1
|
He KJ, Wang H, Xu J, Gong G, Liu X, Guan H. Global burden of type 2 diabetes mellitus from 1990 to 2021, with projections of prevalence to 2044: a systematic analysis across SDI levels for the global burden of disease study 2021. Front Endocrinol (Lausanne) 2024; 15:1501690. [PMID: 39583961 PMCID: PMC11581865 DOI: 10.3389/fendo.2024.1501690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Background We aimed to assess temporal trends in type 2 diabetes mellitus (T2DM)-related deaths and disability-adjusted life years (DALYs) at global and cross-social demographic index (SDI) levels, using data from the Global Burden of Disease (GBD) in 2021. Methods We used geospatial mapping to visualize the global distribution of T2DM-related mortality and DALYs in 2021. Joinpoint regression assessed annual and average percent changes in DALYs and deaths from 1990 to 2021 across SDI regions. Age-period-cohort modeling examined the effects of age, period, and cohort on trends. Decomposition analysis evaluated the impact of population growth, aging, and epidemiological changes on DALY trends. A stratified projection forecasted future T2DM burden by age and sex from 2020 to 2044. Results T2DM-related mortality and DALYs were highest in low-SDI regions. Globally, T2DM-related deaths and DALYs have increased, with the most rapid rise in low and low-middle SDI regions, driven by population growth and epidemiological shifts. High-SDI countries showed a slower increase in DALYs, influenced more by aging. Age-period-cohort analysis indicated higher DALY rates in later birth cohorts and recent periods, especially in high-SDI regions. Future projections show a significant increase in the 70-74 age group and a gradual rise in other age groups. Conclusion The burden of T2DM is projected to continue increasing, especially in low-SDI and low-middle SDI regions, where population growth and epidemiological shifts are the main contributors. This underscores the need for targeted, region-specific healthcare policies, preventive strategies, and age-specific interventions to address the increasing T2DM burden globally.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguang Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huiting Guan
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Shokat S, Iqbal R, Riaz S, Yaqub A. Association Between Arsenic Toxicity, AS3MT Gene Polymorphism and Onset of Type 2 Diabetes. Biol Trace Elem Res 2024; 202:1550-1558. [PMID: 37889428 DOI: 10.1007/s12011-023-03919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Arsenic (As) exposure in drinking water has become a serious public health issue. AS3MT gene is involved in the metabolism of arsenic, so a single nucleotide polymorphism in this gene may lead to the development of type 2 diabetes in arsenic-exposed areas. This study aimed to evaluate the association of the AS3MT gene with the development of type 2 diabetes in highly arsenic-exposed areas of Punjab, Pakistan. Total 200 samples equal in number from high arsenic exposed-areas of Lahore (Nishtar) and Kasur (Mustafa Abad) were collected. rs11191439 was utilized as an influential variable to evaluate the association between arsenic metabolism and diabetes status to find a single nucleotide polymorphism in the AS3MT gene. We observed the arsenic level in drinking water of the arsenic-exposed selected areas 115.54 ± 1.23 µg/L and 96.88 ± 0.48 µg/L, respectively. The As level in the urine of diabetics (98.54 ± 2.63 µg/L and 56.38 ± 12.66 µg/L) was higher as compared to non-diabetics (77.58 ± 1.8 µg/L and 46.9 ± 8.95 µg/L) of both affected areas, respectively. Correspondingly, the As level in the blood of diabetics (6.48 ± 0.08 µg/L and 5.49 ± 1.43 µg/L) and non-diabetics (6.22 ± 0.12 µg/L and 5.26 ± 0.24 µg/L) in the affected areas. Genotyping showed significant differences in the frequencies of alleles among cases and controls. Nevertheless, notable disparities in genotype distribution were observed in SNPs rs11191439 (T/C) (P < 0.05) and when comparing T2D patients and non-diabetic control subjects. The AS3MT gene and clinical parameters show a significant association with the affected people with diabetes living in arsenic-exposed areas.
