1
|
Patel DK, Kumar H, Sobhia ME. Exploring the binding dynamics of covalent inhibitors within active site of PL pro in SARS-CoV-2. Comput Biol Chem 2024; 112:108132. [PMID: 38959551 DOI: 10.1016/j.compbiolchem.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Deepesh Kumar Patel
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
2
|
Ferreira J, Fadl S, Cardoso T, Andrade B, Melo T, Silva E, Agarwal A, Turville S, Saksena N, Rabeh W. Boosting immunity: synergistic antiviral effects of luteolin, vitamin C, magnesium and zinc against SARS-CoV-2 3CLpro. Biosci Rep 2024; 44:BSR20240617. [PMID: 39045772 PMCID: PMC11327220 DOI: 10.1042/bsr20240617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.
Collapse
Affiliation(s)
- Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- G42 Healthcare Omics Excellence Center, Masdar City, Abu Dhabi, United Arabes Emirates
| | - Bruno Silva Andrade
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | - Tarcisio S. Melo
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | | | | | | | - Nitin K. Saksena
- Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Aegros Therapeutics Pty Ltd, 5-6 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Li T, Yan Z, Zhou W, Liu Q, Liu J, Hua H. Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach. Curr Comput Aided Drug Des 2024; 20:784-797. [PMID: 37493168 DOI: 10.2174/1573409919666230726142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state. OBJECTIVE This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state. METHODS In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD. RESULTS Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state. CONCLUSION The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Tong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Yan
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Wei Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinfeng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haibing Hua
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| |
Collapse
|
6
|
Kovalenko I, Kholina E, Fedorov V, Khruschev S, Vasyuchenko E, Meerovich G, Strakhovskaya M. Interaction of Methylene Blue with Severe Acute Respiratory Syndrome Coronavirus 2 Envelope Revealed by Molecular Modeling. Int J Mol Sci 2023; 24:15909. [PMID: 37958892 PMCID: PMC10650479 DOI: 10.3390/ijms242115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
- Scientific and Educational Mathematical Center «Sofia Kovalevskaya Northwestern Center for Mathematical Research», Pskov State University, Pskov 180000, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Ekaterina Vasyuchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, Moscow 115409, Russia
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| |
Collapse
|
7
|
Sunil AA, Jose D, Karri SK, Pukhraj P, Varughese JK, Skaria T. Biomolecular interactions between the antibacterial ceftolozane and the human inflammatory disease target ADAM17: a drug repurposing study. J Biomol Struct Dyn 2023; 42:11706-11716. [PMID: 37798935 DOI: 10.1080/07391102.2023.2263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Inhibition of a disintegrin and metalloproteinase-17 (ADAM17), a metzincin, is proposed as a novel therapeutic strategy to suppress overproduction of the proinflammatory cytokine TNF-α in rheumatoid arthritis and inflammatory bowel disease. Existing ADAM17 inhibitors generate toxic metabolites in-vivo or haven't progressed in clinical trials. Previous studies suggest that ligands which bind to ADAM17 active site by interacting with the Zn ion and L-shaped hydrophobic S1'- and S3'-pockets and forming favorable hydrogen bonds could act as potential ADAM17 inhibitors. Here, we investigated whether the FDA-approved anti-bacterial drug ceftolozane, a cephalosporin containing aromatic groups and carboxyl groups as probable zinc binding groups (ZBGs), forms non-covalent interactions resulting in its binding in the active site of ADAM17. In this study, the density functional theory (DFT), molecular docking and molecular dynamics calculations with the catalytic chain of ADAM17 show that carboxyl group of ceftolozane acts as moderate ZBG, and its extended geometry forms hydrogen bonds and hydrophobic interactions resulting in a binding affinity comparable to the co-crystallized known ADAM17 inhibitor. The favorable binding interactions identified here suggest the potential of ceftolozane to modulate ADAM17 activity in inflammatory diseases. ADAM17 cleaves and releases epidermal growth factor (EGF) ligands from the cell surface. The shed EGF ligands then bind to the EGF receptors to drive embryonic development. Therefore, our findings also suggest that use of ceftolozane during pregnancy may inhibit ADAM17-mediated shedding of EGF and thus increase the risk of birth defects in humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College, Calicut, India
| | - Sai Kumar Karri
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Pukhraj Pukhraj
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | | | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
8
|
Ruan Z, Tang J, Zeng M, Fan P. Virtual high-throughput screening: Potential inhibitors targeting aminopeptidase N (CD13) and PIKfyve for SARS-CoV-2. Open Life Sci 2023; 18:20220637. [PMID: 37426619 PMCID: PMC10329278 DOI: 10.1515/biol-2022-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Since the outbreak of the novel coronavirus nearly 3 years ago, the world's public health has been under constant threat. At the same time, people's travel and social interaction have also been greatly affected. The study focused on the potential host targets of SARS-CoV-2, CD13, and PIKfyve, which may be involved in viral infection and the viral/cell membrane fusion stage of SARS-CoV-2 in humans. In this study, electronic virtual high-throughput screening for CD13 and PIKfyve was conducted using Food and Drug Administration-approved compounds in ZINC database. The results showed that dihydroergotamine, Saquinavir, Olysio, Raltegravir, and Ecteinascidin had inhibitory effects on CD13. Dihydroergotamine, Sitagliptin, Olysio, Grazoprevir, and Saquinavir could inhibit PIKfyve. After 50 ns of molecular dynamics simulation, seven compounds showed stability at the active site of the target protein. Hydrogen bonds and van der Waals forces were formed with target proteins. At the same time, the seven compounds showed good binding free energy after binding to the target proteins, providing potential drug candidates for the treatment and prevention of SARS-CoV-2 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zijing Ruan
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaxi Tang
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mingtang Zeng
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ping Fan
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Wang L, Ma C, Sacco MD, Xue S, Mahmoud M, Calcul L, Chen Y, Wang J, Cai J. Development of the Safe and Broad-Spectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γ-AA Peptide Scaffold. Chemistry 2023; 29:e202300476. [PMID: 36920943 PMCID: PMC10330001 DOI: 10.1002/chem.202300476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/16/2023]
Abstract
