1
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Sri-Ngern-Ngam K, Umthong S, Takano J, Koseki H, Palaga T. A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. Epigenetics Chromatin 2024; 17:36. [PMID: 39614386 DOI: 10.1186/s13072-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages. RESULT We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages. CONCLUSION Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supawadee Umthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junichiro Takano
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Li X, Zhong W, Jiang H, Wang P, Chai M, Zhu T, Liu J, Huang C, Yang S, Mou D, Zhou X, Cai Y. Endoplasmic reticulum stress is attenuated by glycolysis in lymphatic malformations. Pediatr Res 2024; 96:1210-1219. [PMID: 38710942 DOI: 10.1038/s41390-024-03181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.
Collapse
Affiliation(s)
- Xuecong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenqun Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Peipei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maosheng Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tianshuang Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Congfa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shaodong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pathology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | - Yu Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral & Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Akiyama M, Kanayama M, Umezawa Y, Nagao T, Izumi Y, Yamamoto M, Ohteki T. An early regulatory mechanism of hyperinflammation by restricting monocyte contribution. Front Immunol 2024; 15:1398153. [PMID: 39040105 PMCID: PMC11260625 DOI: 10.3389/fimmu.2024.1398153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Innate immune cells play a key role in inflammation as a source of pro-inflammatory cytokines. However, it remains unclear how innate immunity-mediated inflammation is fine-tuned to minimize tissue damage and assure the host's survival at the early phase of systemic inflammation. The results of this study with mouse models demonstrate that the supply of monocytes is restricted depending on the magnitude of inflammation. During the acute phase of severe inflammation, monocytes, but not neutrophils, were substantially reduced by apoptosis and the remaining monocytes were dysfunctional in the bone marrow. Monocyte-specific ablation of Casp3/7 prevented monocyte apoptosis but promoted monocyte necrosis in the bone marrow, leading to elevated levels of pro-inflammatory cytokines and the increased mortality of mice during systemic inflammation. Importantly, the limitation of monocyte supply was dependent on pro-inflammatory cytokines in vivo. Consistently, a reduction of monocytes was observed in the peripheral blood during cytokine-release syndrome (CRS) patients, a pathogen-unrelated systemic inflammation induced by chimeric antigen receptor-T cell (CAR-T cell) therapy. Thus, monocytes act as a safety valve to alleviate tissue damage caused by inflammation and ensure host survival, which may be responsible for a primitive immune-control mechanism that does not require intervention by acquired immunity.
Collapse
Affiliation(s)
- Megumi Akiyama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Hematology, Graduate School of Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Masashi Kanayama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Yuta Izumi
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Stuart CM, Varatharaj A, Zou Y, Darekar A, Domjan J, Gandini Wheeler-Kingshott CAM, Perry VH, Galea I. Systemic inflammation associates with and precedes cord atrophy in progressive multiple sclerosis. Brain Commun 2024; 6:fcae143. [PMID: 38712323 PMCID: PMC11073756 DOI: 10.1093/braincomms/fcae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
In preclinical models of multiple sclerosis, systemic inflammation has an impact on the compartmentalized inflammatory process within the central nervous system and results in axonal loss. It remains to be shown whether this is the case in humans, specifically whether systemic inflammation contributes to spinal cord or brain atrophy in multiple sclerosis. Hence, an observational longitudinal study was conducted to delineate the relationship between systemic inflammation and atrophy using magnetic resonance imaging: the SIMS (Systemic Inflammation in Multiple Sclerosis) study. Systemic inflammation and progression were assessed in people with progressive multiple sclerosis (n = 50) over two and a half years. Eligibility criteria included: (i) primary or secondary progressive multiple sclerosis; (ii) age ≤ 70; and (iii) Expanded Disability Status Scale ≤ 6.5. First morning urine was collected weekly to quantify systemic inflammation by measuring the urinary neopterin-to-creatinine ratio using a validated ultra-performance liquid chromatography mass spectrometry technique. The urinary neopterin-to-creatinine ratio temporal profile was characterized by short-term responses overlaid on a background level of inflammation, so these two distinct processes were considered as separate variables: background inflammation and inflammatory response. Participants underwent MRI at the start and end of the study, to measure cervical spinal cord and brain atrophy. Brain and cervical cord atrophy occurred on the study, but the most striking change was seen in the cervical spinal cord, in keeping with the corticospinal tract involvement that is typical of progressive disease. Systemic inflammation predicted cervical cord atrophy. An association with brain atrophy was not observed in this cohort. A time lag between systemic inflammation and cord atrophy was evident, suggesting but not proving causation. The association of the inflammatory response with cord atrophy depended on the level of background inflammation, in keeping with experimental data in preclinical models where the effects of a systemic inflammatory challenge on tissue injury depended on prior exposure to inflammation. A higher inflammatory response was associated with accelerated cord atrophy in the presence of background systemic inflammation below the median for the study population. Higher background inflammation, while associated with cervical cord atrophy itself, subdued the association of the inflammatory response with cord atrophy. Findings were robust to sensitivity analyses adjusting for potential confounders and excluding cases with new lesion formation. In conclusion, systemic inflammation associates with, and precedes, multiple sclerosis progression. Further work is needed to prove causation since targeting systemic inflammation may offer novel treatment strategies for slowing neurodegeneration in multiple sclerosis.
Collapse
Affiliation(s)
- Charlotte M Stuart
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Yukai Zou
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Janine Domjan
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Neuroinflammation, Faculty of Brain Sciences, NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London WC1B 5EH, UK
| | - V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Wang H, Yang B, Li Q, Liu S. Low-dose of formalin-inactivated Vibrio alginolyticus protects Crassostrea gigas from secondary infection and confers broad-spectrum Vibrio resistance on offspring. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105122. [PMID: 38104703 DOI: 10.1016/j.dci.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
An increasing number of evidences have shown that invertebrate taxa can be primed to produce immune memory to resist the secondary infection of pathogens, which was considered as a viable option to protect invertebrates from pathogens. In this work, we compared the protective effect of several different immune priming methods on the Vibrio alginolyticus secondary infection of the Crassostrea gigas. The results showed that C. gigas primed with live V. alginolyticus had higher ROS level, which led to hemocytes necrosis and higher mortality rate in the later stage. Low-dose of formalin-inactivated V. alginolyticus (including 5 × 104 CFU/mL and 5 × 105 CFU/mL) elicited appropriate immune response in C. gigas, protecting C. gigas from V. alginolyticus infection. Immersion with 5 × 104 CFU/mL formalin-inactivated V. alginolyticus was performed to prime C. gigas immunity in the trans-generational immune priming. Trans-generational immune priming significantly increased the resistance of larvae to various Vibrio species. Overall, these results suggested that low-dose of formalin-inactivated V. alginolyticus can protect C. gigas from secondary infection and confer broad-spectrum Vibrio resistance on offspring. This work provided valuable information toward a new direction for the protection of C. gigas from Vibrio infection.
