1
|
Ma S, Su S, Zhang X, Wang X, Yi H. CircRNA encoded-peptide: Potential stock in the transcriptomics market. Life Sci 2025; 372:123643. [PMID: 40246192 DOI: 10.1016/j.lfs.2025.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The emergence of circRNA-encoded peptides has sparked significant debate in recent years as a novel mode of action for circRNAs. A mounting body of evidence suggests that these peptides play vital roles in cancer development and immune responses. This review initially elucidates the presence of circRNA-encoded peptides and delineates their specific functions across various biological processes and pathological conditions. It goes on to furnish illustrative instances to underscore the pivotal involvement of circRNA-encoded peptides in both innate and adaptive immune responses. The study sheds new light on the biological roles of circRNAs, their potential tumor-promoting and tumor-suppressing functions of circRNA-encoded peptides in specific tumor environment, and their significance in immunological contexts. Meanwhile, the limitations of existing studies on circRNA-encoded peptides are discussed in depth. In particular, circRNA-encoded peptides are critically analyzed as biomarkers and therapeutic targets. Intriguingly, the review concludes with a more organized discussion of future research on circRNA-encoded peptides.
Collapse
Affiliation(s)
- Siyuan Ma
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Sensen Su
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China; Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiuna Zhang
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiangxiu Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Gongli Hospital of Pudong New Area, Shanghai 200135, China
| | - Huanfa Yi
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
3
|
Haanen TJ, Boock S, Callahan CG, Peris I, Zawacki KP, Raines B, Nino CA, Tran B, Harold A, Onishi GH, Hinderman M, Dowdican A, Huang W, Taylor DJ, Taylor SE, Jackson MW, DiFeo A, O’Connor CM, Narla G. Mutant PP2A Induces IGFBP2 Secretion to Promote Development of High-Grade Uterine Cancer. Cancer Res 2025; 85:442-461. [PMID: 39531506 PMCID: PMC11788061 DOI: 10.1158/0008-5472.can-24-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis. Elucidation of the mechanisms by which PP2A Aα mutants promote tumor development and progression could help identify therapeutic opportunities. Here, we showed that expression of these mutants in USC/UCS cell lines enhanced tumor-initiating capacity, drove a hybrid epithelial-to-mesenchymal plasticity phenotype, and elevated secretion of the tumorigenic cytokine insulin growth factor (IGF) binding protein 2 (IGFBP2). Therapeutic targeting of the IGFBP2/IGF receptor 1 signaling axis using small molecules and genetic approaches resulted in marked tumor growth inhibition. Mechanistically, PP2A regulated IGFBP2 expression through the transcription factor, NF-κB, which harbors a B56 recognition motif. Collectively, these results identify a role for PP2A in regulating paracrine cancer cell signaling that can be targeted to block the initiation and metastasis of high-grade uterine cancer. Significance: Elevated IGFBP2 secretion by uterine cancer cells with heterozygous PPP2R1A mutations supports tumor progression and confers a vulnerability to IGFBP2/IGF1R inhibition as a therapeutic approach for this highly aggressive cancer subtype.
Collapse
Affiliation(s)
- Terrance J. Haanen
- Department of Cancer Biology, The University of Michigan, Ann Arbor, MI
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Sophie Boock
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Catherine G. Callahan
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Irene Peris
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Kaitlin P. Zawacki
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Brynne Raines
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Cellular and Molecular Biology, The University of Michigan, Ann Arbor, MI
| | - Charles A. Nino
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Cellular and Molecular Biology, The University of Michigan, Ann Arbor, MI
| | - Brian Tran
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Pharmacology, The University of Michigan, Ann Arbor, MI
| | - Alexis Harold
- Department of Cancer Biology, The University of Michigan, Ann Arbor, MI
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Gabrielle Hodges Onishi
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Matthew Hinderman
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Amanda Dowdican
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Wei Huang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Derek J. Taylor
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Analisa DiFeo
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan
| | - Caitlin M. O’Connor
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
| | - Goutham Narla
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
| |
Collapse
|
4
|
Zhao Z, Chen Y, Zou X, Lin L, Zhou X, Cheng X, Yang G, Xu Q, Gong L, Li L, Ni T. Pan-cancer transcriptome analysis reveals widespread regulation through alternative tandem transcription initiation. SCIENCE ADVANCES 2024; 10:eadl5606. [PMID: 38985880 PMCID: PMC11235174 DOI: 10.1126/sciadv.adl5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.