SARS-CoV-2 is still wreaking havoc all over the world with surging morbidity and high mortality. The main protease (Mpro ) is essential in the replication of SARS-CoV-2, enabling itself an active target for antiviral development. Herein, we reported the design and synthesis of a new class of peptidomimetics-constrained α, γ-AA peptides, based on which a series of aldehyde and ketoamide inhibitors of the Mpro of SARS-CoV-2 were prepared. The lead compounds showed excellent inhibitory activity in the FRET-based Mpro enzymatic assay not only for the Mpro of SARS-CoV-2 but also for SARS-CoV and MERS-CoV, along with HCoVs like HCoV-OC43, HCoV-229E, HCoV-NL63 and HKU1. The X-ray crystallographic results demonstrated that our compounds form a covalent bond with the catalytic Cys145. They also demonstrated effective antiviral activity against live SARS-CoV-2. Overall, the results suggest that α, γ-AA peptide could be a promising molecular scaffold in designing novel Mpro inhibitors of SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael Dominic Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Mentalla Mahmoud
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, University of New Jersey, Piscataway, NJ, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
10
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
12
|
Gopal J, Muthu M, Sivanesan I. A Comprehensive Survey on the Expediated Anti-COVID-19 Options Enabled by Metal Complexes-Tasks and Trials. Molecules 2023; 28:molecules28083354. [PMID: 37110587 PMCID: PMC10143858 DOI: 10.3390/molecules28083354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Contemporary pharmacology dating back to the late 19th/early 20th centuries has benefitted largely from the incorporation of metal complexes. Various biological attributes have been successfully realized using metal/metal complex-based drugs. Among anticancer, antimicrobial, and antiviral applications, anticancer applications have extracted the maximum benefit from the metal complex, Cisplatin. The following review has compiled the various antiviral benefits harnessed through inputs from metal complexes. As a result of exploiting the pharmacological aspects of metal complexes, the anti-COVID-19 deliverables have been summarized. The challenges ahead, the gaps in this research area, the need to improvise incorporating nanoaspects in metal complexes, and the need to test metal complex-based drugs in clinical trials have been discussed and deliberated. The pandemic shook the entire world and claimed quite a percentage of the global population. Metal complex-based drugs are already established for their antiviral property with respect to enveloped viruses and extrapolating them for COVID-19 can be an effective way to manipulate drug resistance and mutant issues that the current anti-COVID-19 drugs are facing.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 551] [Impact Index Per Article: 275.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
14
|
Kazachinskaia EI, Zibareva LN, Filonenko ES, Ivanova AV, Gadzhieva MM, Bekshokov KK, Kononova YV, Chepurnov AA, Shestopalov AМ. Investigation of the inhibitory activity of extracts, fractions and secondary metabolites of <i>Silene</i> spp. (<i>Caryophyllaceae</i>) and <i>Serratula cupuliformis</i> (<i>Asteraceae</i>) on the replication of SARS-CoV-2 coronavirus. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2023. [DOI: 10.18470/1992-1098-2023-1-62-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aim. In vitro analysis of the inhibitory activity of extracts, fractions and secondary metabolites of plants of the genus Silene [Caryophylaceae] and Serratula cupuliformis [Asteraceae) on the replication of SARS-CoV-2.Material and Methods. Silene spp. and Serratula cupuliformis of the Siberian Botanical Garden of National Research Tomsk State University were used. Ethanol extracts and butanol fractions of Silene spp. were prepared. The flavonoid shaftoside and the ecdysteroid 20-hydroxyecdysone from Lychnis chalcedonica were isolated. Analysis of BAS was carried out by the HPLC method. In vitro analysis of the inhibitory activity of extracts on SARS-CoV-2 replication was performed in Vero cell culture by direct inactivation [neutralization) of virions. Comparison samples were dry ethanol extracts of chaga [Inonotus obliquus, Basidiomycota), spices of cloves [Syzygium aromaticum, Myrtaceae) and root of licorice [Glycyrrhiza glabra L., Fabaceae).Results. The inhibitory activity of ethanol extracts and butanol fractions of Silene spp., as well as individual compounds [shaftozide and 20-E) was revealed in the range of 50% effective concentrations [EC50) when dissolved in water from 339.85±83.92 pg/ml to 1.59±0.39 pg/ml and when dissolved in DMSO from 119.34±26.34 pg/ml to 2.22±0.57 pg/ml, respectively. The butanol fraction of Serratula cupuliformis was active with EC50=21.74±4.80 and 27.42±6.05 pg/mL. These results for some samples of Silene spp. and Serratula cupuliformis are comparable to the EC50 values of the comparators.Conclusion. The results obtained suggest the presence of biologically active substances in the herbal preparations studied that act destructively on virions of SARS-CoV-2 and affect one of the main stages of its "life" cycle - on the attachment to receptors of sensitive cells.
Collapse
Affiliation(s)
- E. I. Kazachinskaia
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Vector State Research Centre of Virology and Biotechnology
| | | | | | - A. V. Ivanova
- Vector State Research Centre of Virology and Biotechnology
| | | | - K. K. Bekshokov
- I.M. Sechenov First Moscow State Medical University, Russian Ministry of Health
| | - Yu. V. Kononova
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. A. Chepurnov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| | - A. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| |
Collapse
|
15
|
Cheng Y, Zheng D, Zhang D, Guo D, Wang Y, Liu W, Liang L, Hu J, Luo T. Molecular recognition of SARS-CoV-2 spike protein with three essential partners: exploring possible immune escape mechanisms of viral mutants. J Mol Model 2023; 29:109. [PMID: 36964244 PMCID: PMC10038388 DOI: 10.1007/s00894-023-05509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE The COVID-19 epidemic is raging around the world, with the emergence of viral mutant strains such as Delta and Omicron, posing severe challenges to people's health and quality of life. A full understanding life cycle of the virus in host cells helps to reveal inactivation mechanism of antibody and provide inspiration for the development of a new-generation vaccines. METHODS In this work, molecular recognitions and conformational changes of SARS-CoV-2 spike protein mutants (i.e., Delta, Mu, and Omicron) and three essential partners (i.e., membrane receptor hACE2, protease TMPRSS2, and antibody C121) both were compared and analyzed using molecular simulations. RESULTS Water basin and binding free energy calculations both show that the three mutants possess higher affinity for hACE2 than WT, exhibiting stronger virus transmission. The descending order of cleavage ability by TMPRSS2 is Mu, Delta, Omicron, and WT, which is related to the new S1/S2 cutting site induced by transposition effect. The inefficient utilization of TMPRSS2 by Omicron is consistent with its primary entry into cells via the endosomal pathway. In addition, RBD-directed antibody C121 showed obvious resistance to Omicron, which may have originated from high fluctuation of approaching angles, high flexibility of I472-F490 loop, and reduced binding ability. CONCLUSIONS According to the overall characteristics of the three mutants, high infectivity, high immune escape, and low virulence may be the future evolutionary selection of SARS-CoV-2. In a word, this work not only proposes the possible resistance mechanism of SARS-CoV-2 mutants, but also provides theoretical guidance for the subsequent drug design against COVID-19 based on S protein structure.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Dan Zheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu, China
| | - Du Guo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China.