Collapse
Affiliation(s)
- Saima Shokat
- Department of Zoology, Government College University, Lahore, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Samreen Riaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
3
|
Yu G, Tam HCH, Huang C, Shi M, Lim CKP, Chan JCN, Ma RCW. Lessons and Applications of Omics Research in Diabetes Epidemiology. Curr Diab Rep 2024; 24:27-44. [PMID: 38294727 PMCID: PMC10874344 DOI: 10.1007/s11892-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Recent advances in genomic technology and molecular techniques have greatly facilitated the identification of disease biomarkers, advanced understanding of pathogenesis of different common diseases, and heralded the dawn of precision medicine. Much of these advances in the area of diabetes have been made possible through deep phenotyping of epidemiological cohorts, and analysis of the different omics data in relation to detailed clinical information. In this review, we aim to provide an overview on how omics research could be incorporated into the design of current and future epidemiological studies. RECENT FINDINGS We provide an up-to-date review of the current understanding in the area of genetic, epigenetic, proteomic and metabolomic markers for diabetes and related outcomes, including polygenic risk scores. We have drawn on key examples from the literature, as well as our own experience of conducting omics research using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank, as well as other cohorts, to illustrate the potential of omics research in diabetes. Recent studies highlight the opportunity, as well as potential benefit, to incorporate molecular profiling in the design and set-up of diabetes epidemiology studies, which can also advance understanding on the heterogeneity of diabetes. Learnings from these examples should facilitate other researchers to consider incorporating research on omics technologies into their work to advance the field and our understanding of diabetes and its related co-morbidities. Insights from these studies would be important for future development of precision medicine in diabetes.
Collapse
Affiliation(s)
- Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Henry C H Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Chuiguo Huang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
| |
Collapse
|
4
|
Xia YY, de Seymour JV, Yang XJ, Zhou LW, Liu Y, Yang Y, Beck KL, Conlon CA, Mansell T, Novakovic B, Saffery R, Han TL, Zhang H, Baker PN. Hair and cord blood element levels and their relationship with air pollution, dietary intake, gestational diabetes mellitus, and infant neurodevelopment. Clin Nutr 2023; 42:1875-1888. [PMID: 37625317 DOI: 10.1016/j.clnu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND & AIMS Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jamie V de Seymour
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Xiao-Jia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Liu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Kathryn L Beck
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Cathryn A Conlon
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Ting-Li Han
- Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China.
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Wang Y, Shi P, Zhao C, Shi J, Qi Z, Xu S, Wang X, Su N, Gao Z, Zhu J, He M. Identification of the regulatory network and potential markers for type 2 diabetes mellitus related to internal exposure to metals in Chinese adults. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6889-6902. [PMID: 36811699 DOI: 10.1007/s10653-023-01504-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
People intake metals from their environment. This study investigated type 2 diabetes mellitus (T2DM) related to internal exposure to metals and attempted to identify possible biomarkers. A total of 734 Chinese adults were enrolled, and urinary levels of ten metals were measured. Multinomial logistic regression model was used to assess the association between metals and impaired fasting glucose (IFG) and T2DM. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction were used to explore the pathogenesis of T2DM related to metals. After adjustment, lead (Pb) was positively associated with IFG (odds ratio [OR] 1.31, 95% confidence interval [CI] 1.06-1.61) and T2DM (OR 1.41, 95% CI 1.01-1.98), but cobalt was negatively associated with IFG (OR 0.57, 95% CI 0.34-0.95). Transcriptome analysis showed 69 target genes involved in the Pb-target network of T2DM. GO enrichment indicated that the target genes are enriched mainly in the biological process category. KEGG enrichment indicated that Pb exposure leads to non-alcoholic fatty liver disease, lipid and atherosclerosis, and insulin resistance. Moreover, there is alteration of four key pathways, and six algorithms were used to identify 12 possible genes in T2DM related to Pb. SOD2 and ICAM1 show strong similarity in expression, suggesting a functional correlation between these key genes. This study reveals that SOD2 and ICAM1 may be potential targets of Pb exposure-induced T2DM and provides novel insight into the biological effects and underlying mechanism of T2DM related to internal exposure to metals in the Chinese population.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Peng Shi
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Chenkai Zhao
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jingang Shi
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Senhao Xu
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xue Wang
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Ni Su
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Zijian Gao
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jinghai Zhu
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Miao He
- Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
6
|
Ding H, Xie M, Wang J, Ouyang M, Huang Y, Yuan F, Jia Y, Zhang X, Liu N, Zhang N. Shared genetics of psychiatric disorders and type 2 diabetes:a large-scale genome-wide cross-trait analysis. J Psychiatr Res 2023; 159:185-195. [PMID: 36738649 DOI: 10.1016/j.jpsychires.2023.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Individuals with psychiatric disorders have elevated rates of type 2 diabetes comorbidity. Although little is known about the shared genetics and causality of this association. Thus, we aimed to investigate shared genetics and causal link between different type 2 diabetes and psychiatric disorders. METHODS We conducted a large-scale genome-wide cross-trait association study(GWAS) to investigate genetic overlap between type 2 diabetes and anorexia nervosa, attention deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, anxiety disorders and Tourette syndrome. By post-GWAS functional analysis, we identify variants genes expression in various tissues. Enrichment pathways, potential protein interaction and mendelian randomization also provided to research the relationship between type 2 diabetes and psychiatric disorders. RESULTS We discovered that type 2 diabetes and psychiatric disorders had a significant correlation. We identified 138 related loci, 32 were novel loci. Post-GWAS analysis revealed that 86 differentially expressed genes were located in different brain regions and peripheral blood in type 2 diabetes and related psychiatric disorders. MAPK signaling pathway plays an important role in neural development and insulin signaling. In addition, there is a causal relationship between T2D and mental disorders. In PPI analysis, the central genes of the DEG PPI network were FTO and TCF7L2. CONCLUSION This large-scale genome-wide cross-trait analysis identified shared genetics andpotential causal links between type 2 diabetes and related psychiatric disorders, suggesting potential new biological functions in common among them.