Collapse
Affiliation(s)
- Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Limin Lin
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolan Zhou
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaomeng Cheng
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guangrui Yang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiushi Xu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
5
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. Protein phosphatase 2A modulation and connection with miRNAs and natural products. ENVIRONMENTAL TOXICOLOGY 2024; 39:3612-3627. [PMID: 38491812 DOI: 10.1002/tox.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Liang LJ, Yang FY, Wang D, Zhang YF, Yu H, Wang Z, Sun BB, Liu YT, Wang GZ, Zhou GB. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov 2024; 10:13. [PMID: 38321019 PMCID: PMC10847417 DOI: 10.1038/s41421-023-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024] Open
Abstract
Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Li-Jun Liang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| | - Hong Yu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Santarelli R, Evangelista L, Pompili C, Lo Presti S, Rossi A, Arena A, Gaeta A, Gonnella R, Gilardini Montani MS, Cirone M. EBV infection of primary colonic epithelial cells causes inflammation, DDR and autophagy dysregulation, effects that may predispose to IBD and carcinogenesis. Virus Res 2023; 338:199236. [PMID: 37797746 PMCID: PMC10582763 DOI: 10.1016/j.virusres.2023.199236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
EBV is a gammaherpesvirus strongly associated to human cancer. The virus has been shown to play a role also in inflammatory diseases, including IBD, in the context of which colon cancer more frequently arise. In this study, we show for the first time that EBV infects primary colonic epithelial cells (HCoEpC), promotes pro-inflammatory cytokine secretion and activates molecular pathways bridging inflammation and cancer, such as ERK1/2. These effects, occurring in the course of the lytic phase of the viral life cycle, led to DDR and autophagy dysregulation. Such cellular responses, playing a key role in the maintenance of proteostasis and genome integrity, are essential to prevent carcinogenesis. Interestingly, we found that the use of the demethylating agent 5-AZA could counteract most of the effects induced by EBV infection in HCoEpC, suggesting that DNA hyper-methylation may strongly contribute to viral-driven inflammation and colon cancer predisposition.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Lorenzo Evangelista
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Pompili
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Salvatore Lo Presti
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Alberto Rossi
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | | | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
8
|
Desterke C, Cosialls E, Xiang Y, Elhage R, Duruel C, Chang Y, Hamaï A. Adverse Crosstalk between Extracellular Matrix Remodeling and Ferroptosis in Basal Breast Cancer. Cells 2023; 12:2176. [PMID: 37681908 PMCID: PMC10486747 DOI: 10.3390/cells12172176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
(1) Background: Breast cancer is a frequent heterogeneous disorder diagnosed in women and causes a high number of mortality among this population due to rapid metastasis and disease recurrence. Ferroptosis can inhibit breast cancer cell growth, improve the sensitivity of chemotherapy and radiotherapy, and inhibit distant metastases, potentially impacting the tumor microenvironment. (2) Methods: Through data mining, the ferroptosis/extracellular matrix remodeling literature text-mining results were integrated into the breast cancer transcriptome cohort, taking into account patients with distant relapse-free survival (DRFS) under adjuvant therapy (anthracyclin + taxanes) with validation in an independent METABRIC cohort, along with the MDA-MB-231 and HCC338 transcriptome functional experiments with ferroptosis activations (GSE173905). (3) Results: Ferroptosis/extracellular matrix remodeling text-mining identified 910 associated genes. Univariate Cox analyses focused on breast cancer (GSE25066) selected 252 individual significant genes, of which 170 were found to have an adverse expression. Functional enrichment of these 170 adverse genes predicted basal breast cancer signatures. Through text-mining, some ferroptosis-significant adverse-selected genes shared citations in the domain of ECM remodeling, such as TNF, IL6, SET, CDKN2A, EGFR, HMGB1, KRAS, MET, LCN2, HIF1A, and TLR4. A molecular score based on the expression of the eleven genes was found predictive of the worst prognosis breast cancer at the univariate level: basal subtype, short DRFS, high-grade values 3 and 4, and estrogen and progesterone receptor negative and nodal stages 2 and 3. This eleven-gene signature was validated as regulated by ferroptosis inductors (erastin and RSL3) in the triple-negative breast cancer cellular model MDA-MB-231. (4) Conclusions: The crosstalk between ECM remodeling-ferroptosis functionalities allowed for defining a molecular score, which has been characterized as an independent adverse parameter in the prognosis of breast cancer patients. The gene signature of this molecular score has been validated to be regulated by erastin/RSL3 ferroptosis activators. This molecular score could be promising to evaluate the ECM-related impact of ferroptosis target therapies in breast cancer.
Collapse
Affiliation(s)
- Christophe Desterke
- UFR Médecine-INSERM UMRS1310, Université Paris-Saclay, F-94800 Villejuif, France
| | - Emma Cosialls
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Yao Xiang
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
| | - Rima Elhage
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Clémence Duruel
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Yunhua Chang
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
| | - Ahmed Hamaï
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| |
Collapse
|
9
|
Liu H, Fang D, Zhang C, Zhao Z, Liu Y, Zhao S, Zhang N, Xu J. Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol Ther 2023; 31:1739-1755. [PMID: 37101395 PMCID: PMC10277894 DOI: 10.1016/j.ymthe.2023.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The available targeted therapies for gastric cancer (GC) are still limited, so it is important to discover novel molecules as potential treatment options. Proteins or peptides encoded by circular RNAs (circRNAs) are increasingly reported to play essential roles in malignancies. The aim of the present study was to identify an undiscovered protein encoded by circRNA and explore its key role and molecular mechanism in GC progression. CircMTHFD2L (hsa_circ_0069982) was screened and validated as a downregulated circRNA with coding potential. The protein encoded by circMTHFD2L, named CM-248aa, was identified for the first time by immunoprecipitation and mass spectrometry. CM-248aa was significantly downregulated in GC, while its low expression was associated with advanced tumor-node-metastasis (TNM) stage and histopathological grade. Low expression of CM-248aa could be an independent risk factor for poor prognosis. Functionally, CM-248aa, instead of circMTHFD2L suppressed the proliferation and metastasis of GC in vitro and in vivo. Mechanistically, CM-248aa competitively targeted the acidic domain of SET nuclear oncogene (SET) and acted as an endogenous inhibitor of the SET-protein phosphatase 2A interaction to promote dephosphorylation of AKT, extracellular signal-regulated kinase, and P65. Our discovery revealed that CM-248aa could be a potential prognostic biomarker and endogenous therapeutic option for GC.
Collapse
Affiliation(s)
- Haohan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Chaoyue Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yinan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Shaoji Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China.
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China.
| |
Collapse
|
10
|
Bownes LV, Julson JR, Quinn CH, Hutchins SC, Erwin MH, Markert HR, Stewart JE, Mroczek-Musulman E, Aye J, Yoon KJ, Ohlmeyer M, Beierle EA. The Effects of Protein Phosphatase 2A Activation with Novel Tricyclic Sulfonamides on Hepatoblastoma. J Pediatr Surg 2023; 58:1145-1154. [PMID: 36907775 PMCID: PMC10198925 DOI: 10.1016/j.jpedsurg.2023.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND The tumor suppressor, protein phosphatase 2A (PP2A), is downregulated in hepatoblastoma. We aimed to examine the effects of two novel compounds of the tricyclic sulfonamide class, ATUX-3364 (3364) and ATUX-8385 (8385), designed to activate PP2A without causing immunosuppression, on human hepatoblastoma. METHODS An established human hepatoblastoma cell line, HuH6, and a human hepatoblastoma patient-derived xenograft, COA67, were treated with increasing doses of 3364 or 8385, and viability, proliferation, cell cycle and motility were investigated. Cancer cell stemness was evaluated by real-time PCR and tumorsphere forming ability. Effects on tumor growth were examined using a murine model. RESULTS Treatment with 3364 or 8385 significantly decreased viability, proliferation, cell cycle progression and motility in HuH6 and COA67 cells. Both compounds significantly decreased stemness as demonstrated by decreased abundance of OCT4, NANOG, and SOX2 mRNA. The ability of COA67 to form tumorspheres, another sign of cancer cell stemness, was significantly diminished by 3364 and 8385. Treatment with 3364 resulted in decreased tumor growth in vivo. CONCLUSION Novel PP2A activators, 3364 and 8385, decreased hepatoblastoma proliferation, viability, and cancer cell stemness in vitro. Animals treated with 3364 had decreased tumor growth. These data provide evidence for further investigation of PP2A activating compounds as hepatoblastoma therapeutics.