| |
Collapse
|
16
|
Effect of psychotropics on the risk of COVID-19 in middle-aged and older adults. Eur Neuropsychopharmacol 2023; 66:67-77. [PMID: 36463771 PMCID: PMC9682054 DOI: 10.1016/j.euroneuro.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Older adults have been markedly impacted by the coronavirus disease 19 (COVID-19) pandemic, and many reports have cited concerns regarding potential psychiatric sequelae of coronavirus disease (COVID-19), but the actual effects of psychotropics on the COVID-19 are unclear. In this study, multivariate logistic regression was used to evaluate associations between the prescription of psychotropics and the risk of SARS-CoV-2 infection, and COVID-19-related death among the participants who were tested for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) before October 18, 2021, in UK Biobank. The psychotropics included 18 types of medications. Among 168,173 participants who underwent testing for SARS-CoV-2 RNA, 30,577 (18.2%) were positive, and 14,284 (8.5%) participants used psychotropics. Among 30,577 participants who were infected with SARS-CoV-2, 1,181 (3.9%) were COVID-19-related deaths, and 2,542 (8.3%) participants used psychotropics. In multivariate logistic regression, psychotropics use was significantly associated with the risk of SARS-CoV-2 infection (odds ratio [OR], 0.95; 95% confidence interval [CI], 0.88-0.98), and COVID-19-related death (OR, 0.78; 95% CI, 0.64-0.98). Interestingly, the use of diazepam was significantly associated with a 31% lower risk of SARS-CoV-2 infection (OR, 0.69; 95% CI, 0.53-0.88). The use of sertraline was significantly associated with a 89% lower risk of COVID-19-related death (OR, 0.11; 95% CI, 0.02-0.39). In conclusion, our findings suggested that the use of psychotropics was associated with a lower risk of SARS-CoV-2 infection and COVID-19-related deaths.
Collapse
|
17
|
Mahnam K, Ghobadi Z. Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study. J Biomol Struct Dyn 2022; 40:12621-12641. [PMID: 34514953 DOI: 10.1080/07391102.2021.1973910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spike protein of coronavirus is a key protein in binding and entrance of virus to the human cell via binding to the receptor-binding domain (RBD) domain of S1 subunit to peptidase domain region of ACE2 receptor. In this study, the possible effect of 24 antiviral drugs on the RBD domain of spike protein was investigated via docking and molecular dynamics simulation for finding a dual-target drug. At first, all drugs were docked to the RBD domain of spike protein, and then all complexes and free RBD domains were separately used for molecular dynamics simulation for 50 ns via amber18 software. The simulation results showed that 10 ligands from 28 ligands were separated from the RBD domain, and among 18 remained ligands, baloxavir marboxil, and danoprevir drugs, besides endonuclease activity and protease inhibitory, can bind to key residues of the RBD domain. Then these drugs have a dual target and should be more effective than current drugs, and experimental studies should be done on baloxavir marboxil and danoprevir as more potential drugs for coronavirus disease Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | - Zahra Ghobadi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
18
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Chen N, Zhang B, Deng L, Liang B, Ping J. Virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2. Emerg Microbes Infect 2022; 11:1371-1389. [PMID: 35476817 PMCID: PMC9132403 DOI: 10.1080/22221751.2022.2071175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, SARS-CoV-2, especially the Omicron strain, is ravaging the world and even co-infecting human beings with IAV, which is a serious threat to human public health. As of yet, no specific antiviral drug has been discovered for SARS-CoV-2. This requires deeper understandings of the molecular mechanisms of SARS-CoV-2-host interaction, to explore antiviral drug targets and provide theoretical basis for developing anti-SARS-CoV-2 drugs. This article discussed IAV, which has been comprehensively studied and is expected to provide the most important reference value for the SARS-CoV-2 study apart from members of the Coronaviridae family. We wish to establish a theoretical system for the studies on virus-host interaction. Previous studies have shown that host PRRs recognize RNAs of IAV or SARS-CoV-2 and then activate innate immune signaling pathways to induce the expression of host restriction factors, such as ISGs, to ultimately inhibit viral replication. Meanwhile, viruses have also evolved various regulatory mechanisms to antagonize host innate immunity at transcriptional, translational, post-translational modification, and epigenetic levels. Besides, viruses can hijack supportive host factors for their replication. Notably, the race between host antiviral innate immunity and viral antagonism of host innate immunity forms virus-host interaction networks. Additionally, the viral replication cycle is co-regulated by proteins, ncRNAs, sugars, lipids, hormones, and inorganic salts. Given this, we updated the mappings of antiviral drug targets based on virus-host interaction networks and proposed an innovative idea that virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2 from the perspectives of viral immunology and systems biology.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Discovery of Novel Thioquinazoline- N-aryl-acetamide/ N-arylacetohydrazide Hybrids as Anti-SARS-CoV-2 Agents: Synthesis, in vitro Biological Evaluation, and Molecular Docking Studies. J Mol Struct 2022; 1276:134690. [PMCID: PMC9709698 DOI: 10.1016/j.molstruc.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In the current investigation, two novel series of (tetrahydro)thioquinazoline-N-arylacetamides and (tetrahydro)thioquinazoline-N-arylacetohydrazides were designed, synthesized and investigated for their antiviral activity against SARS-CoV-2. The thioquinazoline-N-arylacetamide 17g as well as the tetrahydrothioquinazoline-N-arylacetohydrazides 18c and 18f showed potent antiviral activity with IC50 of 21.4, 38.45 and 26.4 µM, respectively. In addition, 18c and 18f demonstrated potential selectivity toward the SARS-CoV-2 over the host cells with SI of 10.67 and 16.04, respectively. Further evaluation of the mechanism of action of the three derivatives 17g, 18c, and 18f displayed that they can inhibit the virus at the adsorption as well as at the replication stages, in addition to their virucidal properties. In addition, 17g, 18c, and 18f demonstrated satisfactory physicochemical properties as well as drug-likeness properties to be further optimized for the discovery of novel antiviral agents. The docking simulation predicted the binding pattern of the target compounds rationalizing their differential activity based on their hydrophobic interaction and fitting in the hydrophobic S2 subsite of the binding site
Collapse
|
21
|
Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Commun Biol 2022; 5:1179. [PMID: 36333470 PMCID: PMC9636267 DOI: 10.1038/s42003-022-04160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope. In the receptor binding domain, a neutralizing epitope is captured in the end distal to the receptor binding site, reminiscent of the locations of the SARS-CoV-2 RBD cryptic epitopes. We also identified a neutralizing antibody that recognizes the connector domain, thus representing the first S2-directed neutralizing antibody against α-HCoVs. The unraveled HCoVs S proteins antigenic similarities and variances among genera highlight the challenges faced by pan-HCoV vaccine design while supporting the feasibility of broadly effective vaccine development against a subset of HCoVs. The antigenic landscape of α-HCoVs S proteins is revealed, highlighting the challenges faced by pan-HCoV vaccine design but also revealing opportunities for development of broadly effective vaccines against a subset of HCoVs.