Collapse
Affiliation(s)
- Hui Ding
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Minyao Xie
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Jinyi Wang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Mengyuan Ouyang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Yanyuan Huang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yunhan Jia
- School of Psychology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xuedi Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, PR China.
| | - Ning Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
7
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
8
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
9
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
10
|
Ohanyan H, Portengen L, Kaplani O, Huss A, Hoek G, Beulens JWJ, Lakerveld J, Vermeulen R. Associations between the urban exposome and type 2 diabetes: Results from penalised regression by least absolute shrinkage and selection operator and random forest models. ENVIRONMENT INTERNATIONAL 2022; 170:107592. [PMID: 36306550 DOI: 10.1016/j.envint.2022.107592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is thought to be influenced by environmental stressors such as air pollution and noise. Although environmental factors are interrelated, studies considering the exposome are lacking. We simultaneously assessed a variety of exposures in their association with prevalent T2D by applying penalised regression Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Artificial Neural Networks (ANN) approaches. We contrasted the findings with single-exposure models including consistently associated risk factors reported by previous studies. METHODS Baseline data (n = 14,829) of the Occupational and Environmental Health Cohort study (AMIGO) were enriched with 85 exposome factors (air pollution, noise, built environment, neighbourhood socio-economic factors etc.) using the home addresses of participants. Questionnaires were used to identify participants with T2D (n = 676(4.6 %)). Models in all applied statistical approaches were adjusted for individual-level socio-demographic variables. RESULTS Lower average home values, higher share of non-Western immigrants and higher surface temperatures were related to higher risk of T2D in the multivariable models (LASSO, RF). Selected variables differed between the two multi-variable approaches, especially for weaker predictors. Some established risk factors (air pollutants) appeared in univariate analysis but were not among the most important factors in multivariable analysis. Other established factors (green space) did not appear in univariate, but appeared in multivariable analysis (RF). Average estimates of the prediction error (logLoss) from nested cross-validation showed that the LASSO outperformed both RF and ANN approaches. CONCLUSIONS Neighbourhood socio-economic and socio-demographic characteristics and surface temperature were consistently associated with the risk of T2D. For other physical-chemical factors associations differed per analytical approach.
Collapse
Affiliation(s)
- Haykanush Ohanyan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, the Netherlands; Amsterdam Public Health, Health Behaviours and Chronic Diseases, Amsterdam, Noord-Holland, the Netherlands; Upstream Team, www.upstreamteam.nl. Amsterdam UMC, VU University Amsterdam, Amsterdam, Noord-Holland, the Netherlands.