Collapse
Affiliation(s)
- Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sara Claire Hutchins
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael H Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Jamie Aye
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
11
|
Cai Z, Zhang W, Zhou R, Wang Y, Feng Y. Protein Phosphatase 2a Inhibits Gastric Cancer Cell Glycolysis by Reducing MYC Signaling. Cell Biochem Biophys 2023; 81:59-68. [PMID: 36324030 DOI: 10.1007/s12013-022-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Aerobic glycolysis, also known as the Warburg effect, has emerged as a hallmark of cancer and is associated with tumor progression and unfavorable clinical outcomes in cancer patients. PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase that functions as a tumor suppressor in a variety of human cancers. However, the relationship between PP2A and the Warburg effect in gastric cancer has yet to be fully understood. In this study, the expression profile of two endogenous inhibitors of PP2A, SET and CIP2A, in gastric cancer, were analyzed by real-time quantitative polymerase chain reaction. Loss-of-function and gain-of-function studies were performed to investigate the roles of PP2A in gastric cancer cell proliferation and glycolysis. Cell biological, molecular, and biochemical approaches were employed to uncover the underlying mechanisms. The results showed that SET and CIP2A were overexpressed in gastric cancer and associated with a decreased PP2A activity. Pharmacological activation of PP2A with FTY-720 and DT-061 in two gastric cancer cell lines significantly reduced gastric cancer cell proliferation and glycolytic ability. Importantly, inhibition of PP2A activity by genetic silencing of PPP2R5A resulted in a growth advantage, which can be largely compromised by the addition of the glycolysis inhibitor 2-Deoxy-D-glucose, suggesting a glycolysis-dependent effect of PP2A in gastric cancer. Mechanistically, the well-known transcription factor and glycolysis regulator c-Myc was discovered as the functional mediator of PP2A in regulating cell glycolysis. Ectopic expression of a phosphorylation-mutant c-Myc resistant to PP2A (MycT58A) restored the inhibitory effect of FTY-720 and DT-061 on lactate production and glucose uptake. Furthermore, there was a close association between SET and CIP2A expression and c-Myc gene signatures in gastric cancer samples. Collectively, this study provides strong evidence of the involvement of PP2A in the Warburg effect and indicates that it could be a novel antitumor strategy to target tumor metabolism in gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Cai
- Department of Operating Room, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Wei Zhang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China.
| | - Ruiqing Zhou
- Handan Hanshan District Center for Disease Control and Prevention, Handan, 056001, Hebei Province, China
| | - Yuhong Wang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Yunzhang Feng
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| |
Collapse
|
12
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
13
|
Casado-Combreras MÁ, Rivero-Rodríguez F, Elena-Real CA, Molodenskiy D, Díaz-Quintana A, Martinho M, Gerbaud G, González-Arzola K, Velázquez-Campoy A, Svergun D, Belle V, De la Rosa MA, Díaz-Moreno I. PP2A is activated by cytochrome c upon formation of a diffuse encounter complex with SET/TAF-Iβ. Comput Struct Biotechnol J 2022; 20:3695-3707. [PMID: 35891793 PMCID: PMC9293736 DOI: 10.1016/j.csbj.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iβ (SET/TAF-Iβ), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iβ is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iβ is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iβ:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iβ (a.k.a. SET/TAF-Iβ ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.
Collapse
Key Words
- ANP32B, Acidic leucine-rich nuclear phosphoprotein family member B
- BTFA, 3-bromo-1,1,1-trifluoroacetone
- CD, Circular dichroism
- CDK9, Cyclin-dependent kinase 9
- CW, Continuous wave
- Cc, Cytochrome c
- Cytochrome c
- DDR, DNA damage response
- DEER, Double electron–electron resonance
- DLS, Dynamic light scattering
- DMEM, Dulbecco’s modified Eagle’s medium
- DNA, Deoxyribonucleic acid
- DTT, Dithiotreitol
- Dmax, Maximum dimension
- EDTA, Ethylenediamine tetraacetic acid
- EGTA, Ethyleneglycol tetraacetic acid
- EPR, Electron paramagnetic resonance
- Encounter complex
- FBS, Fetal bovine serum
- GUI, Graphical user interface
- HEK, Human embryonic kidney cells
- HRP, Horseradish peroxidase
- I2PP2A, Inhibitor 2 of the protein phosphatase 2A
- I3PP2A, Inhibitor 3 of the protein phosphatase 2A
- INTAC, Integrator-PP2A complex
- IPTG, Isopropyl-β-D-1-thiogalactopyranoside
- ITC, Isothermal titration calorimetry
- Ip/Id, Intensity ratio of NMR resonances between paramagnetic and diamagnetic samples
- LB, Luria-Bertani
- MD, Molecular dynamics
- MTS, (1-acetoxy-2,2,5,5-tetramethyl-δ-3-pyrroline-3-methyl) methanethiosulfonate
- MTSL, (1-oxyl-2,2,5,5-tetramethyl- δ −3-pyrroline-3-methyl) methanethiosulfonate
- MW, Molecular weight
- Molecular dynamics
- NAP1, Nucleosome assembly protein 1
- NAPL, Nucleosome assembly protein L
- NMA, Normal mode analysis
- NMR, Nuclear magnetic resonance
- NPT, Constant number, pressure and temperature
- NVT, Constant number, volume and temperature
- Nuclear magnetic resonance
- OD600, Optical density measured at 600 nm
- OPC, Optimal 3-charge, 4-point rigid water model
- PCR, Polymerase chain reaction
- PME, Particle mesh Ewald
- PMSF, Phenylmethylsulfonyl fluoride
- PP2A, Protein phosphatase 2A
- PRE, Paramagnetic relaxation enhancement
- PVDF, Polyvinylidene fluoride
- Protein phosphatase 2A
- RNA, Ribonucleic acid
- RNApol II, RNA polymerase II
- Rg, Radius of gyration
- SAXS, Small-angle X-ray scattering
- SC, Sample changer
- SDS-PAGE, Sodium dodecylsulfate-polyacrylamide gel electrophoresis
- SDSL, Site-directed spin labeling
- SEC, Size-exclusion chromatography
- SET/TAF-Iβ
- SET/TAF-Iβ ΔC, SET/template-activating factor-Iβ construct lacking its C-terminal domain
- SET/TAF-Iβ, SET/template-activating factor-Iβ
- SPRi, Surface plasmon resonance imaging
- TAF-Iα, Template-activating factor-Iα
- TPBS, Tween 20-phosphate buffered saline
- VPS75, Vacuolar protein sorting-associated protein 75
- WT, Wild type
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Miguel Á. Casado-Combreras
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Carlos A. Elena-Real
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