Collapse
Affiliation(s)
- Hebing Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Geng S, Wu Y, Li L. Immune Homeostasis Maintenance Through Advanced Immune Therapeutics to Target Atherosclerosis. Methods Mol Biol 2024; 2782:25-37. [PMID: 38622390 DOI: 10.1007/978-1-0716-3754-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
10
|
Lajqi T, Frommhold D, Gille C, Hudalla H. Induction of memory-like adaptive responses in murine neutrophils in vitro. Cell Immunol 2022; 376:104535. [DOI: 10.1016/j.cellimm.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/02/2023]
|
11
|
Enhanced Responsive Formation of Extracellular Traps in Macrophages Previously Exposed to Porphyromonas gingivalis. Inflammation 2022; 45:1174-1185. [DOI: 10.1007/s10753-021-01611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
|
12
|
Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats. Inflammation 2022; 45:1239-1253. [PMID: 34981315 DOI: 10.1007/s10753-021-01617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Sepsis affects 31.5 million people worldwide. It is characterized by an intense drop in blood pressure driving to cardiovascular morbidity and mortality. Modern supportive care has increased survival in patients; however, after experiencing sepsis, several complications are observed, which may be potentiated by new inflammatory events. Nevertheless, the interplay between sepsis survivors and a new immune challenge in cardiovascular regulation has not been previously defined. We hypothesized that cecal ligation and puncture (CLP) cause persistent cardiovascular dysfunctions in rats as well as changes in autonomic-induced cardiovascular responses to lipopolysaccharide (LPS). Male Wistar rats had mean arterial pressure (MAP) and heart rate (HR) recorded before and after LPS or saline administration to control or CLP survivor rats. CLP survivor rats had similar baseline MAP and HR when compared to control. LPS caused a drop in MAP accompanied by tachycardia in control, while CLP survivor rats had a noteworthy enhanced MAP and a blunted tachycardia. LPS-induced hemodynamic changes were related to an autonomic disbalance to the heart and resistance vessels that were expressed as an increased low- and high-frequency power of pulse interval in CLP survivors after saline and enhancement in the low-frequency power of systolic arterial pressure in control rats after LPS. LPS-induced plasma interferon γ, but not interleukin-10 surges, was blunted in CLP survivor rats. To further access whether or not LPS-induced autonomic disbalance in CLP survivor rats was associated with oxidative stress dysregulation, superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) plasma levels changes were measured. LPS-induced oxidative stress was higher in CLP survivor rats. These findings indicate that key changes in hemodynamic regulation of CLP survivors rats take place in response to LPS that are associated with oxidative stress changes, i.e., reduced SOD activity and increased TBARS levels.
Collapse
|
13
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Palaga T. The chemotherapeutic drug carboplatin affects macrophage responses to LPS and LPS tolerance via epigenetic modifications. Sci Rep 2021; 11:21574. [PMID: 34732786 PMCID: PMC8566489 DOI: 10.1038/s41598-021-00955-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Following re-exposure to lipopolysaccharide (LPS), macrophages exhibit an immunosuppressive state known as LPS tolerance, which is characterized by repressed proinflammatory cytokine production. LPS-induced tolerance in macrophages is mediated in part by epigenetic changes. Carboplatin, an anticancer chemotherapeutic drug, exerts its effect by inhibiting DNA replication and transcription, as well as through epigenetic modifications. Through an unbiased screen, we found that carboplatin rescued TNF-α and IL-6 production in LPS-tolerant macrophages. Transcriptomic analysis and gene set enrichment analyses revealed that p53 was one of the most significantly upregulated hallmarks in both LPS-primed and LPS-tolerant macrophages in the presence of carboplatin, while E2F and G2/M were the most negatively regulated hallmarks. Heterochromatin protein 1 (HP1-α), which is associated with gene silencing, was significantly reduced in carboplatin-treated LPS-tolerant macrophages at the mRNA and protein levels. Dynamic changes in the mRNA level of genes encoding H3K9me3 methyltransferases, setdb2, kdm4d, and suv39h1 were induced in the presence of carboplatin in LPS-tolerant macrophages. Taken together, we provide evidence that carboplatin treatment interferes with proinflammatory cytokine production during the acute LPS response and LPS tolerance in macrophages, possibly via H3K9me3 modification.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Zubair K, You C, Kwon G, Kang K. Two Faces of Macrophages: Training and Tolerance. Biomedicines 2021; 9:biomedicines9111596. [PMID: 34829825 PMCID: PMC8615871 DOI: 10.3390/biomedicines9111596] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are present in almost all body tissues. They detect and quickly respond to “environmental signals” in the tissue. Macrophages have been associated with numerous beneficial roles, such as host defense, wound healing, and tissue regeneration; however, they have also been linked to the development of diverse illnesses, particularly cancers and autoimmune disorders. Complex signaling, epigenetic, and metabolic pathways drive macrophage training and tolerance. The induced intracellular program differs depending on the type of initial stimuli and the tissue microenvironment. Due to the essential roles of macrophages in homeostatic and their association with the pathogenesis of inflammatory diseases, recent studies have investigated the molecular mechanisms of macrophage training and tolerance. This review discusses the role of factors involved in macrophage training and tolerance, along with the current studies in human diseases.
Collapse
|
15
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Lin R, Li L. Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handb Exp Pharmacol 2021; 276:43-64. [PMID: 34486096 DOI: 10.1007/164_2021_538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils, the most abundant leukocytes in circulation and the first responders to infection and inflammation, closely modulate both acute and chronic inflammatory processes. Resting neutrophils constantly patrol vasculature and migrate to tissues when challenges occur. When infection and/or inflammation recede, tissue neutrophils will be subsequently cleaned up by macrophages which collectively contribute to the resolution of inflammation. While most studies focus on the anti-microbial function of neutrophils including phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation, recent research highlighted additional contributions of neutrophils beyond simply controlling infectious agents. Neutrophils with resolving characteristics may alter the activities of neighboring cells and facilitate inflammation resolution, modulate long-term macrophage and adaptive immune responses, therefore having important impacts on host pathophysiology. The focus of this chapter is to provide an updated assessment of recent progress in the emerging field of neutrophil programming and memory in the context of both acute and chronic diseases.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
17
|
Cichon I, Ortmann W, Kolaczkowska E. Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22147718. [PMID: 34299338 PMCID: PMC8303382 DOI: 10.3390/ijms22147718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called "exhausted phenotype", which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.