Collapse
|
22
|
Poulakou G, Barakat M, Israel RJ, Bacci MR, Álvarez SN, Fonseca FLA, Kainis I, Kalomoiri S, Leontis K, Metallidis S, Panagopoulos P, Papastamopoulos V, Ragognete HG, Ramacciotti E, Rapti V, Sakka V, Syrigos KN, Tsoukalas G, Xynogalas I. Ribavirin aerosol in hospitalized adults with respiratory distress and COVID-19: An open-label trial. Clin Transl Sci 2022; 16:165-174. [PMID: 36326174 PMCID: PMC9841304 DOI: 10.1111/cts.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
There is an unmet medical need for effective treatments for hospitalized patients with coronavirus disease 2019 (COVID-19). Ribavirin is a broad-spectrum antiviral with demonstrated in vitro activity against multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This trial evaluated the potential of ribavirin inhalation solution (ribavirin aerosol) to reduce COVID-19 disease severity in adults with confirmed SARS-CoV-2 infection and a diagnosis of respiratory distress. This phase I, multicenter, open-label, nonrandomized trial was conducted from February 2021 through August 2021. Patients received ribavirin aerosol (100 mg/ml for 30 min or 50 mg/ml for 60 min) twice daily for up to 6 days. The primary end point was change from baseline in clinical status severity, rated on a 7-point scale (1 [death]; 7 [not hospitalized; no limitations on activities]), at day 7 (or end-of-treatment/early termination) and day 30 (follow-up). Fifty-one patients were treated with ribavirin aerosol (mean age, 51.5 years; 78.4% men); mean number of doses was 9.7 (range, 1-12). Improvement of ≥1 level in clinical status severity was observed in 31.4% (16/51) and 78.4% (40/51) of patients at end-of-treatment and day 30, respectively. Of 21 patients who required a ventilator, 16 (76.2%) were able to discontinue ventilator use. Five patients (9.8%) died between end-of-treatment and day 30. Three patients (5.9%) discontinued study treatment due to adverse events. No deaths were considered related to study treatment. These data provide preliminary evidence that ribavirin aerosol may be an efficacious treatment for respiratory distress in adults with COVID-19.
Collapse
Affiliation(s)
- Garyfallia Poulakou
- Third Department of Internal Medicine, “Sotiria” General Hospital of Chest DiseasesNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | | | | | - Marcelo R. Bacci
- Clinical Analysis Division, Praxis Pesquisa MedicaCentro Universitário Faculdade de Medicina do ABCSanto AndreSão PauloBrazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-Silberstein F, Artese A, Alcaro S. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Molecules 2022; 27:7522. [PMID: 36364347 PMCID: PMC9654784 DOI: 10.3390/molecules27217522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/14/2024] Open
Abstract
The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Saverio Lemme
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Davide Vergni
- Istituto per le Applicazioni del Calcolo “Mauro Picone”-CNR, 00185 Rome, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Maria Mercedes Santoro
- Dipartimento di Medicina Sperimentale, Università Tor Vergata di Roma, Via Montpellier, 1, 00133 Roma, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
24
|
Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. Int J Mol Sci 2022; 23:ijms231911131. [PMID: 36232431 PMCID: PMC9569982 DOI: 10.3390/ijms231911131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.
Collapse
|
25
|
Li H, Zhu B, Li B, Chen L, Ning X, Dong H, Liang J, Yang X, Dong J, Ueda H. Isolation of a human SARS-CoV-2 neutralizing antibody from a synthetic phage library and its conversion to fluorescent biosensors. Sci Rep 2022; 12:15496. [PMID: 36109569 PMCID: PMC9476436 DOI: 10.1038/s41598-022-19699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.
Collapse
Affiliation(s)
- Haimei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Baowei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xuerao Ning
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hang Dong
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingru Liang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xueying Yang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinhua Dong
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
26
|
A novel cyclic γ-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Cell Discov 2022; 8:88. [PMID: 36075899 PMCID: PMC9453727 DOI: 10.1038/s41421-022-00455-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022] Open
Abstract
The receptor-binding domain (RBD) in S1 subunit and heptad repeat 1 (HR1) domain in S2 subunit of SARS-CoV-2 spike (S) protein are the targets of neutralizing antibodies (nAbs) and pan-coronavirus (CoV) fusion inhibitory peptides, respectively. However, neither nAb- nor peptide-based drugs can be used orally. In this study, we screened a one-bead-two-compound (OBTC) cyclic γ-AApeptide library against SARS-CoV-2 S protein and identified a hit: S-20 with potent membrane fusion inhibitory activity, but moderate selectivity index (SI). After modification, one derivative, S-20-1, exhibited improved fusion inhibitory activity and SI (>1000). S-20-1 could effectively inhibit infection by pseudotyped and authentic SARS-CoV-2 and pseudotyped variants of concern (VOCs), including B.1.617.2 (Delta) and B.1.1.529 (Omicron), as well as MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, and HCoV-NL63. It could also inhibit infection of a pseudotyped SARS-related coronavirus WIV1 (SARSr-CoV-WIV1) from bats. Intranasal application of S-20-1 to mice before or after challenge with HCoV-OC43 or SARS-CoV-2 provided significant protection from infection. Importantly, S-20-1 was highly resistant to proteolytic degradation, had long half-life, and possessed favorable oral bioavailability. Mechanistic studies suggest that S-20-1 binds with high affinity to RBD in S1 and HR1 domain in S2 of SARS-CoV-2 S protein. Thus, with its pan-CoV fusion and entry inhibitory activity by targeting two sites in S protein, desirable half-life, and promising oral bioavailability, S-20-1 is a potential candidate for further development as a novel therapeutic and prophylactic drug against infection by SARS-CoV-2 and its variants, as well as future emerging and reemerging CoVs.