- Centre de Biologie Structurale (CBS), INSERM, Centre National de la Recherche Scientifique (CNRS) and Université de Montpellier. 29 rue de Navacelles, 34090 Montpellier, France
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Marlène Martinho
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza. C. de Mariano Esquillor Gómez, Edificio I+D, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C. Pedro Cerbuna, 12, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Valérie Belle
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
14
|
Luque M, Cristóbal I, Sanz-Álvarez M, Santos A, Zazo S, Eroles P, Arpí O, Rovira A, Albanell J, Madoz-Gúrpide J, García-Foncillas J, Rojo F. CIP2A as a Key Regulator for AKT Phosphorylation Has Partial Impact Determining Clinical Outcome in Breast Cancer. J Clin Med 2022; 11:jcm11061610. [PMID: 35329936 PMCID: PMC8955826 DOI: 10.3390/jcm11061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2022] Open
Abstract
Together with its reported ability to modulate AKT phosphorylation (p-AKT) status in several tumor types, the oncoprotein CIP2A has been described to induce breast cancer progression and drug resistance. However, the clinical and therapeutic relevance of the CIP2A/AKT interplay in breast cancer remains to be fully clarified. Here, we found high p-AKT levels in 80 out of 220 cases (36.4%), which were associated with negative estrogen receptor expression (p = 0.049) and CIP2A overexpression (p < 0.001). Interestingly, p-AKT determined substantially shorter overall (p = 0.002) and progression-free survival (p = 0.003), and multivariate analyses showed its CIP2A-independent prognostic value. Moreover, its clinical relevance was further confirmed in the triple negative and HER2-positive subgroups after stratifying our series by molecular subtype. Functionally, we confirmed in vitro the role of CIP2A as a regulator of p-AKT levels in breast cancer cell lines, and the importance of the CIP2A/AKT axis was also validated in vivo. Finally, p-AKT also showed a higher predictive value of response to doxorubicin than CIP2A in ex vivo analyses. In conclusion, our findings suggest that CIP2A overexpression is a key contributing event to AKT phosphorylation and highlights the CIP2A/AKT axis as a promising therapeutic target in breast cancer. However, our observations highlight the existence of alternative mechanisms that regulate AKT signaling in a subgroup of breast tumors without altered CIP2A expression that determines its independent value as a marker of poor outcome in this disease.
Collapse
Affiliation(s)
- Melani Luque
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, ISS-FJD-UAM, 28040 Madrid, Spain;
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
- Correspondence: (I.C.); (F.R.); Tel.: +34-915-504-800 (I.C. & F.R.)
| | - Marta Sanz-Álvarez
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, ISS-FJD-UAM, 28040 Madrid, Spain;
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
| | - Sandra Zazo
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Pilar Eroles
- Institute of Health Research INCLIVA, 46010 Valencia, Spain;
| | - Oriol Arpí
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Ana Rovira
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Joan Albanell
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
- Correspondence: (I.C.); (F.R.); Tel.: +34-915-504-800 (I.C. & F.R.)
| |
Collapse
|
15
|
Gadallah M, Asaad NY, Shabaan M, Elkholy SS, Samara MY, Taie D. Role of SET oncoprotein in hepatocellular carcinoma: An immunohistochemical study. J Immunoassay Immunochem 2022; 43:420-434. [PMID: 35156535 DOI: 10.1080/15321819.2022.2034646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer of the liver and it is the fourth most common cause of cancer related death worldwide. In Egypt, liver cancer constitutes the most common cause of mortality-related cancer. This study aimed to evaluate the immunohistochemical expression of SET oncoprotein in HCC tissues in comparison with its expression in non tumorous liver tissues and to correlate its expression with clinicopathological parameters. This study investigated 100 cases of HCC (including tumorous and non tumorous tissues). One hundred percent of tumorous and non-tumorous tissues were positive for SET expression. The mean and median values of H-score for SET expression were higher in tumorous than non tumorous tissues (P = .03). Higher SET expression was significantly correlated with larger tumor size (P = .012), positive lymphovascular invasion (P = .028), and shorter overall survival (P < .001). SET expression in tumor tissues is the most independent factor to affect the overall survival of HCC patients. SET plays a role in hepatocarcinogenesis proved by the increase of SET expression from non-tumorous to tumorous tissues. Also, SET can be used as a prognostic indicator and a novel target therapy in HCC patients.
Collapse
Affiliation(s)
- Marwa Gadallah
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy Yousef Asaad
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Shabaan
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Saad Elkholy
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Manar Yousef Samara
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Doha Taie
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| |
Collapse
|
16
|
Qiao HY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Yan J, Li C, Wang HQ. TRIM29 regulates the SETBP1/SET/PP2A axis via transcription factor VEZF1 to promote progression of ovarian cancer. Cancer Lett 2021; 529:85-99. [PMID: 34973391 DOI: 10.1016/j.canlet.2021.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is a common gynecological malignant tumor that seriously endangers the health of women worldwide. Tripartite motif containing 29 (TRIM29) is a TRIM family member that is frequently overexpressed in OC. However, the specific role of TRIM29 in OC remains obscure. To investigate the underlying molecular mechanism, a global proteomics analysis identified SET binding protein 1 (SETBP1) as a crucial target of TRIM29. Subsequently, the SETBP1/SET/Protein phosphatase 2 (PP2A) axis was confirmed to be required for the recovery of cancer stem cell (CSC)-like phenotype suppressed by TRIM29 knockdown. Mechanistically, TRIM29 facilitated SETBP1 transcriptional activation via the VEZF1 transcription factor. More importantly, TRIM29 promoted VEZF1 mRNA translation by recruiting RNA binding protein BICC1 to its 3'UTR. The clinical significance was established by the association of TRIM29 and SETBP1 expression with clinicopathological features in OC samples. The SETBP1/SET/PP2A axis driven by TRIM29 via transcription factor VEZF1 is at least one of the primary mechanisms underlying TRIM29 maintenance of the CSC-like characteristics in OC.