Collapse
|
18
|
Heng Y, Zhang X, Borggrewe M, van Weering HRJ, Brummer ML, Nijboer TW, Joosten LAB, Netea MG, Boddeke EWGM, Laman JD, Eggen BJL. Systemic administration of β-glucan induces immune training in microglia. J Neuroinflammation 2021; 18:57. [PMID: 33618716 PMCID: PMC7901224 DOI: 10.1186/s12974-021-02103-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal β-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. Methods Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. Results Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1β, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. Conclusions Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02103-4.
Collapse
Affiliation(s)
- Yang Heng
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Xiaoming Zhang
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Malte Borggrewe
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Maaike L Brummer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Tjalling W Nijboer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.,Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jon D Laman
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|
19
|
Hausmann A, Hardt WD. Elucidating host-microbe interactions in vivo by studying population dynamics using neutral genetic tags. Immunology 2020; 162:341-356. [PMID: 32931019 PMCID: PMC7968395 DOI: 10.1111/imm.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Host–microbe interactions are highly dynamic in space and time, in particular in the case of infections. Pathogen population sizes, microbial phenotypes and the nature of the host responses often change dramatically over time. These features pose particular challenges when deciphering the underlying mechanisms of these interactions experimentally, as traditional microbiological and immunological methods mostly provide snapshots of population sizes or sparse time series. Recent approaches – combining experiments using neutral genetic tags with stochastic population dynamic models – allow more precise quantification of biologically relevant parameters that govern the interaction between microbe and host cell populations. This is accomplished by exploiting the patterns of change of tag composition in the microbe or host cell population under study. These models can be used to predict the effects of immunodeficiencies or therapies (e.g. antibiotic treatment) on populations and thereby generate hypotheses and refine experimental designs. In this review, we present tools to study population dynamics in vivo using genetic tags, explain examples for their implementation and briefly discuss future applications.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kahn R, Schmidt T, Golestani K, Mossberg A, Gullstrand B, Bengtsson AA, Kahn F. Mismatch between circulating cytokines and spontaneous cytokine production by leukocytes in hyperinflammatory COVID-19. J Leukoc Biol 2020; 109:115-120. [PMID: 32794348 PMCID: PMC7436862 DOI: 10.1002/jlb.5covbcr0720-310rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The disease COVID‐19 has developed into a worldwide pandemic. Hyperinflammation and high levels of several cytokines, for example, IL‐6, are observed in severe COVID‐19 cases. However, little is known about the cellular origin of these cytokines. Here, we investigated whether circulating leukocytes from patients with COVID‐19 had spontaneous cytokine production. Patients with hyperinflammatory COVID‐19 (n = 6) and sepsis (n = 3) were included at Skåne University Hospital, Sweden. Healthy controls were also recruited (n = 5). Cytokines were measured in COVID‐19 and sepsis patients using an Immulite immunoassay system. PBMCs were cultured with brefeldin A to allow cytokine accumulation. In parallel, LPS was used as an activator. Cells were analyzed for cytokines and surface markers by flow cytometry. High levels of IL‐6 and measurable levels of IL‐8 and TNF, but not IL‐1β, were observed in COVID‐19 patients. Monocytes from COVID‐19 patients had spontaneous production of IL‐1β and IL‐8 (P = 0.0043), but not of TNF and IL‐6, compared to controls. No spontaneous cytokine production was seen in lymphocytes from either patients or controls. Activation with LPS resulted in massive cytokine production by monocytes from COVID‐19 patients and healthy controls, but not from sepsis patients. Finally, monocytes from COVID‐19 patients produced more IL‐1β than from healthy controls (P = 0.0087) when activated. In conclusion, monocytes contribute partly to the ongoing hyperinflammation by production of IL‐1β and IL‐8. Additionally, they are responsive to further activation. This data supports the notion of IL‐1β blockade in treatment of COVID‐19. However, the source of the high levels of IL‐6 remains to be determined.
Collapse
Affiliation(s)
- Robin Kahn
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Skåne University Hospital, Lund and Malmö, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Anki Mossberg
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Clinical Sciences Lund, Rheumatology Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology Lund University, Lund, Sweden
| | - Fredrik Kahn
- Skåne University Hospital, Lund and Malmö, Sweden.,Department of Clinical Sciences Lund, Section of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the specific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| |
Collapse
|
22
|
Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPS-primed immune cells. Toxicol Res 2020; 37:47-57. [PMID: 33489857 DOI: 10.1007/s43188-020-00051-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023] Open
Abstract
Pretreatment of super-low-dose lipopolysaccharide (SL-LPS) induces a more hyperresponsive state on the production of proinflammatory mediators to a subsequent secondary challenge with high-dose LPS in innate immune cells. Low-dose glucocorticoids (GCs) are also known to induce inflammation and immunosuppression in the immune cells. However, there is limited knowledge on whether preconditioning of low-dose GCs enhances inflammatory responses and dysregulates T lymphocyte responses to secondary LPS in SL-LPS-primed immune cells. In the present study, RAW 264.7 and EL4 cells were pretreated with SL-LPS (50 pg/ml) or low-dose corticosterone (CORT50: 50 ng/ml and CORT100: 100 ng/ml) in fresh complete medium once a day for 2-3 days, consecutively, and then cultured in fresh complete medium for 6 or 24 h in the presence or absence of LPS (1-10 μg/ml) or concanavalin A (Con A). The results demonstrated that the repeated pretreatment of CORT50 strongly enhanced production of IL-6, IL-10, TNF-α, and nitric oxide (NO) by RAW 264.7 cells in EP (SL-LPS-primed cells: endotoxin priming) in the absence of LPS compared to those in control (vehicle-pretreated cells), whereas CORT100 reduced production of TNF-α and IL-10. Further, the repeated pretreatment of CORT50 markedly enhanced LPS-induced production of IL-6, IL-10, TNF-α, PGE2, and NO by RAW 264.7 cells in EP compared to those in control, whereas CORT100 attenuated LPS-induced production of IL-6, IL-10, and NO. Moreover, the repeated pretreatments of CORT50 and CORT100 greatly attenuated the Con A-stimulated production of IFN-γ and IFN-γ/IL-10 and LPS-stimulated production of IL-10, IFN-γ, and IFN-γ/IL-10 by SL-LPS-primed EL4 cells (EP). These findings suggest that double preconditionings of low grade hypercortisolemia and metabolic endotoxemia may act as important risk factors for metabolic disorder and severe morbidity and mortality in septic shock via upregulated production of inflammatory mediators and immunosuppression of IFN-γ-mediated responses.