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Oriana Kaplani
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, the Netherlands; Amsterdam Public Health, Health Behaviours and Chronic Diseases, Amsterdam, Noord-Holland, the Netherlands; Upstream Team, www.upstreamteam.nl. Amsterdam UMC, VU University Amsterdam, Amsterdam, Noord-Holland, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen Lakerveld
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, the Netherlands; Amsterdam Public Health, Health Behaviours and Chronic Diseases, Amsterdam, Noord-Holland, the Netherlands; Upstream Team, www.upstreamteam.nl. Amsterdam UMC, VU University Amsterdam, Amsterdam, Noord-Holland, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Zhou P, Mo S, Peng M, Yang Z, Wang F, Hu K, Zhang Y. Long-term exposure to PM 2.5 constituents in relation to glucose levels and diabetes in middle-aged and older Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114096. [PMID: 36162351 DOI: 10.1016/j.ecoenv.2022.114096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have indicated the associations between fine particulate matter (PM2.5) exposure and diabetes or glucose levels. However, evidence linking PM2.5 constituents and diabetes or glucose levels was extensively scarce, particularly in developing countries. This study aimed to investigate the associations of exposure to PM2.5 and its five constituents (black carbon [BC], organic matter [OM], nitrate [NO3-], sulfate [SO42-], and ammonium [NH4+]) with diabetes and glucose levels among the middle-aged and elderly Chinese populations. METHODS A national cross-sectional sample of participants aged 45+ years was enrolled from 28 provinces across China's mainland. Health examination and questionnaire survey for each respondent were performed during 2011-2012. Diabetes was determined by alternative definitions, and the main definition (MD) was self-report diabetes or antidiabetic medicine use or HbA1c ≥6.5 or fasting glucose ≥7 mmol/L or random glucose ≥11.1 mmol/L. Monthly exposure to PM2.5 mass and its five constituents (BC, OM, NO3-, SO42-, and NH4+) for each participant at residence were estimated using satellite-based spatiotemporal prediction models. Generalized linear models and linear mixed-effects models were used to assess the effects of exposure to PM2.5 and its constituents on diabetes or glucose levels, respectively. Stratification analyses were done by sex and age. RESULTS We included a total of 17,326 adults over 45 years in this study. The 3-year mean (interquartile range [IQR]) concentrations of PM2.5, BC, OM, NO3-, SO42-, and NH4+ were 47.9 (27.4) µg/m3, 2.9 (2.2) µg/m3, 9.2 (6.6) µg/m3, 10.2 (9.4) µg/m3, 11.0 (5.2) µg/m3, and 7.1 (4.4) µg/m3, respectively. Per IQR rise in exposure to PM2.5 was significantly associated with an increase of 0.133 mmol/L (95% confidence interval, 0.048-0.219) in glucose concentrations. Similar positive associations were observed for BC (0.097 mmol/L [0.012-0.181]), OM (0.160 mmol/L [0.065-0.256]), NO3- (0.145 mmol/L [0.039-0.251]), SO42- (0.111 mmol/L [0.026-0.196]), and NH4+ (0.135 mmol/L [0.041-0.230]). Under different diabetes definitions, PM2.5 mass and selected constituents with the exception of SO42- were all associated with a higher risk of prevalent diabetes. In MD-based analysis, similar positive associations were observed for four constituents, with corresponding odds ratios of 1.180 (1.097-1.270) for PM2.5, 1.154 (1.079-1.235) for BC, 1.170 (1.079-1.270) for OM, 1.200 (1.098-1.312) for NO3-, and 1.123 (1.037-1.215) for NH4+. Stratified analyses showed a significantly higher risk of diabetes in males (1.225 [1.064-1.411]) than females (1.024 [0.923-1.136]) when exposed to PM2.5. Participants under 65 years were generally more vulnerable to diabetes hazards related to PM2.5 constituents exposure. CONCLUSIONS Exposures to PM2.5 and its constituents (i.e., BC, OM, NO3-, and NH4+) were positively associated with increased risks of prevalent diabetes and elevated glucose levels in middle-aged and older adults.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Infection Control, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
13
|
|
14
|
Soliman GA, Schooling CM. Insulin Receptor Genetic Variants Causal Association with Type 2 Diabetes: A Mendelian Randomization Study. Curr Dev Nutr 2022; 6:nzac044. [PMID: 35611355 PMCID: PMC9121804 DOI: 10.1093/cdn/nzac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Type 2 diabetes (T2D) is a prevalent chronic disease associated with several comorbidities. Objectives This study investigated whether the risk of T2D varied with genetically predicted insulin (INS), insulin receptor (INS-R), or insulin-like growth factor 1 receptor (IGF-1R) using genetic variants in a Mendelian randomization (MR) study. Methods A 2-sample MR study was conducted using summary statistics from 2 genome-wide association studies (GWASs). Genetic predictors of the exposures (INS, INS-R, and IGF-1R) were obtained from a publicly available proteomics GWAS of the INTERVAL randomized controlled trial of blood donation in the United Kingdom. For T2D, the study leveraged the DIAbetes Meta-ANalysis of Trans-Ethnic association studies (DIAMANTE) consortium. The estimated associations of INS, INS-R, and IGF-1R proteins with T2D were based on independent single nucleotide polymorphisms (SNPs) strongly (P < 5 × 10-6) predicting each exposure. These SNPs were applied to publicly available genetic associations with T2D from the DIAMANTE case (n = 74,124) and control (n = 824,006) study of people of European descent. SNP-specific Wald estimates were meta-analyzed using inverse variance weighting with multiplicative random effects. Sensitivity analysis was conducted using the weighted median (WM) and MR-Egger. Results INS-R (based on 13 SNPs) was associated with a lower risk of T2D (OR: 0.95 per effect size; 95% CI: 0.92, 0.98; P = 0.001), with similar estimates from the WM and MR-Egger. Insulin (8 SNPs) and IGF-1R (10 SNPs) were not associated with T2D. However, 1 of the SNPs for INS-R was from the ABO blood group gene. Conclusions This study is consistent with a causally protective association of the INS-R with T2D. INS-R in RBCs regulates glycolysis and thus may affect their functionality and integrity. However, a pleiotropic effect via the blood group ABO gene cannot be excluded. The INS-R may be a target for intervention by repurposing existing therapeutics or otherwise to reduce the risk of T2D.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, The City University of New York, Graduate School of Public Health, and Health Policy, New York, NY, USA
| | - C Mary Schooling
- Department of Environmental, Occupational, and Geospatial Health Sciences, The City University of New York, Graduate School of Public Health, and Health Policy, New York, NY, USA
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
16
|
Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, Vlaanderen J, Sonnenschein T, Siddiqui NZ, Yuan Z, Kerckhoffs J, Zhernakova A, Brandao Gois MF, Vermeulen RCH. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 2022; 65:263-274. [PMID: 34792619 DOI: 10.1007/s00125-021-05618-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The 'exposome' represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms.