Collapse
Affiliation(s)
- Huai-Yu Qiao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang, 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st affiliated hospital, China Medical University, Shenyang, 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang, 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, 110026, China.
| |
Collapse
|
17
|
Zuo Q, Liao L, Yao ZT, Liu YP, Wang DK, Li SJ, Yin XF, He QY, Xu WW. Targeting PP2A with lomitapide suppresses colorectal tumorigenesis through the activation of AMPK/Beclin1-mediated autophagy. Cancer Lett 2021; 521:281-293. [PMID: 34509534 DOI: 10.1016/j.canlet.2021.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide, and effective therapy remains a challenge. In this study, we take advantage of a drug repurposing strategy to screen small molecules with novel anticancer activities in a small-molecule library consisting of 1056 FDA-approved drugs. We show, for the first time, that lomitapide, a lipid-lowering agent, exhibits antitumor properties in vitro and in vivo. Activated autophagy is characterized as a key biological process in lomitapide-induced CRC repression. Mechanistically, lomitapide stimulated mitochondrial dysfunction-mediated AMPK activation, resulting in increased AMPK phosphorylation and enhanced Beclin1/Atg14/Vps34 interactions, provoking autophagy induction. Autophagy inhibition or AMPK silencing significantly abrogated lomitapide-induced cell death, indicating the significance of AMPK-regulated autophagy in the antitumor activities of lomitapide. More importantly, PP2A was identified as a direct target of lomitapide by limited proteolysis-mass spectrometry (LiP-SMap), and the bioactivity of lomitapide was attenuated in PP2A-deficient cells, suggesting that the anticancer effect of lomitapide occurs in a PP2A-dependent manner. Taken together, the results of the study reveal that lomitapide can be repositioned as a potential therapeutic drug for CRC treatment.
Collapse
Affiliation(s)
- Qian Zuo
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ding-Kang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shu-Jun Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
19
|
da Silva G, de Matos LL, Kowalski LP, Kulcsar M, Leopoldino AM. Profile of sphingolipid-related genes and its association with prognosis highlights sphingolipid metabolism in oral cancer. Cancer Biomark 2021; 32:49-63. [PMID: 34092610 DOI: 10.3233/cbm-203100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sphingolipids are bioactive lipids that play a role in cancer development. However, the clinical role of sphingolipid (SPL)-related genes in oral cancer (OC) remains not fully understood. OBJECTIVE This study, aimed to examine the mRNA expression of 14 sphingolipid-related genes in oral cancer patients and their implication with clinicopathological features and prognosis. METHODS qPCR analysis was performed in 50 OC tissues and their matched surgical margins. Next, Kaplan-Meier, Cox regression, and Receiver operating characteristics (ROC) analysis were applied to evaluate the impact of sphingolipid-related genes expression on the prognosis of OC. RESULTS The genes SET, ACER3, SK1 and S1PR5 were predominantly up-regulated, while ABCG2, S1PR1, ABCB1 and SPNS2 were down-regulated in OC patients. Analyzing the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) data, which are predominantly composed of OC samples, these genes displayed a similar profile. In OC patients, high levels of SK1 were associated with lymph node metastasis, extracapsular invasion, desmoplasia, locoregional relapse, and disease status. Low levels of SPNS2 were associated with lymph node metastasis, perineural invasion, and disease status. Furthermore, OC and HNSC patients with higher SK1 expression demonstrated shorter disease-free survival (p= 0.0037; p= 0.0087), whereas those with lower SPNS2 expression exhibited shorter overall survival (p= 0.051; p= 0.0012). High levels of ACER3 and low levels of S1PR1 were associated with shorter disease-free and overall survival in HNSC patients. CONCLUSION Several sphingolipid-related genes are deregulated in OC at the mRNA level and are associated with clinicopathological features and presented potencial for the prediction of poor prognosis in OC patients.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil.,Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil
| | - Luiz Paulo Kowalski
- Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, SP, Brazil
| | - Marco Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
20
|
Cristóbal I, Santos A, Rubio J, Rojo F, García-Foncillas J. Comment on "miR-199b-5p-DDR1-ERK signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition". Br J Cancer 2021; 125:618-619. [PMID: 34012034 PMCID: PMC8367958 DOI: 10.1038/s41416-021-01433-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ion Cristóbal
- grid.476442.7Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain ,grid.419651.e0000 0000 9538 1950Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Andrea Santos
- grid.476442.7Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain ,grid.419651.e0000 0000 9538 1950Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Jaime Rubio
- grid.476442.7Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain ,grid.419651.e0000 0000 9538 1950Medical Oncology Department, University Hospital “Fundacion Jimenez Diaz”, Madrid, Spain
| | - Federico Rojo
- grid.419651.e0000 0000 9538 1950Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- grid.419651.e0000 0000 9538 1950Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain ,grid.419651.e0000 0000 9538 1950Medical Oncology Department, University Hospital “Fundacion Jimenez Diaz”, Madrid, Spain
| |
Collapse
|
21
|
Dacol EC, Wang S, Chen Y, Lepique AP. The interaction of SET and protein phosphatase 2A as target for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188578. [PMID: 34116173 DOI: 10.1016/j.bbcan.2021.188578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
In cancer cells, tumor suppressor proteins loss-of-function are usually the result of genetic mutations. Protein Phosphatase 2A is a tumor suppressor that inactivates several signaling pathways through removal of phosphate residues important for other proteins stability and/or activation. Different from other tumor suppressors, PP2A is, in many cancer types, inactivated by endogenous inhibitors. In physiological conditions, these inhibitors are important to balance PP2A activity. However, in cancer cells, overexpression of these inhibitors can keep PP2A inactive, resulting in sustained activation of mitogenic signaling pathways and transcription factors, metabolic reprogramming, with the resulting cancer progression and the resistance to anti-cancer therapies. One of these endogenous inhibitors is the protein SET (SE Translocation). SET is a multifunctional protein, which high expression has been associated with several types of cancer, as well as other diseases such as Alzheimer's disease. Disruption of the interaction between SET and PP2A to rescue the activity of PP2A may represent a new therapeutic strategy and opportunity for cancer treatment. This review brings up-to-date advances on the interactions between SET and PP2A and their biological consequences. Moreover, we review reported inhibitors of SET-PP2A interaction under investigation as therapeutic opportunities for the treatment of cancers.