Collapse
|
23
|
Zhang Y, Lin R, Pradhan K, Geng S, Li L. Innate Priming of Neutrophils Potentiates Systemic Multiorgan Injury. Immunohorizons 2020; 4:392-401. [PMID: 32631901 PMCID: PMC7445012 DOI: 10.4049/immunohorizons.2000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/14/2020] [Indexed: 11/19/2022] Open
Abstract
Excessive inflammatory reactions mediated by first-responder cells such as neutrophils contribute to the severity of multiorgan failure associated with systemic injury and infection. Systemic subclinical endotoxemia due to mucosal leakage may aggravate neutrophil activation and tissue injury. However, mechanisms responsible for neutrophil inflammatory polarization are not well understood. In this study, we demonstrate that subclinical low-dose endotoxemia can potently polarize neutrophils into an inflammatory state in vivo and in vitro, as reflected in elevated expression of adhesion molecules such as ICAM-1 and CD29, and reduced expression of suppressor molecule CD244. When subjected to a controlled administration of gut-damaging chemical dextran sulfate sodium, mice conditioned with subclinical dose LPS exhibit significantly elevated infiltration of neutrophils into organs such as liver, colon, and spleen, associated with severe multiorgan damage as measured by biochemical as well as histological assays. Subclinical dose LPS is sufficient to induce potent activation of SRC kinase as well as downstream activation of STAT1/STAT5 in neutrophils, contributing to the inflammatory neutrophil polarization. We also demonstrate that the administration of 4-phenylbutyric acid, an agent known to relieve cell stress and enhance peroxisome function, can reduce the activation of SRC kinase and enhance the expression of suppressor molecule CD244 in neutrophils. We show that i.v. injection of 4-phenylbutyric acid conditioned neutrophils can effectively reduce the severity of multiorgan damage in mice challenged with dextran sulfate sodium. Collectively, our data, to our knowledge, reveal novel inflammatory polarization of neutrophils by subclinical endotoxemia conducive for aggravated multiorgan damage as well as potential therapeutic intervention.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; and
| | - RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; and
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; and
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; and
| |
Collapse
|
24
|
Li L, McCall C, Hu X. Editorial: Innate Immunity Programming and Memory in Resolving and Non-Resolving Inflammation. Front Immunol 2020; 11:177. [PMID: 32117304 PMCID: PMC7026667 DOI: 10.3389/fimmu.2020.00177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Charles McCall
- Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Woodring TS, Farrell JJ. Pseudomonas poae-Associated Fatal Septic Transfusion Reaction, Peoria, Illinois, USA, 2017. Emerg Infect Dis 2019; 25:1445-1451. [PMID: 31310217 PMCID: PMC6649322 DOI: 10.3201/eid2508.181936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the United States, fatal transfusion-transmitted infections from red blood cell units are rare. Although this pattern mostly reflects how inhospitable refrigerated red blood cell units are to contaminant growth, fatalities caused by microorganisms that can grow at storage temperature (4°C), but not in standard clinical blood cultures at 37°C, are probably underestimated. We analyzed a fatal red blood cell transfusion in Peoria, Illinois, USA, that occurred in 2017. Samples from the patient's whole blood and the red blood cell unit remained culture-negative during the investigation, despite direct visualization of gram-negative bacilli within the unit immediately after transfusion. We identified the bacteria as Pseudomonas poae, a nonpathogenic pseudomonad carrying multiple cold-shock domain protein genes, and confirmed its cold tolerance and inability to grow at 37°C. Our work indicates transfusion reaction workups need to include testing for psychrophilic organisms, which could explain the cause of other apparently culture-negative transfusion reactions.
Collapse
|
26
|
Zhang J, Tao J, Ling Y, Li F, Zhu X, Xu L, Wang M, Zhang S, McCall CE, Liu TF. Switch of NAD Salvage to de novo Biosynthesis Sustains SIRT1-RelB-Dependent Inflammatory Tolerance. Front Immunol 2019; 10:2358. [PMID: 31681271 PMCID: PMC6797595 DOI: 10.3389/fimmu.2019.02358] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
A typical inflammatory response sequentially progresses from pro-inflammatory, immune suppressive to inflammatory repairing phases. Although the physiological inflammatory response resolves in time, severe acute inflammation usually sustains immune tolerance and leads to high mortality, yet the underlying mechanism is not completely understood. Here, using the leukemia-derived THP-1 human monocytes, healthy and septic human peripheral blood mononuclear cells (PBMC), we report that endotoxin dose-dependent switch of nicotinamide adenine dinucleotide (NAD) biosynthesis pathways sustain immune tolerant status. Low dose endotoxin triggered nicotinamide phosphoribosyltransferase (NAMPT)-dependent NAD salvage activity to adapt pro-inflammation. In contrast, high dose endotoxin drove a shift of NAD synthesis pathway from early NAMPT-dependent NAD salvage to late indoleamine 2,3-dioxygenase-1 (IDO1)-dependent NAD de novo biosynthesis, leading to persistent immune suppression. This is resulted from the IDO1-dependent expansion of nuclear NAD pool and nuclear NAD-dependent prolongation of sirtuin1 (SIRT1)-directed epigenetics of immune tolerance. Inhibition of IDO1 activity predominantly decreased nuclear NAD level, which promoted sequential dissociations of immunosuppressive SIRT1 and RelB from the promoter of pro-inflammatory TNF-α gene and broke endotoxin tolerance. Thus, NAMPT-NAD-SIRT1 axis adapts pro-inflammation, but IDO1-NAD-SIRT1-RelB axis sustains endotoxin tolerance during acute inflammatory response. Remarkably, in contrast to the prevention of sepsis death of animal model by IDO1 inhibition before sepsis initiation, we demonstrated that the combination therapy of IDO1 inhibition by 1-methyl-D-tryptophan (1-MT) and tryptophan supplementation rather than 1-MT administration alone after sepsis onset rescued sepsis animals, highlighting the translational significance of tryptophan restoration in IDO1 targeting therapy of severe inflammatory diseases like sepsis.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infection Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuewei Zhu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Wang
- Department of Critical Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Charles E. McCall