Collapse
Affiliation(s)
- Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Maria G M Pinho
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Taymara C Abreu
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Nicole R den Braver
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Thao M Lam
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tabea Sonnenschein
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, the Netherlands
| | - Noreen Z Siddiqui
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Zhendong Yuan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Milla F Brandao Gois
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Roel C H Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Passaro AP, Marzuillo P, Guarino S, Scaglione F, Miraglia del Giudice E, Di Sessa A. Omics era in type 2 diabetes: From childhood to adulthood. World J Diabetes 2021; 12:2027-2035. [PMID: 35047117 PMCID: PMC8696648 DOI: 10.4239/wjd.v12.i12.2027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parallel to the dramatic rise of pediatric obesity, estimates reported an increased prevalence of type 2 diabetes (T2D) already in childhood. The close relationship between obesity and T2D in children is mainly sustained by insulin resistance (IR). In addition, the cardiometabolic burden of T2D including nonalcoholic fatty liver disease, cardiovascular disease and metabolic syndrome is also strictly related to IR. Although T2D pathophysiology has been largely studied in an attempt to improve therapeutic options, molecular mechanisms are still not fully elucidated. In this perspective, omics approaches (including lipidomics, metabolomics, proteomics and metagenomics) are providing the most attractive therapeutic options for T2D. In particular, distinct both lipids and metabolites are emerging as potential therapeutic tools. Of note, among lipid classes, the pathogenic role of ceramides in T2D context has been supported by several data. Thus, selective changes of ceramides expression might represent innovative therapeutic strategies for T2D treatment. More, distinct metabolomics pathways have been also found to be associated with higher T2D risk, by providing novel potential T2D biomarkers. Taken together, omics data are responsible for the expanding knowledge of T2D pathophysiology, by providing novel insights to improve therapeutic strategies for this tangled disease. We aimed to summarize the most recent evidence in the intriguing field of the omics approaches in T2D both in adults and children.
Collapse
Affiliation(s)
- Antonio Paride Passaro
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Federica Scaglione
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| |
Collapse
|
18
|
Yudhana A, Mukhopadhyay S, Prima ODA, Akbar SA, Nuraisyah F, Mufandi I, Fauzi KH, Nasyah NA. Multi sensor application-based for measuring the quality of human urine on first-void urine. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Ravichandran J, Karthikeyan BS, Aparna SR, Samal A. Network biology approach to human tissue-specific chemical exposome. J Steroid Biochem Mol Biol 2021; 214:105998. [PMID: 34534667 DOI: 10.1016/j.jsbmb.2021.105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Human exposure to environmental chemicals is a major contributor to the global disease burden. To characterize the external exposome it is important to assess its chemical components and to study their impact on human health. Biomonitoring studies measure the body burden of environmental chemicals detected in biospecimens from a wide range of the population. The detection of these chemicals in biospecimens (and, hence, human tissues) is considered an important biomarker of human exposure. However, there is no readily available resource that compiles such exposure data for human tissues from published literature, and no studies that explore the patterns in the associations between tissue-specific exposures and human diseases. We present Human Tissue-specific Exposome Atlas (TExAs), a compilation of 380 environmental chemicals detected across 27 human tissues. TExAs is accessible via a user friendly webserver: https://cb.imsc.res.in/texas. We compare the chemicals in TExAs with 55 global chemical regulations, guidelines, and inventories, which represent several categories of the external exposome of humans. Further to understand the potential implications on human health of chemicals detected across human tissues, we employ a network biology approach and explore possible chemical exposure-disease associations. Ensuing analyses reveal the possibilities of disease comorbidities and demonstrate the application of network biology in unraveling complex disease associations due to chemical exposure.