Collapse
Affiliation(s)
- E C Dacol
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Prof. Lineu Prestes, 1730, room 136, Biomedicas IV Building, São Paulo CEP 05508-000, SP, Brazil
| | - S Wang
- Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Y Chen
- Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - A P Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Prof. Lineu Prestes, 1730, room 136, Biomedicas IV Building, São Paulo CEP 05508-000, SP, Brazil.
| |
Collapse
|
22
|
Deregulation of protein phosphatase 2A inhibitor SET is associated with malignant progression in breast cancer. Sci Rep 2021; 11:14238. [PMID: 34244560 PMCID: PMC8270961 DOI: 10.1038/s41598-021-93620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
To understand the mechanism underlying metastasis, identification of a mechanism-based and common biomarker for circulating tumour cells (CTCs) in heterogenous breast cancer is needed. SET, an endogenous inhibitor of protein phosphatase 2A, was overexpressed in all subtypes of invasive breast carcinoma tissues. Treatment with SET-targeted siRNAs reduced the motility of MCF-7 and MDA-MB-231 cells in transwell assay. SET knockdown reduced the number of mammospheres by 60–70% in MCF-7 and MDA-MB-231 cells, which was associated with the downregulation of OCT4 and SLUG. Hence, we analysed the presence of SET-expressing CTCs (SET-CTCs) in 24 breast cancer patients. CTCs were enriched using a size-based method and then immunocytochemically analysed using an anti-SET antibody. SET-CTCs were detected in 6/6 (100%) patients with recurrent breast cancer with a median value of 12 (12 cells/3 mL blood), and in 13/18 (72.2%) patients with stage I–III breast cancer with a median value of 2.5, while the median value of healthy controls was 0. Importantly, high numbers of SET-CTCs were correlated with lymph node metastasis in patients with stage I–III disease. Our results indicate that SET contributes to breast cancer progression and can act as a potential biomarker of CTCs for the detection of metastasis.
Collapse
|
23
|
Serifi I, Besta S, Karetsou Z, Giardoglou P, Beis D, Niewiadomski P, Papamarcaki T. Targeting of SET/I2PP2A oncoprotein inhibits Gli1 transcription revealing a new modulator of Hedgehog signaling. Sci Rep 2021; 11:13940. [PMID: 34230583 PMCID: PMC8260731 DOI: 10.1038/s41598-021-93440-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
The Hedgehog (Hh)/Gli signaling pathway controls cell proliferation and differentiation, is critical for the development of nearly every tissue and organ in vertebrates and is also involved in tumorigenesis. In this study, we characterize the oncoprotein SET/I2PP2A as a novel regulator of Hh signaling. Our previous work has shown that the zebrafish homologs of SET are expressed during early development and localized in the ciliated organs. In the present work, we show that CRISPR/Cas9-mediated knockdown of setb gene in zebrafish embryos resulted in cyclopia, a characteristic patterning defect previously reported in Hh mutants. Consistent with these findings, targeting setb gene using CRISPR/Cas9 or a setb morpholino, reduced Gli1-dependent mCherry expression in the Hedgehog reporter zebrafish line Tg(12xGliBS:mCherry-NLS). Likewise, SET loss of function by means of pharmacological inhibition and gene knockdown prevented the increase of Gli1 expression in mammalian cells in vitro. Conversely, overexpression of SET resulted in an increase of the expression of a Gli-dependent luciferase reporter, an effect likely attributable to the relief of the Sufu-mediated inhibition of Gli1. Collectively, our data support the involvement of SET in Gli1-mediated transcription and suggest the oncoprotein SET/I2PP2A as a new modulator of Hedgehog signaling.
Collapse
Affiliation(s)
- Iliana Serifi
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece.,Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 451 10, Ioannina, Greece
| | - Simoni Besta
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece
| | - Zoe Karetsou
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece
| | - Panagiota Giardoglou
- Developmental Biology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27, Athens, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27, Athens, Greece
| | | | - Thomais Papamarcaki
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece. .,Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 451 10, Ioannina, Greece.
| |
Collapse
|
24
|
Son HE, Jang WG. Cip2A modulates osteogenic differentiation via the ERK-Runx2 pathway in MG63 cells. Biofactors 2021; 47:658-664. [PMID: 34077593 DOI: 10.1002/biof.1760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023]
Abstract
Cancerous inhibitor of protein phosphatase 2A (Cip2A) is an oncoprotein that promotes the development of several types of cancer. However, its molecular function in osteoblast differentiation remains unclear. In this study, we found that Cip2A was upregulated under osteogenic conditions in MG63 cells. Besides, overexpression of Cip2A significantly increased the expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). Inversely, the knockdown of Cip2A in MG63 cells suppressed osteoblast differentiation. Cip2A expression during osteogenic differentiation was mediated by extracellular signal-regulated kinase (ERK) activation. Taken together, our results suggest that Cip2A plays important role in regulating osteoblast differentiation by inducing ERK phosphorylation in MG63 cells.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
25
|
Huang YH, Chu PY, Chen JL, Huang CT, Huang CC, Tsai YF, Wang YL, Lien PJ, Tseng LM, Liu CY. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep 2021; 11:12171. [PMID: 34108545 PMCID: PMC8190094 DOI: 10.1038/s41598-021-91588-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
Glycoprotein non-metastatic B (GPNMB) is a transmembrane protein overexpressed in numerous cancers including triple-negative breast cancers (TNBC). It has been linked to promote cancer aggressiveness and implicated as a novel target for GPNMB-expressing cancers. In current study, we aimed to explore the clinical significance of GPNMB in TNBC. Among 759 specimens, immunohistochemistry (IHC) exhibited GPNMB expressions were variable in different subtypes and significantly higher in TNBC. Kaplan-Meier analysis revealed GPNMB overexpression in TNBC was associated with worse prognosis especially distant metastasis (P = 0.020, HR = 2.515, CI 1.154-5.480). Multivariate analysis showed GPNMB expression was an independent prognostic factor in terms of recurrence and distant metastasis (P = 0.008, HR = 3.22, CI 1.36-7.61; P = 0.017, HR = 3.08, CI 1.22-7.74). In silico analysis showed high mRNA expression of GPNMB was associated with distant metastasis and GPNMB was overexpressed in TNBC. Furthermore, GPNMB positively correlated with epithelial-mesenchymal transition (EMT) regulators, mesenchymal marker vimentin, MMP and integrins. The protein levels of Twist and MMP2 were upregulated by GPNMB overexpression in TNBC cells. GPNMB-enhanced cell invasion was attenuated by broad spectrum MMP inhibitor (GM 6001) and the selective inhibitor of MMP-2 (ARP100). In summary, GPNMB expression is prevalent in TNBC and may be implicated as a prognostic biomarker in patients with TNBC.