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
Hanslin K, Sjölin J, Skorup P, Wilske F, Frithiof R, Larsson A, Castegren M, Tano E, Lipcsey M. The impact of the systemic inflammatory response on hepatic bacterial elimination in experimental abdominal sepsis. Intensive Care Med Exp 2019; 7:52. [PMID: 31456116 PMCID: PMC6712186 DOI: 10.1186/s40635-019-0266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Background Bacterial translocation from the gut has been suggested to induce a systemic inflammatory response syndrome (SIRS) and organ dysfunction. The liver has a pivotal role in eliminating circulating bacteria entering from the gut. We investigated whether pre-existing inflammation affects hepatic bacterial elimination. Methods Fifteen anaesthetised piglets were infused with E. coli in the portal vein for 3 h. The naive group (n = 6) received the bacterial infusion without endotoxin exposure. SIRS (SIRS group, n = 6) was induced by endotoxin infusion 24 h before the bacterial infusion. For effects of anaesthesia, controls (n = 3) received saline instead of endotoxin for 24 h. Bacterial counts and endotoxin levels in the portal and hepatic veins were analysed during bacterial infusion. Results The bacterial killing rate was higher in the naive group compared with the SIRS group (p = 0.001). The ratio of hepatic to portal venous bacterial counts, i.e. the median bacterial influx from the splanchnic circulation, was 0.06 (IQR 0.01–0.11) in the naive group and 0.71 (0.03–1.77) in the SIRS group at 3 h, and a magnitude lower in the naive group during bacteraemia (p = 0.03). Similar results were seen for hepatic endotoxin elimination. Peak log tumour necrosis factor alpha was higher in the naive 4.84 (4.77–4.89) vs. the SIRS group 3.27 (3.26–3.32) mg/L (p < 0.001). Conclusions Our results suggest that hepatic bacterial and endotoxin elimination is impaired in pigs with pre-existing SIRS while the inflammatory response to bacterial infusion is diminished. If similar mechanisms operate in human critical illness, the hepatic elimination of bacteria from the gut could be impaired by SIRS. Electronic supplementary material The online version of this article (10.1186/s40635-019-0266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frida Wilske
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Perioperative Medicine and Intensive Care, Karolinska University Hospital and CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Eva Tano
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Hedenstierna Laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Natoli G, Ostuni R. Adaptation and memory in immune responses. Nat Immunol 2019; 20:783-792. [PMID: 31213714 DOI: 10.1038/s41590-019-0399-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Adaptation is the ability of cells, tissues and organisms to rapidly and reversibly modify their properties to maximize fitness in a changing environment. The activity of immune-system components unfolds in the remarkably heterogeneous milieus to which they are exposed in different tissues, during homeostasis or during various acute or chronic pathological states. Therefore, adaptation is essential for immune cells to tune their responses to a large variety of contexts and conditions. The adaptation of immune cells reflects the integration of multiple inputs acting simultaneously or in a temporal sequence, which eventually leads to transcriptional reprogramming and to various functional consequences, some of which extend beyond the duration of the stimulus. A range of adaptive responses have been observed in both adaptive immune cells and innate immune cells; these are referred to with terms such as 'plasticity', 'priming', 'training', 'exhaustion' and 'tolerance', among others, all of which can be useful for defining a certain immunological process or outcome but whose underlying molecular frameworks are often incompletely understood. Here we review and analyze mechanisms of adaptation and memory in immunity with the aim of providing basic concepts that rationalize the properties and molecular bases of these essential processes.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Humanitas University, Pieve Emanuele, Milan, Italy. .,IRCCS Humanitas, Rozzano, Milan, Italy.
| | - Renato Ostuni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
29
|
Grondman I, Arts RJW, Koch RM, Leijte GP, Gerretsen J, Bruse N, Kempkes RWM, Ter Horst R, Kox M, Pickkers P, Netea MG, Gresnigt MS. Frontline Science: Endotoxin-induced immunotolerance is associated with loss of monocyte metabolic plasticity and reduction of oxidative burst. J Leukoc Biol 2019; 106:11-25. [PMID: 31169935 PMCID: PMC6852552 DOI: 10.1002/jlb.5hi0119-018r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 05/23/2019] [Indexed: 02/02/2023] Open
Abstract
Secondary infections are a major complication of sepsis and associated with a compromised immune state, called sepsis-induced immunoparalysis. Molecular mechanisms causing immunoparalysis remain unclear; however, changes in cellular metabolism of leukocytes have been linked to immunoparalysis. We investigated the relation of metabolic changes to antimicrobial monocyte functions in endotoxin-induced immunotolerance, as a model for sepsis-induced immunoparalysis. In this study, immunotolerance was induced in healthy males by intravenous endotoxin (2 ng/kg, derived from Escherichia coli O:113) administration. Before and after induction of immunotolerance, circulating CD14+ monocytes were isolated and assessed for antimicrobial functions, including cytokine production, oxidative burst, and microbial (Candida albicans) killing capacity, as well metabolic responses to ex vivo stimulation. Next, the effects of altered cellular metabolism on monocyte functions were validated in vitro. Ex vivo lipopolysaccharide stimulation induced an extensive rewiring of metabolism in naive monocytes. In contrast, endotoxin-induced immunotolerant monocytes showed no metabolic plasticity, as they were unable to adapt their metabolism or mount cytokine and oxidative responses. Validation experiments showed that modulation of metabolic pathways, affected by immunotolerance, influenced monocyte cytokine production, oxidative burst, and microbial (C. albicans) killing in naive monocytes. Collectively, these data demonstrate that immunotolerant monocytes are characterized by a loss of metabolic plasticity and these metabolic defects impact antimicrobial monocyte immune functions. Further, these findings support that the changed cellular metabolism of immunotolerant monocytes might reveal novel therapeutic targets to reverse sepsis-induced immunoparalysis.