Collapse
Affiliation(s)
- Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | | | - S R Aparna
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
20
|
Zhang P, Carlsten C, Chaleckis R, Hanhineva K, Huang M, Isobe T, Koistinen VM, Meister I, Papazian S, Sdougkou K, Xie H, Martin JW, Rappaport SM, Tsugawa H, Walker DI, Woodruff TJ, Wright RO, Wheelock CE. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:839-852. [PMID: 34660833 PMCID: PMC8515788 DOI: 10.1021/acs.estlett.1c00648] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.
Collapse
Affiliation(s)
- Pei Zhang
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Christopher Carlsten
- Air
Pollution Exposure Laboratory, Division of Respiratory Medicine, Department
of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Romanas Chaleckis
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kati Hanhineva
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Mengna Huang
- Channing
Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tomohiko Isobe
- The
Japan Environment and Children’s Study Programme Office, National Institute for Environmental Sciences, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ville M. Koistinen
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Isabel Meister
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Stefano Papazian
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Kalliroi Sdougkou
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Hongyu Xie
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Jonathan W. Martin
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Stephen M. Rappaport
- Division
of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720-7360, United States
| | - Hiroshi Tsugawa
- RIKEN Center
for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 Japan
- Graduate
School of Medical life Science, Yokohama
City University, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Douglas I. Walker
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, University of California San Francisco, San Francisco, California 94143, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Craig E. Wheelock
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
21
|
Barrios-Rodríguez R, Pérez-Carrascosa FM, Gómez-Peña C, Mustieles V, Salcedo-Bellido I, Requena P, Martín-Olmedo P, Jiménez-Moleón JJ, Arrebola JP. Associations of accumulated selected persistent organic pollutants in adipose tissue with insulin sensitivity and risk of incident type-2 diabetes. ENVIRONMENT INTERNATIONAL 2021; 155:106607. [PMID: 33971459 DOI: 10.1016/j.envint.2021.106607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Continuous exposure to low doses of persistent organic pollutant (POPs), such as those occurring in the general population, might contribute to the burden of type 2 diabetes mellitus (T2DM). However, evidences from longitudinal studies are scarce. We aimed to explore the associations of accumulated POP exposure with the development of T2DM by means of 1) longitudinal associations with the 16-year incidence of the disease, and 2) complementary cross-sectional analyses with markers of glucose homeostasis at recruitment. Organochlorine pesticide and polychlorinated biphenyl (PCB) concentrations were analyzed in adipose tissue samples and incident T2DM cases were retrieved from clinical records. Homeostatic model assessment values of insulin sensitivity/resistance and β-cell function at recruitment were calculated. Linear and Cox-regression models were performed. In individuals with normal weight/overweight (n = 293), we observed positive dose-response relationships between the studied POPs and T2DM risk, particularly for hexachlorobenzene (HCB) [hazard ratio (HR): 3.96 for 4th quartile versus 1st quartile (Q1); confidence interval (CI) 95%: 0.79, 19.71]. PCB-180 showed a positive but seemingly non-linear association with T2DM risk [HR of 3er quartile (Q3) versus Q1: 6.48; CI 95%: 0.82, 51.29]. Unadjustment for body mass index considerably increased the magnitude of the associations. In the cross-sectional study (n = 180), HCB and PCB-180 were inversely associated with insulin sensitivity and positively associated with insulin resistance parameters. Our results suggest that a higher burden of specific POPs in adipose tissue may disrupt glucose homeostasis, possibly contributing to increase T2DM risk, especially in non-obese adults.
Collapse
Affiliation(s)
- Rocío Barrios-Rodríguez
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Francisco M Pérez-Carrascosa
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Servicio de Oncología Radioterápica. Hospital Universitario Virgen de las Nieves, Granada, Spain.
| | - Celia Gómez-Peña
- Department of Pharmacy, San Cecilio University Hospital, Granada, Spain.
| | - Vicente Mustieles
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; University of Granada, Center for Biomedical Research (CIBM), Spain.
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Pilar Requena
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain.