Collapse
|
27
|
Qin G, Zhao C, Liu Y, Zhang C, Yang G, Yang J, Wang Z, Wang C, Tu C, Guo Z, Ren J, Qu X. RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models. Cell Discov 2022; 8:86. [PMID: 36068208 PMCID: PMC9447362 DOI: 10.1038/s41421-022-00450-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
The ongoing COVID-19 pandemic has continued to affect millions of lives worldwide, leading to the urgent need for novel therapeutic strategies. G-quadruplexes (G4s) have been demonstrated to regulate life cycle of multiple viruses. Here, we identify several highly conservative and stable G4s in SARS-CoV-2 and clarify their dual-function of inhibition of the viral replication and translation processes. Furthermore, the cationic porphyrin compound 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) targeting SARS-CoV-2 G4s shows excellent antiviral activity, while its N-methyl-2-pyridyl positional isomer TMPyP2 with low affinity for G4 has no effects on SARS-CoV-2 infection, suggesting that the antiviral activity of TMPyP4 attributes to targeting SARS-CoV-2 G4s. In the Syrian hamster and transgenic mouse models of SARS-CoV-2 infection, administration of TMPyP4 at nontoxic doses significantly suppresses SARS-CoV-2 infection, resulting in reduced viral loads and lung lesions. Worth to note, the anti-COVID-19 activity of TMPyP4 is more potent than remdesivir evidenced by both in vitro and in vivo studies. Our findings highlight SARS-CoV-2 G4s as a novel druggable target and the compelling potential of TMPyP4 for COVID-19 therapy. Different from the existing anti-SARS-CoV-2 therapeutic strategies, our work provides another alternative therapeutic tactic for SARS-CoV-2 infection focusing on targeting the secondary structures within SARS-CoV-2 genome, and would open a new avenue for design and synthesis of drug candidates with high selectivity toward the new targets.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,Hebei Agricultural University, College of Veterinary Medicine, 2596 Lucky South Street, Baoding, Hebei, China
| | - Guang Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China. .,University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
28
|
Couroux P, Brkovic A, Vittitow JL, Israel RJ, Pamidi C, Patel J, Barakat M. A randomized, placebo-controlled study to evaluate safety and pharmacokinetics of inhaled ribavirin. Clin Transl Sci 2022; 15:2159-2171. [PMID: 35677972 PMCID: PMC9468560 DOI: 10.1111/cts.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Ribavirin is an inosine monophosphate dehydrogenase inhibitor. Studies suggest ribavirin aerosol could be a safe and efficacious treatment option in the fight against coronaviruses. However, current treatment is long (12-18 h per day, 3-7 days), limiting clinical utility. A reduction in treatment time would reduce treatment burden. We aimed to evaluate safety and pharmacokinetics (PK) of four, single-dose regimens of ribavirin aerosol in healthy volunteers. Thirty-two subjects were randomized, to four cohorts of aerosolized ribavirin (active) or placebo. Cohort 1 received 50 mg/ml ribavirin/placebo (10 ml total volume); cohort 2, 50 mg/ml ribavirin/placebo (20 ml total volume); cohort 3, 100 mg/ml ribavirin/placebo (10 ml total volume); and cohort 4, 100 mg/ml ribavirin/placebo (20 ml total volume). Intense safety monitoring and PK sampling took place on days 1, 2, 3, and 40. Subjects were (mean ± SD, active vs. placebo) aged 57 ± 4.5 vs. 60 ± 2.5 years; 83% vs. 88% were female; and 75% vs. 50% were Caucasian. Some 12.5% (3/24) and 25% (2/8) experienced at least one treatment-emergent adverse event (TEAE) (two moderate; five mild) in the active and placebo groups, respectively. No clinically significant safety concerns were reported. Mean maximum observed concentration (Cmax ) and area under the curve (AUC) values were higher in cohort 4, whereas cohorts 2 and 3 showed similar PK values. Ribavirin absorption reached Cmax within 2 h across cohorts. Four single-dose regimens of ribavirin aerosol demonstrated systemic exposure with minimal systemic effects. Results support continued clinical development of ribavirin aerosol as a treatment option in patients with coronaviruses.
Collapse
|
29
|
Zhang Y, Pang Y, Xu B, Chen X, Liang S, Hu J, Luo X. Folic acid restricts SARS-CoV-2 invasion by methylating ACE2. Front Microbiol 2022; 13:980903. [PMID: 36060767 PMCID: PMC9432853 DOI: 10.3389/fmicb.2022.980903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The current COVID-19 pandemic is motivating us to elucidate the molecular mechanism of SARS-CoV-2 invasion and find methods for decreasing its transmissibility. We found that SARS-CoV-2 could increase the protein level of ACE2 in mice. Folic acid and 5-10-methylenetetrahydrofolate reductase (MTHFR) could promote the methylation of the ACE2 promoter and inhibit ACE2 expression. Folic acid treatment decreased the binding ability of Spike protein, pseudovirus and inactivated authentic SARS-CoV-2 to host cells. Thus, folic acid treatment could decrease SARS-CoV-2 invasion and SARS-CoV-2-neutralizing antibody production in mice. These data suggest that increased intake of folic acid may inhibit ACE2 expression and reduce the transmissibility of SARS-CoV-2. Folic acid could play an important role in SARS-CoV-2 infection prevention and control.
Collapse
Affiliation(s)
- Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yechun Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyin Xu
- Shanghai Pudong New Area People’s Hosptial, Shanghai, China
| | - Xingshi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunshun Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoying Luo,
| |
Collapse
|
30
|
Abstract
The first appearance of SARS-CoV-2 is dated back to 2019. This new member of the coronavirus family has caused more than 5 million deaths worldwide up until the end of January 2022. At the moment, and after intensive vaccination programmes throughout the world, the pandemic is still active, whilst new mutations constantly appear. Researchers are working intensively to discover antiviral drugs to combat the severe cases in intensive care units, giving the overloaded hospital units a breather. Alongside various research projects focusing on developing small pharmaceutical molecules, a significant proportion of the research community has shifted towards paying attention to metal drugs. In this small review, we make brief reference to the use of metal drugs in therapeutics and provide some examples of metal drugs that are of extreme interest in the current pandemic. At the same time, we will also examine some of their promising mechanisms of action and possible effectiveness against COVID-19.
Collapse
Affiliation(s)
- Kyriacos Ioannou
- Department of Life and Health Sciences, University of Nicosia, 2417, Nicosia, Cyprus
| | - Manos C Vlasiou
- Department of Life and Health Sciences, University of Nicosia, 2417, Nicosia, Cyprus.
| |
Collapse
|
31
|
Jemth AS, Scaletti ER, Homan E, Stenmark P, Helleday T, Michel M. Nudix hydrolase 18 catalyzes the hydrolysis of active triphosphate metabolites of the antivirals remdesivir, ribavirin, and molnupiravir. J Biol Chem 2022; 298:102169. [PMID: 35732208 PMCID: PMC9212496 DOI: 10.1016/j.jbc.2022.102169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/28/2022] Open
Abstract
Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s-1M-1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.
Collapse
Affiliation(s)
- Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Emma Rose Scaletti
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Pål Stenmark
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Weston Park Cancer Centre, Department of Oncology & Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
32
|
Urbán P, Italiani P, Boraschi D, Gioria S. The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes. Front Immunol 2022; 13:963627. [PMID: 35928816 PMCID: PMC9343583 DOI: 10.3389/fimmu.2022.963627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
The interaction of SARS-CoV-2 with the human immune system is at the basis of the positive or negative outcome of the infection. Monocytes and macrophages, which are major innate immune/inflammatory effector cells, are not directly infected by SARS-CoV-2, however they can react to the virus and mount a strong reaction. Whether this first interaction and reaction may bias innate reactivity to re-challenge, a phenomenon known as innate memory, is currently unexplored and may be part of the long-term sequelae of COVID-19. Here, we have tested the capacity of SARS-CoV-2 and some of its proteins to induce innate memory in human monocytes in vitro. Our preliminary results show that the Spike protein subunits S1 and S2 and the entire heat-inactivated virus have no substantial effect. Conversely, monocytes pre-exposed to the nucleocapsid N protein react to subsequent viral or bacterial challenges with an increased production of anti-inflammatory IL-1Ra, a response profile suggesting a milder response to new infections.
