential modulator of age-related macular degeneration. Curr Opin Pharmacol 2024; 75:102439. [PMID: 38447458 PMCID: PMC10947805 DOI: 10.1016/j.coph.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/08/2024]
Abstract
To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.
Collapse
Affiliation(s)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Hristodorov D, Lohoff T, Luneborg N, Mulder GJ, Clark SJ. Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment. Prog Retin Eye Res 2024; 99:101243. [PMID: 38218527 DOI: 10.1016/j.preteyeres.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.
Collapse
Affiliation(s)
| | | | | | | | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Choi K. Structure-property Relationships Reported for the New Drugs Approved in 2023. Mini Rev Med Chem 2024; 24:1822-1833. [PMID: 38676492 DOI: 10.2174/0113895575308674240415074629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure-property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structureproperty relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure- property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure- property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure-property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul 02841, Korea (ROK)
| |
Collapse
|