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Andalusian School of Public Health (EASP), Granada, Spain.
| | - José Juan Jiménez-Moleón
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Juan Pedro Arrebola
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
22
|
Vinceti M, Bonaccio M, Filippini T, Costanzo S, Wise LA, Di Castelnuovo A, Ruggiero E, Persichillo M, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. Dietary selenium intake and risk of hospitalization for type 2 diabetes in the Moli-sani study cohort. Nutr Metab Cardiovasc Dis 2021; 31:1738-1746. [PMID: 33853720 DOI: 10.1016/j.numecd.2021.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Experimental and non-experimental human studies have consistently shown a positive association between exposure to the trace element selenium, which occurs primarily through diet, and risk of type 2 diabetes mellitus. Plausible biological mechanisms include adverse effects of selenium and selenium-containing proteins on glucose metabolism. However, the levels of exposure above which risk increases are uncertain. METHODS AND RESULTS We examined the association between selenium intake and first hospitalization for type 2 diabetes during a median follow-up period of 8.2 years among 21,335 diabetes-free participants in the Moli-sani cohort, Italy. Selenium intake was ascertained at baseline using a food frequency questionnaire, showing a median value of 59 μg/day. During follow-up, we identified 135 incident cases of hospitalization for diabetes, based on population-based hospital discharge data. We used a Cox proportional hazards model to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for hospitalization for diabetes, adjusting for potential confounders. HRs (95% CIs) were 1.01 (0.60-1.70), 1.13 (0.66-1.96) and 1.75 (0.99-3.10) comparing the second, third, and fourth sex-specific quartiles with the first quartile, respectively. Risk was 64% greater in the fourth quartile as compared with the previous three. Spline regression analysis also indicated a steeper increase in risk occurring among men compared with women. CONCLUSIONS In a large population of Italian adults free of type 2 diabetes at cohort entry, high dietary selenium intake was associated with increased risk of hospitalization for diabetes.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, USA.
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | | | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | | | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese-Como, Italy
| |
Collapse
|
23
|
Vinceti M, Filippini T, Wise LA, Rothman KJ. A systematic review and dose-response meta-analysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies. ENVIRONMENTAL RESEARCH 2021; 197:111210. [PMID: 33895112 DOI: 10.1016/j.envres.2021.111210] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Accumulating evidence from both experimental and nonexperimental human studies in the last 15 years indicates that exposure to high levels of the trace element selenium increases the risk of type 2 diabetes. However, the relation of dose to effect is not well understood because randomized controlled trials used only one dose (200 μg/day) of selenium supplementation. While no new trial on this topic has been published since 2018, several nonexperimental studies have appeared. We therefore updated a previous meta-analysis to include recently published observational studies, and incorporated the recently developed one-stage random-effects model to display the dose-response relation between selenium and type 2 diabetes. We retrieved 34 potentially eligible nonexperimental studies on selenium and diabetes risk up to April 15, 2021. The bulk of the evidence indicates a direct relation between blood, dietary and urinary levels of selenium and risk of diabetes, but not with nail selenium, which may be considered a less reliable biomarker. The association was nonlinear, with risk increasing above 80 μg/day of dietary selenium. Whole blood/plasma/serum selenium concentrations of 160 μg/L corresponded to a risk ratio of 1.96 (95% CI 1.27-3.03) compared with a concentration of 90 μg/L (approximately 60 μg of daily selenium intake). The cohort studies, which are less susceptible to reverse causation bias, indicated increased risk for both blood and urine selenium levels and dietary selenium intake, whereas no such pattern emerged from studies relying on nail selenium content. Overall, the nonexperimental studies agree with findings from randomized controlled trials, indicating that moderate to high levels of selenium exposure are associated with increased risk for type 2 diabetes.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA; RTI Health Solutions, Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Liu Z, Lu J, Zhang D, Niu L, Shi B. Decreased serum C1Q/TNF-related protein 4 concentrations are associated with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2021; 12:20420188211059884. [PMID: 34868546 PMCID: PMC8637797 DOI: 10.1177/20420188211059884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To detect serum C1Q/TNF-related protein 4 (CTRP4) concentrations in patients with newly diagnosed type 2 diabetes mellitus (T2DM) and evaluate the correlation between CTRP4 and other variables in T2DM. METHOD Sixty-five patients with newly diagnosed T2DM and eighty-nine healthy volunteers were enrolled in this study. Anthropometric and biochemical data of the study participants was collected, and serum CTRP4 concentrations were detected by enzyme-linked immunosorbent assay (ELISA) kit. The correlation between serum CTRP4 and other