Collapse
Affiliation(s)
- Patricia Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technologies (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- *Correspondence: Sabrina Gioria,
| |
Collapse
|
33
|
Wang X, Chen Y, Shi H, Zou P. Erythromycin Estolate Is a Potent Inhibitor Against HCoV-OC43 by Directly Inactivating the Virus Particle. Front Cell Infect Microbiol 2022; 12:905248. [PMID: 35873167 PMCID: PMC9301004 DOI: 10.3389/fcimb.2022.905248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to antibacterial effects, macrolide antibiotics exhibit other extensive pharmacological effects, such as anti-inflammatory and antiviral activities. Erythromycin estolate, one of the macrolide antibiotics, was previously investigated to effectively inhibit infections of various flaviviruses including Zika virus, dengue virus, and yellow fever virus, but its antiviral effect against human coronavirus remains unknown. Thus, the current study was designed to evaluate the antiviral efficacy of erythromycin estolate against human coronavirus strain OC43 (HCoV-OC43) and to illustrate the underlying mechanisms. Erythromycin estolate effectively inhibited HCoV-OC43 infection in different cell types and significantly reduced virus titers at safe concentration without cell cytotoxicity. Furthermore, erythromycin estolate was identified to inhibit HCoV-OC43 infection at the early stage and to irreversibly inactivate virus by disrupting the integrity of the viral membrane whose lipid component might be the target of action. Together, it was demonstrated that erythromycin estolate could be a potential therapeutic drug for HCoV-OC43 infection.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Peng Zou,
| |
Collapse
|
34
|
Valipour M. Different Aspects of Emetine's Capabilities as a Highly Potent SARS-CoV-2 Inhibitor against COVID-19. ACS Pharmacol Transl Sci 2022; 5:387-399. [PMID: 35702393 PMCID: PMC9159504 DOI: 10.1021/acsptsci.2c00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/18/2023]
Abstract
In the global movement to find the appropriate agents to fight the coronavirus disease of 2019 (COVID-19), emetine is one of the strongest anti-SARS-CoV-2 compounds with sub-micromolar EC50 values, identified in several studies and high-throughput screening efforts. The reported anti-SARS-CoV-2 mechanisms indicate the effect of this compound on both virus-based and host-based targets. In addition to having excellent antiviral effects, emetine can relieve COVID-19 patients by reducing inflammation through inhibitory activity against NF-κB by the mechanism of IκBα phosphorylation inhibition; it can also limit the lipopolysaccharide-induced expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Emetine also can well reduce pulmonary arterial hypertension as an important COVID-19 complication by modulating a variety of cellular processes such as the Rho-kinase/CyPA/Bsg signaling pathway. The therapeutic value of emetine for combating COVID-19 was highlighted when in vivo pharmacokinetic studies showed that the concentration of this compound in the lungs increases significantly higher than the EC50 of the drug. Despite its valuable therapeutic effects, emetine has some cardiotoxic effects that limit its use in high doses. However, high therapeutic capabilities make emetine a valuable lead compound that can be used for the design and development of less toxic anti-COVID-19 agents in the future. This Review provides a collection of information on the capabilities of emetine and its potential for the treatment of COVID-19, along with structural analysis which could be used for further research in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry,
Faculty of Pharmacy, Mazandaran University
of Medical Sciences, 48175-866 Sari, Iran
| |
Collapse
|
35
|
Expression, purification, and biophysical characterization of recombinant MERS-CoV main (M pro) protease. Int J Biol Macromol 2022; 209:984-990. [PMID: 35452699 PMCID: PMC9017057 DOI: 10.1016/j.ijbiomac.2022.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
Abstract
MERS-CoV main protease (Mpro) is essential for the maturation of the coronavirus; therefore, considered a potential drug target. Detailed conformational information is essential to developing antiviral therapeutics. However, the conformation of MERS-CoV Mpro under different conditions is poorly characterized. In this study, MERS-CoV Mpro was recombinantly produced in E.coli and characterized its structural stability with respect to changes in pH and temperatures. The intrinsic and extrinsic fluorescence measurements revealed that MERS-CoV Mpro tertiary structure was exposed to the polar environment due to the unfolding of the tertiary structure. However, the secondary structure of MERS-CoV Mpro was gained at low pH because of charge-charge repulsion. Furthermore, differential scanning fluorometry studies of Mpro showed a single thermal transition at all pHs except at pH 2.0; no transitions were observed. The data from the spectroscopic studies suggest that the MERS-CoV Mpro forms a molten globule-like state at pH 2.0. Insilico studies showed that the covid-19 Mpro shows 96.08% and 50.65% similarity to that of SARS-CoV Mpro and MERS-CoV Mpro, respectively. This study provides a basic understanding of the thermodynamic and structural properties of MERS-CoV Mpro.
Collapse
|
36
|
Sepehri B, Ghavami R, Mahmoudi F, Irani M, Ahmadi R, Moradi D. Identifying SARS-CoV-2 main protease inhibitors by applying the computer screening of a large database of molecules. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:341-356. [PMID: 35502579 DOI: 10.1080/1062936x.2022.2050424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) at the end of 2019 affected global health. Its infection agent was called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wearing a mask, maintaining social distance, and vaccination are effective ways to prevent infection of SARS-CoV-2, but none of them help infected people. Targeting the enzymes of SARS-CoV-2 is an effective way to stop the replication of the virus in infected people and treat COVID-19 patients. SARS-CoV-2 main protease is a therapeutic target which the inhibition of its enzymatic activity prevents from the replication of SARS-CoV-2. A large database of molecules has been searched to identify new inhibitors for SARS-CoV-2 main protease enzyme. At the first step, ligand screening based on similarity search was used to select similar compounds to known SARS-CoV-2 main protease inhibitors. Then molecules with better predicted pharmacokinetic properties were selected. Structure-based virtual screening based on the application of molecular docking and molecular dynamics simulation methods was used to select more effective inhibitors among selected molecules in previous step. Finally two compounds were considered as SARS-CoV-2 main protease inhibitors.
Collapse
Affiliation(s)
- B Sepehri
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - R Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - F Mahmoudi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - M Irani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - R Ahmadi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - D Moradi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
37
|
Mitoxantrone modulates a heparan sulfate-spike complex to inhibit SARS-CoV-2 infection. Sci Rep 2022; 12:6294. [PMID: 35440680 PMCID: PMC9016215 DOI: 10.1038/s41598-022-10293-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a heparan sulfate-spike complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar heparan sulfate-binding activities but with reduced affinity for DNA topoisomerases may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.
Collapse
|
38
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Deng W, Yang C, Yang S, Chen H, Qiu Z, Chen J. Evaluation of favipiravir in the treatment of COVID-19 based on the real-world. Expert Rev Anti Infect Ther 2022; 20:555-565. [PMID: 34846960 PMCID: PMC8787837 DOI: 10.1080/14787210.2022.2012155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of favipiravir (FVP) as a COVID-19 treatment is recognized but not fully elucidated. We aimed to evaluate whether FVP has definite clinical efficacy and safety in the treatment of COVID-19. METHODS International and Chinese databases were searched for randomized controlled clinical trials evaluating FVP for the treatment of COVID-19. A meta-analysis was performed and published literature was synthesized to evaluate the corresponding therapeutic effects. RESULTS We included 13 studies (1430 patients in total). Meta-analysis showed that patients with mild-to-moderate disease treated with FVP had a significantly higher viral clearance rate than those in the control group 10 and 14 days after initiation of treatment [RR: 1.13 (95% CI: 1.00, 1.28), P = 0.04; I2 = 39% for day 10 and RR: 1.16 (95% CI: 1.04, 1.30), P = 0.008; I2 = 38% for day 14] and a significantly shorter hospital stay [MD: -1.52 (95% CI: -2.82, -0.23), P = 0.02; I2 = 0%]. CONCLUSIONS FVP significantly promotes viral clearance and reduces the hospitalization duration in mild-to-moderate COVID-19 patients, which can reduce the risk of severe disease outcomes in patients. However, more importantly, the results showed no benefit of FVP in severe patients, and caution should be taken regarding the treatment options of FVP in severe patients.