Collapse
Affiliation(s)
- Yu-Hsiang Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ling Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
26
|
Liu CY, Huang TT, Chen JL, Chu PY, Lee CH, Lee HC, Lee YH, Chang YY, Yang SH, Jiang JK, Chen WS, Chao Y, Teng HW. Significance of Kynurenine 3-Monooxygenase Expression in Colorectal Cancer. Front Oncol 2021; 11:620361. [PMID: 33937026 PMCID: PMC8085544 DOI: 10.3389/fonc.2021.620361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Because of the lack of reliable prognostic and predictive biomarkers for CRC, most patients are often diagnosed at a late stage. The tryptophan–kynurenine pathway plays a crucial role in promoting cancer progression. Kynurenine is considered an oncometabolite in colon cancer, and its downstream metabolites are also associated with CRC. Kynurenine 3-monooxygenase (KMO), a pivotal enzyme that catalyzes kynurenine metabolism, is essential for several cellular processes. In the current study, we explored the role of KMO in CRC. Immunohistochemical results showed that KMO was upregulated in CRC tissues relative to paired healthy tissue and polyps. Moreover, CRC patients with higher KMO expression were associated with higher metastasis and poorer survival rates. Knockdown of KMO decreased the expression of cancer stem cell markers, as well as the sphere-forming, migration, and invasion abilities of CRC cells. Additionally, blockade of the enzymatic activity of KMO using an inhibitor suppressed sphere formation and cell motility in CRC cells. These findings suggest the clinical relevance of KMO in CRC tumorigenesis and aggressiveness.
Collapse
Affiliation(s)
- Chun-Yu Liu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chen Lee
- School of Medicine, Institute of Pharmacology, National Yang-Ming Chiao Tung University, New Taipei City, Taiwan
| | - Yu-Hsuan Lee
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shung-Haur Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hao-Wei Teng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Center for Immuno-Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Expression of Phosphorylated BRD4 Is Markedly Associated with the Activation Status of the PP2A Pathway and Shows a Strong Prognostic Value in Triple Negative Breast Cancer Patients. Cancers (Basel) 2021; 13:cancers13061246. [PMID: 33809005 PMCID: PMC7999847 DOI: 10.3390/cancers13061246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The use of BRD4 inhibitors has emerged as a novel therapeutic approach in a wide variety of tumors including the triple negative breast cancer. Moreover, PP2A has been proposed as the phosphatase involved in regulating BRD4 phosphorylation and stabilization. Our aim was to evaluate for the first time the clinical impact of BRD4 phosphorylation in triple negative breast cancer patients and as well as its potential linking with the PP2A activation status in this disease. Our findings are special relevant since they suggest the prognostic value of BRD4 phosphorylation levels, and the potential clinical usefulness of PP2A inhibition markers to anticipate response to BRD4 inhibitors. Abstract The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, has emerged in the last years as a promising molecular target in many tumors including breast cancer. The triple negative breast cancer (TNBC) represents the molecular subtype with the worst prognosis and a current therapeutic challenge, and TNBC cells have been reported to show a preferential sensitivity to BET inhibitors. Interestingly, BRD4 phosphorylation (pBRD4) was found as an alteration that confers resistance to BET inhibition and PP2A proposed as the phosphatase responsible to regulate pBRD4 levels. However, the potential clinical significance of pBRD4, as well as its potential correlation with the PP2A pathway in TNBC, remains to be investigated. Here, we evaluated the expression levels of pBRD4 in a series of 132 TNBC patients. We found high pBRD4 levels in 34.1% of cases (45/132), and this alteration was found to be associated with the development of patient recurrences (p = 0.007). Interestingly, BRD4 hyperphosphorylation predicted significantly shorter overall (p < 0.001) and event-free survival (p < 0.001). Moreover, multivariate analyses were performed to confirm its independent prognostic impact in our cohort. In conclusion, our findings show that BRD4 hyperphosphorylation is an alteration associated with PP2A inhibition that defines a subgroup of TNBC patients with unfavorable prognosis, suggesting the potential clinical and therapeutic usefulness of the PP2A/BRD4 axis as a novel molecular target to overcome resistance to treatments based on BRD4 inhibition.
Collapse
|
28
|
Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, Huang W. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther 2021; 6:117. [PMID: 33692331 PMCID: PMC7946937 DOI: 10.1038/s41392-021-00500-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Myc proto-oncogene family consists of three members, C-MYC, MYCN, and MYCL, which encodes the transcription factor c-Myc (hereafter Myc), N-Myc, and L-Myc, respectively. Myc protein orchestrates diverse physiological processes, including cell proliferation, differentiation, survival, and apoptosis. Myc modulates about 15% of the global transcriptome, and its deregulation rewires the cellular signaling modules inside tumor cells, thereby acquiring selective advantages. The deregulation of Myc occurs in >70% of human cancers, and is related to poor prognosis; hence, hyperactivated Myc oncoprotein has been proposed as an ideal drug target for decades. Nevertheless, no specific drug is currently available to directly target Myc, mainly because of its "undruggable" properties: lack of enzymatic pocket for conventional small molecules to bind; inaccessibility for antibody due to the predominant nucleus localization of Myc. Although the topic of targeting Myc has actively been reviewed in the past decades, exciting new progresses in this field keep emerging. In this review, after a comprehensive summarization of valuable sources for potential druggable targets of Myc-driven cancer, we also peer into the promising future of utilizing macropinocytosis to deliver peptides like Omomyc or antibody agents to intracellular compartment for cancer treatment.