Collapse
Affiliation(s)
- Inge Grondman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob J W Arts
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebecca M Koch
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guus P Leijte
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelle Gerretsen
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niklas Bruse
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosalie W M Kempkes
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
30
|
Boribong BP, Lenzi MJ, Li L, Jones CN. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Front Immunol 2019; 10:359. [PMID: 30915068 PMCID: PMC6422936 DOI: 10.3389/fimmu.2019.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the first responders to infection and play a pivotal role in many inflammatory diseases, including sepsis. Recent studies have shown that lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. In this study, we show that pre-treatment with super-low levels of LPS [1 ng/mL] significantly dysregulate neutrophil migratory phenotypes, including spontaneous migration and altering neutrophil decision-making. To quantify neutrophil migratory decision-making with single-cell resolution, we developed a novel microfluidic competitive chemotaxis-chip (μC3) that exposes cells in a central channel to competing chemoattractant gradients. In this reductionist approach, we use two chemoattractants: a pro-resolution (N-Formyl-Met-Leu-Phe, fMLP) and pro-inflammatory (Leukotriene B4, LTB4) chemoattractant to model how a neutrophil makes a decision to move toward an end target chemoattractant (e.g., bacterial infection) vs. an intermediary chemoattractant (e.g., inflammatory signal). We demonstrate that naïve neutrophils migrate toward the primary end target signal in higher percentages than toward the secondary intermediary signal. As expected, we found that training with high dose LPS [100 ng/mL] influences a higher percentage of neutrophils to migrate toward the end target signal, while reducing the percentage of neutrophils that migrate toward the intermediary signal. Surprisingly, super-low dose LPS [1 ng/mL] significantly changes the ratios of migrating cells and an increased percentage of cells migrate toward the intermediary signal. Significantly, there was also an increase in the numbers of spontaneously migrating neutrophils after treatment with super-low dose LPS. These results shed light onto the directional migratory decision-making of neutrophils exposed to inflammatory training signals. Understanding these mechanisms may lead to the development of pro-resolution therapies that correct the neutrophil compass and reduce off-target organ damage.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark J Lenzi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
31
|
Zhang Y, Lee C, Geng S, Li L. Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight 2019; 4:122939. [PMID: 30674719 DOI: 10.1172/jci.insight.122939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although the importance of the tumor immune environment for the modulation of tumorigenesis and tumor regression is becoming increasingly clear, most of the research related to tumor-immune therapies has focused on adaptive immune cells, while the role and regulation of innate leukocytes such as neutrophils remains controversial and less defined. Here we observed that the selective deletion of Tollip, a key innate immune-cell modulator, led to enhanced tumor immune surveillance in a chemically induced colorectal cancer model. Tollip-deficient neutrophils significantly elevated T cell activation through enhanced expression of the costimulatory molecule CD80, and reduced expression of the inhibitory molecule PD-L1. Mechanistically, Tollip deficiency increased STAT5 and reduced STAT1, the transcription factors responsible for the expression of CD80 and PD-L1, respectively. Through adoptive transfer, we demonstrate that Tollip-deficient neutrophils, but not Tollip-deficient monocytes, are sufficient to drive enhanced tumor immune surveillance and reduced colorectal cancer burden in vivo. Our data reveal a strategy for the reprogramming of neutrophil functions conducive for the enhancement of the antitumor immune environment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences and
| | - Christina Lee
- Department of Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuo Geng
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
| |
Collapse
|
32
|
Mikołajczyk A, Kozłowska A, Gonkowski S. Distribution and Neurochemistry of the Porcine Ileocaecal Valve Projecting Sensory Neurons in the Dorsal Root Ganglia and the Influence of Lipopolysaccharide from Different Serotypes of Salmonella spp. on the Chemical Coding of DRG Neurons in the Cell Cultures. Int J Mol Sci 2018; 19:ijms19092551. [PMID: 30154361 PMCID: PMC6163640 DOI: 10.3390/ijms19092551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023] Open
Abstract
The ileocecal valve (ICV)—a sphincter muscle between small and large intestine—plays important roles in the physiology of the gastrointestinal (GI) tract, but many aspects connected with the innervation of the ICV remain unknown. Thus, the aim of this study was to investigate the localization and neurochemical characterization of neurons located in the dorsal root ganglia and supplying the ICV of the domestic pig. The results have shown that such neurons mainly located in the dorsal root ganglia (DRG) of thoracic and lumbar neuromers show the presence of substance P (SP), calcitonin gene-related peptide (CGRP), and galanin (GAL). The second part of the experiment consisted of a study on the influence of a low dose of lipopolysaccharide (LPS) from Salmonella serotypes Enteritidis Minnesota and Typhimurium on DRG neurons. It has been shown that the LPS of these serotypes in studied doses does not change the number of DRG neurons in the cell cultures, but influences the immunoreactivity to SP and GAL. The observed changes in neurochemical characterization depend on the bacterial serotype. The results show that DRG neurons take part in the innervation of the ICV and may change their neurochemical characterization under the impact of LPS, which is probably connected with direct actions of this substance on the nervous tissue and/or its pro-inflammatory activity.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland.
| | - Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30 Str., 10-082 Olsztyn, Poland.
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland.
| |
Collapse
|
33
|
Bauer M, Weis S, Netea MG, Wetzker R. Remembering Pathogen Dose: Long-Term Adaptation in Innate Immunity. Trends Immunol 2018; 39:438-445. [PMID: 29716792 DOI: 10.1016/j.it.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/14/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
Abstract
Recent investigations reveal memory-like adaptive responses of the innate immune system to sequential pathogen challenge. Of note, opposing effects that include both sensitization ('training') and desensitization ('tolerance') have been reported. While hitherto the nature of the pathogen was thought to be of prime importance, we propose that pathogen dose plays a key role in determining these opposing effects. Within this concept, training and tolerance of innate immune cells emerge as adaptive responses to increasing pathogen load. Furthermore, environmental stressors significantly impact the pathogen-induced responses of these innate immune cells. Therefore, we hypothesize that pathogens, like other stressors, provoke hormetic responses of the affected cells. This concept could explain the tight interplay of dose-related effects of pathogens and other stressors in infectious diseases.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.
| |
Collapse
|
34
|
Boraschi D, Italiani P. Innate Immune Memory: Time for Adopting a Correct Terminology. Front Immunol 2018; 9:799. [PMID: 29725331 PMCID: PMC5917086 DOI: 10.3389/fimmu.2018.00799] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Diana Boraschi
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| | - Paola Italiani
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| |
Collapse
|
35
|
Rasid O, Cavaillon JM. Compartment diversity in innate immune reprogramming. Microbes Infect 2018; 20:156-165. [PMID: 29287986 DOI: 10.1016/j.micinf.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Pathogens or endogenous molecules can reprogram innate immunity. This process can take the form of priming or tolerance depending on the activating signal, and favors enhanced resistance to infection and other insults, by modulating inflammation. Similarly to their organ-specific properties, reprogramming of macrophages and NK cells, is also compartmentalized.
