1
|
Li Y, Wu R, Wang H, Zhong M, Qing Y, Lu S, Zhang Z, Ma T, Luo J, Xiao H, Qiu J, Li K. Non-epithelial Circulating Tumor Cells Enhance Disease Progression in High-risk Prostate Cancer through EMT and COL1A1 Expression. Int J Med Sci 2025; 22:1562-1573. [PMID: 40093812 PMCID: PMC11905264 DOI: 10.7150/ijms.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction: Circulating tumor cells (CTCs) are important prognostic indicators for malignancies. However, a reliable positive/negative cutoff value of non-epithelial (NE+: hybrid and mesenchymal) CTCs phenotype in prostate cancer (PCa) patients has not been established. Here, we aimed to determine the cutoff value and the prognostic value of NE+ CTCs in high-risk prostate cancer (HRPC) patients after radical prostatectomy (RP). Methods: The cutoff value of NE+ CTCs was established in spiking experiments, and CTCs were detected in 208 HRPC patients using the CanPatrolTM platform. The expression and function of COL1A1 in PCa were examined via qRT-PCR, Western blot, wound healing assay, Transwell assay, and immunohistochemistry (IHC). Results: The cutoff value of NE+ CTCs was determined to be 45% by spiking experiments. In 208 HRPC patients, the NE+ CTCs positive group had higher prostate-specific antigen (PSA) levels, more advanced pathological tumor stage, and lymph node stage (P < 0.001, P = 0.002 and 0.002, respectively). Besides, patients with NE+ CTCs ≥ 45% had a shorter median progression-free survival (PFS) than those with NE+ CTCs < 45% (44.5 vs. 51.0 months, hazard ratio = 3.31, P < 0.05). Moreover, we identified that COL1A1 was associated with a high proportion of NE+ CTCs in HRPC patients via an EMT mechanism. Conclusion: Our findings suggest that NE+ CTCs represent a reliable prognostic indicator for HRPC patients and that targeting COL1A1 may prevent the formation of NE+ CTCs.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruji Wu
- Department of Urology, SSL Central Hospital of Dongguan City, Dongguan, China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meinong Zhong
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunhao Qing
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuo Lu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zixiao Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tan Ma
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieheng Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
3
|
Li Z, Qin C, Zhao B, Li T, Zhao Y, Zhang X, Wang W. Circulating tumor cells in pancreatic cancer: more than liquid biopsy. Ther Adv Med Oncol 2024; 16:17588359241284935. [PMID: 39421679 PMCID: PMC11483845 DOI: 10.1177/17588359241284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that slough off the primary lesions and extravasate into the bloodstream. By forming CTC clusters and interacting with other circulating cells (platelets, NK cells, macrophage, etc.), CTCs are able to survive in the circulatory system of tumor patients and colonize to metastatic organs. In recent years, the potential of CTCs in diagnosis, prognostic assessment, and individualized therapy of various types of tumors has been gradually explored, while advances in biotechnology have made it possible to extract CTCs from patient blood samples. These biological features of CTCs provide us with new insights into cancer vulnerabilities. With the advent of new immunotherapies and personalized medicines, disrupting the heterotypical interaction between CTCs and circulatory cells as well as direct CTCs targeting hold great promise. Pancreatic cancer (PC) is one of the most malignant cancers, in part because of early metastasis, difficult diagnosis, and limited treatment options. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC. In this review, we summed up the progress made in understanding biological characteristics and exceptional technological advances of CTCs and provided insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing Street Dongcheng District Beijing China, Beijing 100730, China
| |
Collapse
|
4
|
Subbalakshmi AR, Ramisetty S, Mohanty A, Pareek S, Do D, Shrestha S, Khan A, Talwar N, Tan T, Vishnubhotla P, Singhal SS, Salgia R, Kulkarni P. Phenotypic Plasticity and Cancer: A System Biology Perspective. J Clin Med 2024; 13:4302. [PMID: 39124569 PMCID: PMC11313222 DOI: 10.3390/jcm13154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a major axis of phenotypic plasticity not only in diseased conditions such as cancer metastasis and fibrosis but also during normal development and wound healing. Yet-another important axis of plasticity with metastatic implications includes the cancer stem cell (CSCs) and non-CSC transitions. However, in both processes, epithelial (E) and mesenchymal (M) phenotypes are not merely binary states. Cancer cells acquire a spectrum of phenotypes with traits, properties, and markers of both E and M phenotypes, giving rise to intermediary hybrid (E/M) phenotypes. E/M cells play an important role in tumor initiation, metastasis, and disease progression in multiple cancers. Furthermore, the hybrid phenotypes also play a major role in causing therapeutic resistance in cancer. Here, we discuss how a systems biology perspective on the problem, which is implicit in the 'Team Medicine' approach outlined in the theme of this Special Issue of The Journal of Clinical Medicine and includes an interdisciplinary team of experts, is more likely to shed new light on EMT in cancer and help us to identify novel therapeutics and strategies to target phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sagun Shrestha
- Department of Medical Oncology and Therapeutics Research, City of Hope Phoenix, Goodyear, AZ 85338, USA
| | - Ajaz Khan
- Department of Medical Oncology and Therapeutics Research, City of Hope Chicago, Zion, IL 60099, USA
| | - Neel Talwar
- Department of Medical Oncology and Therapeutics Research, City of Hope San Bernardino Road, Upland, CA 91786, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope Avocado Avenue, Newport Beach, CA 92660, USA
| | - Priya Vishnubhotla