Collapse
Affiliation(s)
- Weishang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Changyuan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sensen Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Haitao Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhikun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- CONTACT Jisheng Chen The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou City, Guangdong Province510080, China
| |
Collapse
|
40
|
Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. Int J Mol Sci 2022; 23:ijms23042060. [PMID: 35216177 PMCID: PMC8878748 DOI: 10.3390/ijms23042060] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.
Collapse
|
41
|
Celik I, Erol M, Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol Divers 2022; 26:279-292. [PMID: 33765239 PMCID: PMC7992164 DOI: 10.1007/s11030-021-10215-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
Since the outbreak emerged in November 2019, no effective drug has yet been found against SARS-CoV-2. Repositioning studies of existing drug molecules or candidates are gaining in overcoming COVID-19. Antiviral drugs such as remdesivir, favipiravir, ribavirin, and galidesivir act by inhibiting the vital RNA polymerase of SARS-CoV-2. The importance of in silico studies in repurposing drug research is gradually increasing during the COVID-19 process. The present study found that especially ribavirin triphosphate and galidesivir triphosphate active metabolites had a higher affinity for SARS-CoV-2 RNA polymerase than ATP by molecular docking. With the Molecular Dynamics simulation, we have observed that these compounds increase the complex's stability and validate the molecular docking results. We also explained that the interaction of RNA polymerase inhibitors with Mg++, which is in the structure of NSP12, is essential and necessary to interact with the RNA strand. In vitro and clinical studies on these two molecules need to be increased.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Meryem Erol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Zekeriya Duzgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| |
Collapse
|
42
|
Non-clinical safety assessment and in vivo biodistribution of CoviFab, an RBD-specific F(ab')2 fragment derived from equine polyclonal antibodies. Toxicol Appl Pharmacol 2022; 434:115796. [PMID: 34785274 PMCID: PMC8590615 DOI: 10.1016/j.taap.2021.115796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has required the urgent development of new therapies, among which passive immunotherapy is contemplated. CoviFab (INM005) is a RBD-specific F(ab′)2 fragment derived from equine polyclonal antibodies. We investigate their preclinical security and biodistribution by in vivo and ex vivo NIR imaging after intravenous administration of a dose of 4 mg/kg at time 0 and 48 h. Images were taken at 1, 12, 24, 36, 48, 49, 60, 72, 84, 96, 108, 120, 132 and 144 h after the first intravenous injection. At 96 and 144 h, mice were sacrificed for haematology, serum chemistry, clinical pathology, histopathology and ex vivo imaging. The biodistribution profile was similar in all organs studied, with the highest fluorescence at 1 h after each injection, gradually decreasing after that each one and until the end of the study (144 h). The toxicology study revealed no significant changes in the haematology and serum chemistry parameters. Further, there were no changes in the gross and histological examination of organs. Nonclinical data of the current study confirm that CoviFab is safe, without observable adverse effects in mice. Furthermore, we confirm that bioimaging studies are a useful approach in preclinical trials to determine biodistribution.
Collapse
|
43
|
KÜÇÜK BEYZANUR, ŞİMŞEK RAHİME, ERDEMLİ KÖSE SELİNAYBAŞAK, YİRÜN ANIL, Erkekoglu P. Adverse Effects of COVID-19 Treatments: A Special Focus on Susceptible Populations. J Environ Pathol Toxicol Oncol 2022; 41:45-64. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022039271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
45
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|
46
|
Molecular interactions in remdesivir-cyclodextrin systems. J Pharm Biomed Anal 2021; 209:114482. [PMID: 34856493 PMCID: PMC8609759 DOI: 10.1016/j.jpba.2021.114482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 02/01/2023]
Abstract
Remdesivir (REM) is the first antiviral drug (Veklury™) approved by the Food and Drug Administration for the therapy of COVID-19. Due to its poor water solubility, the preparation of Veklury™ requires a suitable solubilizing excipient at pH 2 conditions. For this purpose, the final formulation contains the randomly substituted sulfobutylether-β-cyclodextrin (SBEβCD) as a complexing agent. Herein, extensive NMR spectroscopic study with various cyclodextrin (CD) derivatives were conducted to understand the interactions in SBEβCD - REM systems at the molecular level. The pKa value of REM has been determined experimentally for the first time, as the protonation state of the aminopyrrolo-triazine moiety can play a key role in CD-REM inclusion complex formation as SBEβCD has permanent negative charges. The UV-pH titration experiments yielded a pKa of 3.56, thus the majority of REM bears a positive charge at pH 2.0. NMR experiments were performed on β- and γCD derivatives to determine complex stabilities, stoichiometries and structures. The stability constants were determined by nonlinear curve fitting based on 1H NMR titrations at pH 2.0, while Job's method was used to determine the stoichiometries. βCD complexes were one order of magnitude more stable than their γCD counterparts. Sulfobutylation resulted in a significant increase in stability and the single isomer derivatives showed unexpectedly high stability values (logK = 4.35 for REM - per-6-SBEβCD). In the case of βCDs, the ethylbutyl-moiety plays a key role in complexation immersing into the βCD cavity, while the phenoxy-moiety overtakes and drives the inclusion of REM in the case of γCDs. This is the first comprehensive study of REM-CD complexation, allowing the design of new CD derivatives with tailored stabilities, thereby aiding the formulation or production and even the analytical characterization of REM.
Collapse
|
47
|
Sepulcri C, Dentone C, Mikulska M, Bruzzone B, Lai A, Fenoglio D, Bozzano F, Bergna A, Parodi A, Altosole T, Delfino E, Bartalucci G, Orsi A, Di Biagio A, Zehender G, Ballerini F, Bonora S, Sette A, De Palma R, Silvestri G, De Maria A, Bassetti M. The Longest Persistence of Viable SARS-CoV-2 With Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study. Open Forum Infect Dis 2021; 8:ofab217. [PMID: 34796242 PMCID: PMC8135455 DOI: 10.1093/ofid/ofab217] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immunocompromised patients show prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs. We report a case of prolonged persistence of viable SARS-CoV-2 associated with clinical relapses of coronavirus disease 2019 (COVID-19) in a patient with mantle cell lymphoma who underwent treatment with rituximab, bendamustine, cytarabine with consequent lymphopenia and hypogammaglobulinemia. METHODS Nasopharyngeal swabs and blood samples were tested for SARS-CoV-2 by real-time polymerase chain reaction (RT-PCR). On 5 positive nasopharyngeal swabs, we performed viral culture and next-generation sequencing. We analyzed the patient's adaptive and innate immunity to characterize T- and NK-cell subsets. RESULTS SARS-CoV-2 RT-PCR on nasopharyngeal swabs samples remained positive for 268 days. All 5 performed viral cultures were positive, and genomic analysis confirmed a persistent infection with the same strain. Viremia resulted positive in 3 out of 4 COVID-19 clinical relapses and cleared each time after remdesivir treatment. The T- and NK-cell dynamic was different in aviremic and viremic samples, and no SARS-CoV-2-specific antibodies were detected throughout the disease course. CONCLUSIONS In our patient, SARS-CoV-2 persisted with proven infectivity for >8 months. Viremia was associated with COVID-19 relapses, and remdesivir treatment was effective in viremia clearance and symptom remission, although it was unable to clear the virus from the upper respiratory airways. During the viremic phase, we observed a low frequency of terminal effector CD8+ T lymphocytes in peripheral blood; these are probably recruited in inflammatory tissue for viral eradication. In addition, we found a high level of NK-cell repertoire perturbation with relevant involvement during SARS-CoV-2 viremia.