Collapse
Affiliation(s)
- Orhan Rasid
- Chromatin and Infection, Institut Pasteur, Paris, France
| | | |
Collapse
|
36
|
Chae BS. Pretreatment of Low-Dose and Super-Low-Dose LPS on the Production of In Vitro LPS-Induced Inflammatory Mediators. Toxicol Res 2018; 34:65-73. [PMID: 29372003 PMCID: PMC5776914 DOI: 10.5487/tr.2018.34.1.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Pretreatment of low-dose lipopolysaccharide (LPS) induces a hyporesponsive state to subsequent secondary challenge with high-dose LPS in innate immune cells, whereas super-low-dose LPS results in augmented expression of pro-inflammatory cytokines. However, little is known about the difference between super-low-dose and low-dose LPS pretreatments on immune cell-mediated inflammatory and hepatic acute-phase responses to secondary LPS. In the present study, RAW 264.7 cells, EL4 cells, and Hepa-1c1c7 cells were pretreated with super-low-dose LPS (SL-LPS: 50 pg/mL) or low-dose LPS (L-LPS: 50 ng/mL) in fresh complete medium once a day for 2~3 days and then cultured in fresh complete medium for 24 hr or 48 hr in the presence or absence of LPS (1~10 μg/mL) or concanavalin A (Con A). SL-LPS pretreatment strongly enhanced the LPS-induced production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, TNF-α/IL-10, prostaglandin E2 (PGE2), and nitric oxide (NO) by RAW 264.7 cells compared to the control, whereas L-LPS increased IL-6 and NO production only. SL-LPS strongly augmented the Con A-induced ratios of interferon (IFN)-γ/IL-10 in EL4 cells but decreased the LPS-induced ratios of IFN-γ/IL-10 compared to the control, while L-LPS decreased the Con A- and LPS-induced ratios of IFN-γ/IL-10. SL-LPS enhanced the LPS-induced production of IL-6 by Hepa1c1c-7 cells compared to the control, while L-LPS increased IL-6 but decreased IL-1β and C reactive protein (CRP) levels. SL-LPS pretreatment strongly enhanced the LPS-induced production of TNF-α, IL-6, IL-10, PGE2, and NO in RAW 264.7 cells, and the IL-6, IL-1β, and CRP levels in Hepa1c1c-7 cells, as well as the ratios of IFN-γ/IL-10 in LPS- and Con A-stimulated EL4 cells compared to L-LPS. These findings suggest that pre-conditioning of SL-LPS may contribute to the mortality to secondary infection in sepsis rather than pre-conditioning of L-LPS.
Collapse
|
37
|
Neutrophil programming dynamics and its disease relevance. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1168-1177. [PMID: 28971361 DOI: 10.1007/s11427-017-9145-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
Abstract
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Collapse
|
38
|
Xia L, Xie X, Liu Y, Luo X. Peripheral Blood Monocyte Tolerance Alleviates Intraperitoneal Lipopolysaccharides-Induced Neuroinflammation in Rats Via Upregulating the CD200R Expression. Neurochem Res 2017; 42:3019-3032. [DOI: 10.1007/s11064-017-2334-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/01/2017] [Accepted: 06/16/2017] [Indexed: 01/17/2023]
|
39
|
Parkinson NJ, Buechner-Maxwell VA, Witonsky SG, Pleasant RS, Werre SR, Ahmed SA. Characterization of basal and lipopolysaccharide-induced microRNA expression in equine peripheral blood mononuclear cells using Next-Generation Sequencing. PLoS One 2017; 12:e0177664. [PMID: 28552958 PMCID: PMC5446123 DOI: 10.1371/journal.pone.0177664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/01/2017] [Indexed: 02/03/2023] Open
Abstract
The innate immune response to lipopolysaccharide contributes substantially to the morbidity and mortality of gram-negative sepsis. Horses and humans share an exquisite sensitivity to lipopolysaccharide and thus the horse may provide valuable comparative insights into this aspect of the inflammatory response. MicroRNAs, small non-coding RNA molecules acting as post-transcriptional regulators of gene expression, have key roles in toll-like receptor signaling regulation but have not been studied in this context in horses. The central hypothesis of this study was that lipopolysaccharide induces differential microRNA expression in equine peripheral blood mononuclear cells in a manner comparable to humans. Illumina Next Generation Sequencing was used to characterize the basal microRNA transcriptome in isolated peripheral blood mononuclear cells from healthy adult horses, and to evaluate LPS-induced changes in microRNA expression in cells cultured for up to four hours. Selected expression changes were validated using quantitative reverse-transcriptase PCR. Only miR-155 was significantly upregulated by LPS, changing in parallel with supernatant tumor necrosis factor-α concentration. Eight additional microRNAs, including miR-146a and miR-146b, showed significant expression change with time in culture without a clear LPS effect. Target predictions indicated a number of potential immunity-associated targets for miR-155 in the horse, including SOCS1, TAB2 and elements of the PI3K signaling pathway, suggesting that it is likely to influence the acute inflammatory response to LPS. Gene alignment showed extensive conservation of the miR-155 precursor gene and associated promoter regions between horses and humans. The basal and LPS-stimulated microRNA expression pattern characterized here were similar to those described in human leukocytes. As well as providing a resource for further research into the roles of microRNAs in immune responses in horses, this will facilitate inter-species comparative study of the role of microRNAs in the inflammatory cascade during endotoxemia and sepsis.