- Department of Medical Oncology and Therapeutics Research, City of Hope Atlanta, Newnan, GA 30265, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Wu L, Cen C, Yue X, Chen L, Wu H, Yang M, Lu Y, Ma L, Li X, Wu H, Zheng C, Han P. A clinical-radiomics nomogram based on dual-layer spectral detector CT to predict cancer stage in pancreatic ductal adenocarcinoma. Cancer Imaging 2024; 24:55. [PMID: 38725034 PMCID: PMC11080083 DOI: 10.1186/s40644-024-00700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy of radiomics signatures derived from polyenergetic images (PEIs) and virtual monoenergetic images (VMIs) obtained through dual-layer spectral detector CT (DLCT). Moreover, it sought to develop a clinical-radiomics nomogram based on DLCT for predicting cancer stage (early stage: stage I-II, advanced stage: stage III-IV) in pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 173 patients histopathologically diagnosed with PDAC and who underwent contrast-enhanced DLCT were enrolled in this study. Among them, 49 were in the early stage, and 124 were in the advanced stage. Patients were randomly categorized into training (n = 122) and test (n = 51) cohorts at a 7:3 ratio. Radiomics features were extracted from PEIs and 40-keV VMIs were reconstructed at both arterial and portal venous phases. Radiomics signatures were constructed based on both PEIs and 40-keV VMIs. A radiomics nomogram was developed by integrating the 40-keV VMI-based radiomics signature with selected clinical predictors. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves analysis (DCA). RESULTS The PEI-based radiomics signature demonstrated satisfactory diagnostic efficacy, with the areas under the ROC curves (AUCs) of 0.92 in both the training and test cohorts. The optimal radiomics signature was based on 40-keV VMIs, with AUCs of 0.96 and 0.94 in the training and test cohorts. The nomogram, which integrated a 40-keV VMI-based radiomics signature with two clinical parameters (tumour diameter and normalized iodine density at the portal venous phase), demonstrated promising calibration and discrimination in both the training and test cohorts (0.97 and 0.91, respectively). DCA indicated that the clinical-radiomics nomogram provided the most significant clinical benefit. CONCLUSIONS The radiomics signature derived from 40-keV VMI and the clinical-radiomics nomogram based on DLCT both exhibited exceptional performance in distinguishing early from advanced stages in PDAC, aiding clinical decision-making for patients with this condition.
Collapse
Affiliation(s)
- Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Chunyuan Cen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Xiaofei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Ming Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Yuting Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Ling Ma
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, The People's Republic of China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China.
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China.
| |
Collapse
|
6
|
Chauhan A, Pal A, Sachdeva M, Boora GS, Parsana M, Bakshi J, Verma RK, Srinivasan R, Chatterjee D, Maitra A, Ghoshal S. A FACS-based novel isolation technique identifies heterogeneous CTCs in oral squamous cell carcinoma. Front Oncol 2024; 14:1269211. [PMID: 38469233 PMCID: PMC10925612 DOI: 10.3389/fonc.2024.1269211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose Isolating circulating tumour cells (CTCs) from the blood is challenging due to their low abundance and heterogeneity. Limitations of conventional CTC detection methods highlight the need for improved strategies to detect and isolate CTCs. Currently, the Food and Drug Administration (FDA)-approved CellSearch™ and other RUO techniques are not available in India. Therefore, we wanted to develop a flexible CTC detection/isolation technique that addresses the limitation(s) of currently available techniques and is suitable for various downstream applications. Methods We developed a novel, efficient, user-friendly CTC isolation strategy combining density gradient centrifugation and immuno-magnetic hematogenous cell depletion with fluorescence-activated cell sorting (FACS)-based positive selection using multiple CTC-specific cell-surface markers. For FACS, a stringent gating strategy was optimised to exclude debris and doublets by side scatter/forward scatter (SSC/FSC) discriminator, remove dead cells by 4',6-diamidino-2-phenylindole (DAPI) staining, and eliminate non-specific fluorescence using a "dump" channel. APC-labelled anti-CD45mAB was used to gate remaining hematogenous cells, while multiple epithelial markers (EpCAM, EGFR, and Pan-Cytokeratin) and an epithelial-mesenchymal transition (EMT) marker (Vimentin) labelled with fluorescein isothiocyanate (FITC) were used to sort cancer cells. The technique was initially developed by spiking Cal 27 cancer cells into the blood of healthy donors and then validated in 95 biopsy-proven oral squamous cell carcinoma (OSCC) patients. CTCs isolated from patients were reconfirmed by Giemsa staining, immuno-staining, and whole transcriptome amplification (WTA), followed by qRT-PCR. In vitro culture and RNA sequencing (RNA-Seq) were also performed to confirm their suitability for various downstream applications. Results The mean detection efficiency for the Cal 27 tongue cancer cells spiked in the whole blood of healthy donors was 32.82% ± 12.71%. While ~75% of our patients (71/95) had detectable CTCs, the CTC positivity was independent of the TNM staging. The isolated potential cancer cells from OSCC patients were heterogeneous in size. They expressed different CTC-specific markers in various combinations as identified by qRT-PCR after WTA in different patients. Isolated CTCs were also found to be suitable for downstream applications like short-term CTC culture and RNA-Seq. Conclusion We developed a sensitive, specific, flexible, and affordable CTC detection/isolation technique, which is scalable to larger patient cohorts, provides a snapshot of CTC heterogeneity, isolates live CTCs ready for downstream molecular analysis, and, most importantly, is suitable for developing countries.