Collapse
Affiliation(s)
- Chiara Sepulcri
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Dentone
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Malgorzata Mikulska
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Federica Bozzano
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Alessia Parodi
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Tiziana Altosole
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
| | - Emanuele Delfino
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Bartalucci
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Hygiene Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gianguglielmo Zehender
- Hygiene Unit, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Filippo Ballerini
- Hematology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Ospedale Amedeo di Savoia, University of Turin, Turin, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Raffaele De Palma
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Immunology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Andrea De Maria
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
48
|
Chiou WC, Lu HF, Hsu NY, Chang TY, Chin YF, Liu PC, Lo JM, Wu YB, Yang JM, Huang C. Ugonin J Acts as a SARS-CoV-2 3C-like Protease Inhibitor and Exhibits Anti-inflammatory Properties. Front Pharmacol 2021; 12:720018. [PMID: 34512347 PMCID: PMC8427442 DOI: 10.3389/fphar.2021.720018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe “flu-like” symptoms that can progress to acute respiratory distress syndrome (ARDS), pneumonia, renal failure, and death. From the therapeutic perspective, 3-chymotrypsin-like protein (3CLpro) is a plausible target for direct-acting antiviral agents because of its indispensable role in viral replication. The flavonoid ugonin J (UJ) has been reported to have antioxidative and anti-inflammatory activities. However, the potential of UJ as an antiviral agent remains unexplored. In this study, we investigated the therapeutic activity of UJ against SARS-CoV-2 infection. Importantly, UJ has a distinct inhibitory activity against SARS-CoV-2 3CLpro, compared to luteolin, kaempferol, and isokaempferide. Specifically, UJ blocks the active site of SARS-CoV-2 3CLpro by forming hydrogen bonding and van der Waals interactions with H163, M165 and E166, G143 and C145, Q189, and P168 in subsites S1, S1′, S2, and S4, respectively. In addition, UJ forms strong, stable interactions with core pharmacophore anchors of SARS-CoV-2 3CLpro in a computational model. UJ shows consistent anti-inflammatory activity in inflamed human alveolar basal epithelial A549 cells. Furthermore, UJ has a 50% cytotoxic concentration (CC50) and a 50% effective concentration (EC50) values of about 783 and 2.38 µM, respectively, with a selectivity index (SI) value of 329, in SARS-CoV-2-infected Vero E6 cells. Taken together, UJ is a direct-acting antiviral that obstructs the activity of a fundamental protease of SARS-CoV-2, offering the therapeutic potential for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung City, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - Nung-Yu Hsu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Yuan-Fan Chin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Jir-Mehng Lo
- Industrial Technology Research Institute, Biomedical Technology and Device Research Laboratories, Hsinchu City, Taiwan
| | - Yeh B Wu
- Arjil Biotech Holding Company Limited, Hsinchu City, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.,Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
49
|
Hiscox JA, Khoo SH, Stewart JP, Owen A. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance? J Antimicrob Chemother 2021; 76:2230-2233. [PMID: 34142123 PMCID: PMC8361339 DOI: 10.1093/jac/dkab189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article provides a brief overview of drug resistance to antiviral therapy as well as known and emergent variability in key SARS-CoV-2 viral sequences. The purpose is to stimulate deliberation about the need to consider drug resistance prior to widespread roll-out of antivirals for SARS-CoV-2. Many existing candidate agents have mechanisms of action involving drug targets likely to be critical for future drug development. Resistance emerged quickly with monotherapies deployed for other pulmonary viruses such as influenza virus, and in HIV mutations in key drug targets compromised efficacy of multiple drugs within a class. The potential for drug resistance in SARS-CoV-2 has not yet been rigorously debated or assessed, and we call for more academic and industry research on this potentially important future threat prior to widespread roll-out of monotherapies for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore
| | - Saye H. Khoo
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long acting Therapeutics (CELT), University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
50
|
Messina E, Danise A, Ferrari G, Andolina A, Chiurlo M, Razanakolona M, Barakat M, Israel RJ, Castagna A. Ribavirin Aerosol in the Treatment of SARS-CoV-2: A Case Series. Infect Dis Ther 2021; 10:2791-2804. [PMID: 34302258 PMCID: PMC8302211 DOI: 10.1007/s40121-021-00493-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 01/29/2023] Open
Abstract
Ribavirin is an inosine monophosphate dehydrogenase inhibitor with demonstrated activity against coronaviruses, including SARS-CoV-2. Five hospitalized patients with COVID-19 (confirmed by positive tests for SARS-CoV-2) received treatment with ribavirin for inhalation solution (ribavirin aerosol) as part of a compassionate use program. Patients included four men and one woman, with an age range of 29–72 years. Patients were managed according to international and Italian treatment guidelines for COVID-19. In addition, therapy with ribavirin aerosol 100 mg/mL was administered for 30 min twice daily for 6 days (i.e., 12 doses) in all patients. In order to address concerns about a possible increase in viral dispersal with the use of a nebulizer, healthcare providers remained outside the patient room during ribavirin aerosol administration. Pretreatment chest computed tomography (CT) scans showed pseudonodular areas of parenchymal thickening in the upper right lobe with associated ground glass opacities, multiple areas of parenchymal consolidation in both lower lobes with associated ground glass opacities, bilateral parenchymal thickening and multiple associated ground glass areas, or focal ground glass areas in the upper lobes bilaterally, which were almost completely resolved (three patients) or moderately cleared (one patient) on imaging at the end of ribavirin treatment. For a fifth patient, CT scans showed a stable pulmonary picture at the end of ribavirin treatment. No adverse reactions to ribavirin treatment were observed in any of the five patients. All patients recovered fully, and nasopharyngeal swabs obtained after hospital discharge tested negative for SARS-CoV-2. Ribavirin aerosol appears to be efficacious in the treatment of patients with COVID-19. A controlled trial of ribavirin aerosol is ongoing and will provide additional data across a broader patient population.
Collapse
Affiliation(s)
- Emanuela Messina
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Danise
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Andolina
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Chiurlo
- Infectious Diseases Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Marie Razanakolona
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Antonella Castagna
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy. .,Infectious Diseases Unit, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|