Collapse
Affiliation(s)
- Nicholas J. Parkinson
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Virginia A. Buechner-Maxwell
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| | - Sharon G. Witonsky
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| | - R. Scott Pleasant
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
40
|
Lee C, Geng S, Zhang Y, Rahtes A, Li L. Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation. J Leukoc Biol 2017; 102:719-726. [PMID: 28476750 DOI: 10.1189/jlb.6mr0117-027rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
The field of innate immunity is witnessing a paradigm shift regarding "memory" and "programming" dynamics. Past studies of innate leukocytes characterized them as first responders to danger signals with no memory. However, recent findings suggest that innate leukocytes, such as monocytes and neutrophils, are capable of "memorizing" not only the chemical nature but also the history and dosages of external stimulants. As a consequence, innate leukocytes can be dynamically programmed or reprogrammed into complex inflammatory memory states. Key examples of innate leukocyte memory dynamics include the development of primed and tolerant monocytes when "programmed" with a variety of inflammatory stimulants at varying signal strengths. The development of innate leukocyte memory may have far-reaching translational implications, as programmed innate leukocytes may affect the pathogenesis of both acute and chronic inflammatory diseases. This review intends to critically discuss some of the recent studies that address this emerging concept and its implication in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Christina Lee
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Allison Rahtes
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| |
Collapse
|
41
|
Singh V, Nemenman I. Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor. PLoS Comput Biol 2017; 13:e1005490. [PMID: 28410433 PMCID: PMC5409536 DOI: 10.1371/journal.pcbi.1005490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/28/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022] Open
Abstract
Cells use surface receptors to estimate concentrations of external ligands. Limits on the accuracy of such estimations have been well studied for pairs of ligand and receptor species. However, the environment typically contains many ligands, which can bind to the same receptors with different affinities, resulting in cross-talk. In traditional rate models, such cross-talk prevents accurate inference of concentrations of individual ligands. In contrast, here we show that knowing the precise timing sequence of stochastic binding and unbinding events allows one receptor to provide information about multiple ligands simultaneously and with a high accuracy. We show that such high-accuracy estimation of multiple concentrations can be realized with simple structural modifications of the familiar kinetic proofreading biochemical network diagram. We give two specific examples of such modifications. We argue that structural and functional features of real cellular biochemical sensory networks in immune cells, such as feedforward and feedback loops or ligand antagonism, sometimes can be understood as solutions to the accurate multi-ligand estimation problem. Cells live in chemically complex environments with many different chemical ligands around them. Can cells estimate concentrations of more ligands than they have receptor types? In this paper, we show that, surprisingly, the answer is “yes”, and the estimation can be implemented with simple biochemical components already present in many cells. Therefore, cells may “know” a lot more about their environment and thus may be able to implement more complex and accurate response strategies than was previously thought.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun 2016; 7:13436. [PMID: 27824038 PMCID: PMC5105176 DOI: 10.1038/ncomms13436] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.
Collapse
|
43
|
Diao N, Zhang Y, Chen K, Yuan R, Lee C, Geng S, Kowalski E, Guo W, Xiong H, Li M, Li L. Deficiency in Toll-interacting protein (Tollip) skews inflamed yet incompetent innate leukocytes in vivo during DSS-induced septic colitis. Sci Rep 2016; 6:34672. [PMID: 27703259 PMCID: PMC5050405 DOI: 10.1038/srep34672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Functionally compromised neutrophils contribute to adverse clinical outcomes in patients with severe inflammation and injury such as colitis and sepsis. However, the ontogeny of dysfunctional neutrophil during septic colitis remain poorly understood. We report that the dysfunctional neutrophil may be derived by the suppression of Toll-interacting-protein (Tollip). We observed that Tollip deficient neutrophils had compromised migratory capacity toward bacterial product fMLF due to reduced activity of AKT and reduction of FPR2, reduced potential to generate bacterial-killing neutrophil extra-cellular trap (NET), and compromised bacterial killing activity. On the other hand, Tollip deficient neutrophils had elevated levels of CCR5, responsible for their homing to sterile inflamed tissues. The inflamed and incompetent neutrophil phenotype was also observed in vivo in Tollip deficient mice subjected to DSS-induced colitis. We observed that TUDCA, a compound capable of restoring Tollip cellular function, can potently alleviate the severity of DSS-induced colitis. In humans, we observed significantly reduced Tollip levels in peripheral blood collected from human colitis patients as compared to blood samples from healthy donors. Collectively, our data reveal a novel mechanism in Tollip alteration that underlies the inflamed and incompetent polarization of neutrophils leading to severe outcomes of colitis.
Collapse
Affiliation(s)
- Na Diao
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 People’s Republic of China
| | - Yao Zhang
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Keqiang Chen
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Ruoxi Yuan
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Christina Lee
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Shuo Geng
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Elizabeth Kowalski
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| | - Wen Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 People’s Republic of China
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 People’s Republic of China
| | - Liwu Li
- Department of Biological Sciences, Biomedical Engineering, Medicine, Virginia Tech, 24061 USA
| |
Collapse
|
44
|
Crișan TO, Netea MG, Joosten LAB. Innate immune memory: Implications for host responses to damage-associated molecular patterns. Eur J Immunol 2016; 46:817-28. [PMID: 26970440 DOI: 10.1002/eji.201545497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/29/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Cells of the innate immune system build immunological memory via epigenetic reprogramming after stimulations with microbial ligands. This functional readjustment allows for enhanced nonspecific inflammatory responses upon secondary challenges, a process termed "trained immunity." The epigenomic blueprint of trained monocytes has been recently reported, which revealed several important immunologic and metabolic mechanisms that underlie these changes. Interestingly, similar long-term reprogramming of cytokine production has also been described to be induced by endogenous damage-associated molecular patterns (DAMPs). Here, we present an overview of the novel data showing that endogenous alarm signals associated with tissue damage and sterile inflammation can induce trained immunity through epigenetic regulation of transcriptional programs. We describe new and old evidence of persistent effects of DAMPs in driving inflammation and enforce the concept that the influence of tissue-derived signals is critical in adjusting the magnitude and type of immune response built by the host. The better characterization of trained immunity for the persistence of inflammation induced by DAMPs would provide new possibilities for intervention in aging and autoinflammatory disorders.
Collapse
Affiliation(s)
- Tania O Crișan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 2016; 14:107-117. [PMID: 27374795 PMCID: PMC5214940 DOI: 10.1038/cmi.2016.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022] Open
Abstract
Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.
Collapse
|
46
|
Dynamic modulation of innate immunity programming and memory. SCIENCE CHINA-LIFE SCIENCES 2016; 59:38-43. [DOI: 10.1007/s11427-015-4998-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/28/2015] [Indexed: 01/11/2023]
|