indexes was analyzed by Spearman correlation analysis. Trend χ2 test and binary multivariate stepwise logistic regression were performed to assess the correlation between CTRP4 and the risk of T2DM. RESULTS Serum CTRP4 concentrations in the T2DM group were significantly lower than those in the control group (P < .01). Spearman correlation analysis showed that CTRP4 concentrations were negatively correlated with BMI, hs-CRP, HOMA-IR, FBG and TG (r = - 0.430, - 0.453, - 0.371, - 0.361, - 0.506, P < .05), and positively correlated with HDL-c (r = 0.303, P < .05). Trend χ2 test indicated that with the increase of CTRP4 levels in the population, the risk of T2DM presented a general downward trend (P < .01). Binary multivariate stepwise logistic regression suggested that serum CTRP4 was an independent impact factor for T2DM and high serum CTRP4 levels were related to the decreased risk of T2DM (P < .05). CONCLUSIONS Serum CTRP4 concentrations decrease in patients with newly diagnosed T2DM. Serum CTRP4 levels are negatively associated with the risk of T2DM.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Endocrinology, The First
Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Lu
- Department of Geriatrics, The First Affiliated
Hospital of Soochow University, Suzhou, China
| | - Daiyi Zhang
- Medical Center, The First Affiliated Hospital
of Soochow University, Suzhou, China
| | | | - Bimin Shi
- Department of Endocrinology, The First
Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Abstract
Aging is an inevitable biological phenomenon displayed by single cells and organs to entire organismal systems. Aging as a biological process is characterized as a progressive decline in intrinsic biological function. Understanding the causative mechanisms of aging has always captured the imagination of researchers since time immemorial. Although both biological and chronological aging are well defined and studied in terms of genetic, epigenetic, and lifestyle predispositions, the hallmarks of aging in terms of small molecules (i.e., endogenous metabolites to chemical exposures) are limited to obscure. On top of the endogenous metabolites leading to the onset and progression of healthy aging, human beings are constantly exposed to a natural and anthropogenic "chemical" environment round the clock, from conception till death, affecting one's physiology, health and well-being, and disease predisposition. The research community has started gaining sizeable insights into deciphering the aging factors such as immunosenescence, nutrition, frailty, inflamm-aging, and diseases till date, without much input from their interaction with exogenous chemical exposures. The "exposome" around us, mostly, accelerates the process of aging by affecting the internal biological pathways and signaling mechanisms that result in the deterioration of human health. However, the entirety of exposome on human aging is far from established. This review intends to catalog the known and established associations of the exposome from past studies focusing on aging in humans and other model organisms. Further discussed are the current technologies and informatics tools that enable the study of aging exposotypes, and thus, provide a window of opportunities and challenges to study the "aging exposome" in granular details.
Collapse
|
26
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
27
|
Biradar RA, Singh DP, Thakur H, Halli SS. Gender differences in the risk factors for high and very high blood glucose levels: A study of Kerala. Diabetes Metab Syndr 2020; 14:627-636. [PMID: 32422447 DOI: 10.1016/j.dsx.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Worldwide, lifestyle is a significant risk factor for diabetes. Lifestyle changes can lead to differences in the extent of risk of diabetes among women and men. Kerala, a state with one of the best health indicators in India, has a high prevalence of diabetes. This study aimed at comparing the variations in the risk factors for HBG and VHBG among adult women and men in Kerala. METHODS Data from the fourth round of the National Family Health Survey (2015-16) used to examine the differences in the risk factors for HBG and VHBG in men and women aged 15-49 years. We used bivariate, multivariate and Population Attributable Risk (PAR) techniques for analysing the data. RESULTS Bivariate results have shown the pattern of HBG and VHBG prevalence in women and men was same among all the age groups; however, men show a higher HBG and VHBG than women in all the age groups. Prevalence of HBG and VHBG was higher in women with a primary education, who were poor and not working as compared to their male counterparts. PARs results show that the prevalence of VHBG was higher among obese men and women as compared to normal men and underweight women. Prevalence of HBG was higher among men as compared to women due to alcohol use and weekly consumption of non-vegetarian food. CONCLUSIONS The study suggests that there is an urgent need for targeted intervention programs to address the problem of HBG and VHBG in both men and women in Kerala to control blood glucose levels.
Collapse
Affiliation(s)
- Rajeshwari A Biradar
- School of Development Studies, Tata Institute of Social Sciences, Mumbai, India.
| | - Dharmendra P Singh
- School of Research Methodology, Tata Institute of Social Sciences, Mumbai, India.
| | - Harshad Thakur
- National Institute of Health and Family Welfare, New Delhi, India; School of Health Systems Studies, Tata Institute of Social Sciences, Mumbai, India.
| | - Shiva S Halli
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|