Collapse
Affiliation(s)
- Chen Wang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Jiawei Zhang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yin
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Yichao Gan
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ying Gu
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
29
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Huang TT, Tseng LM, Chen JL, Chu PY, Lee CH, Huang CT, Wang WL, Lau KY, Tseng MF, Chang YY, Chiang TY, Ueng YF, Lee HC, Dai MS, Liu CY. Kynurenine 3-monooxygenase upregulates pluripotent genes through β-catenin and promotes triple-negative breast cancer progression. EBioMedicine 2021; 54:102717. [PMID: 32268268 PMCID: PMC7191260 DOI: 10.1016/j.ebiom.2020.102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is aggressive and has a poor prognosis. Kynurenine 3-monooxygenase (KMO), a crucial kynurenine metabolic enzyme, is involved in inflammation, immune response and tumorigenesis. We aimed to study the role of KMO in TNBC. Methods KMO alteration and expression data from public databases were analyzed. KMO expression levels in TNBC samples were analyzed using immunohistochemistry. Knockdown of KMO in TNBC cells was achieved by RNAi and CRISPR/Cas9. KMO functions were examined by MTT, colony-forming, transwell migration/invasion, and mammosphere assays. The molecular events were analyzed by cDNA microarrays, Western blot, quantitative real-time PCR and luciferase reporter assays. Tumor growth and metastasis were detected by orthotopic xenograft and tail vein metastasis mouse models, respectively. Findings KMO was amplified and associated with worse survival in breast cancer patients. KMO expression levels were higher in TNBC tumors compared to adjacent normal mammary tissues. In vitro ectopic KMO expression increased cell growth, colony and mammosphere formation, migration, invasion as well as mesenchymal marker expression levels in TNBC cells. In addition, KMO increased pluripotent gene expression levels and promoter activities in vitro. Mechanistically, KMO was associated with β-catenin and prevented β-catenin degradation, thereby enhancing the transcription of pluripotent genes. KMO knockdown suppressed tumor growth and the expression levels of β-catenin, CD44 and Nanog. Furthermore, mutant KMO (known with suppressed enzymatic activity) could still promote TNBC cell migration/invasion. Importantly, mice bearing CRISPR KMO-knockdown TNBC tumors showed decreased lung metastasis and prolonged survival. Interpretation KMO regulates pluripotent genes via β-catenin and plays an oncogenic role in TNBC progression.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Han Lee
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Centre, Taipei, Taiwan
| | - Wan-Lun Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ka-Yi Lau
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Fang Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Chiang
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Yune-Fang Ueng
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan; Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei 112, Taiwan; Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Abdelhameed RFA, Eltamany EE, Hal DM, Ibrahim AK, AboulMagd AM, Al-Warhi T, Youssif KA, Abd El-Kader AM, Hassanean HA, Fayez S, Bringmann G, Ahmed SA, Abdelmohsen UR. New Cytotoxic Cerebrosides from the Red Sea Cucumber Holothuria spinifera Supported by In-Silico Studies. Mar Drugs 2020; 18:E405. [PMID: 32752177 PMCID: PMC7460232 DOI: 10.3390/md18080405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC50 values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC50 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.
Collapse
Affiliation(s)
- Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M Hal
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amany K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa M AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni Suef 62513, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13414, Saudi Arabia
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11566, Egypt
| | - Adel M Abd El-Kader
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hashim A Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
33
|
Sui Q, Liang J, Hu Z, Chen Z, Bi G, Huang Y, Li M, Zhan C, Lin Z, Wang Q. Genetic and microenvironmental differences in non-smoking lung adenocarcinoma patients compared with smoking patients. Transl Lung Cancer Res 2020; 9:1407-1421. [PMID: 32953513 PMCID: PMC7481643 DOI: 10.21037/tlcr-20-276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Non-smoking-related lung adenocarcinoma (LUAD) has its own characteristics. Genetic and microenvironmental differences in smoking and non-smoking LUAD patients were analyzed to elucidate the oncogenesis of non-smoking-related LUAD, which will improve our understanding of the underlying molecular mechanism and be of clinical use in the future. Methods The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) databases were used for clinical and genomic information. Various bioinformatics tools were used to analyze differences in somatic mutations, RNA and microRNA (miRNA) expression, immune infiltration, and stemness indices. GO, KEGG, and GSVA analyses were performed with R. A merged protein-protein interaction (PPI) network was constructed and analyzed. A miRNA-differentially expressed gene network was constructed with miRNet. qRT-PCR was used for validation of 4 most significantly differently expressed genes and 2 miRNAs in tumor samples obtained from 20 pairs of non-smoking and smoking patients. Results Five hundred and one patients with LUAD were obtained, including 210 in the non-smoking group and 292 in the smoking group. A total of 174 significantly altered somatic mutations were detected, including mutations in tumor protein p53 and epidermal growth factor receptor, which were downregulated in non-smoking-related LUAD. At the RNA level, 231 significantly differentially expressed genes were obtained; 124 were upregulated and 107 downregulated in the non-smoking group. GSVA analysis revealed 42 significant pathways. Other functional and enrichment analyses of somatic mutations and RNA expression levels revealed that these genes were significantly enriched in receptor activity regulation and receptor binding. Differences in microenvironments including immune infiltration (e.g., CD8+ T cells and resting mast cells) and stemness indices were also found between groups. A 79-pair interaction was found between differentially expressed genes and miRNAs, of which miR-335-5p and miR-34a-5p were located in the center. Twenty-one genes, including vitronectin, neurotensin, and neuronatin, were differentially expressed in both non-smoking LUAD patients and DMSO-treated A549 cells. And the different expression of neurotensin, neuronatin, trefoil factor family2, regenerating family member 4, miR-377-5p, miR-34a were verified with the same tendency in our own samples. Conclusions Non-smoking LUAD patients, compared to smokers, have different characteristics in terms of somatic mutation, gene, and miRNA expression and the microenvironment, indicating a diverse mechanism of oncogenesis.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Eight-Year Program Clinical Medicine, Grade of 2016, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020; 156:104806. [PMID: 32294525 DOI: 10.1016/j.phrs.2020.104806] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.
Collapse
|
35
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|