Collapse
Affiliation(s)
- Anshika Chauhan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Sachdeva
- Department of Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Geeta S. Boora
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Monil Parsana
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshan Kumar Verma
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecological Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Xie P, Yao X, Chu Z, Yang Y, Li H, Tan S, Tang H, Zhou J, Jin W. Homoporous polydimethylsiloxane membrane microfilter for ultrafast label-free isolation and recognition of circulating tumor cells in peripheral blood. iScience 2023; 26:108246. [PMID: 38026152 PMCID: PMC10665804 DOI: 10.1016/j.isci.2023.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The detection of circulating tumor cells (CTCs) in peripheral blood is a novel and accurate technique for the early diagnosis of cancers. However, this method is challenging because of the need for high collection efficiency due to the ultralow content and similar size of CTCs compared with other blood cells. To address the aforementioned issue, we proposed a homoporous polydimethylsiloxane (PDMS) membrane and its microfilter device to perform the ultrafast isolation and identification of CTCs directly from peripheral blood without any labeling treatment. The membrane pores can be homogenously controlled at a size of 6.3 μm through the cross-linking time of PDMS during a filtration-coating strategy. Within only 10 s, the designed device achieved a retention rate greater than 70% for pancreatic cancer cells, and it exhibited excellent cell compatibility to support cell proliferation. The isolated CTCs on this membrane can be easily observed and identified using a fluorescence microscope.
Collapse
Affiliation(s)
- Peng Xie
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoyue Yao
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhenyu Chu
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Haifeng Li
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Siyuan Tan
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Haodong Tang
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Jiahua Zhou
- Department of Hepatopancreatobiliary Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Wanqin Jin
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
8
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
9
|
Gallerani G, Rossi T, Ferracin M, Bonafè M. Settling the uncertainty about unconventional circulating tumor cells: Epithelial-to-mesenchymal transition, cell fusion and trogocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:99-111. [PMID: 37739485 DOI: 10.1016/bs.ircmb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated. In this chapter we illustrate the studies that led to the discovery of unconventional CTCs, defined as CTCs that display both epithelial and mesenchymal markers, or both cancer and immune markers, also in the form of hybrid cancer-immune cells. We also present biological explanations for the origin of these unconventional CTCs: epithelial to mesenchymal transition, cell-cell fusion and trogocytosis. We believe that a deeper knowledge on the biology of CTCs is needed to fully elucidate their role in cancer progression and their use as cancer biomarkers.
Collapse
Affiliation(s)
- Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Kuvendjiska J, Müller F, Bronsert P, Timme-Bronsert S, Fichtner-Feigl S, Kulemann B. Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasm of the Pancreas. Life (Basel) 2023; 13:1570. [PMID: 37511945 PMCID: PMC10381561 DOI: 10.3390/life13071570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is the most common pancreatic cyst and a precursor of pancreatic cancer (PDAC). Since PDAC has a devastatingly high mortality rate, the early diagnosis and treatment of any precursor lesion are rational. The safety of the existing guidelines on the clinical management of IPMN has been criticized due to unsatisfactory sensitivity and specificity, showing the need for further markers. Blood obtained from patients with IPMN was therefore subjected to size-based isolation of circulating epithelial cells (CECs). We isolated CECs and evaluated their cytological characteristics. Additionally, we compared Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in CECs and the primary IPMN tissue, since KRAS mutations are very typical for PDAC. Samples from 27 IPMN patients were analyzed. In 10 (37%) patients, CECs were isolated and showed a hybrid pattern of surface markers involving both epithelial and mesenchymal markers, suggesting a possible EMT process of the cells. Especially, patients with high-grade dysplasia in the main specimen were all CEC-positive. KRAS mutations were also present in CECs but less common than in IPMN tissue. The existence of CEC in IPMN patients offers additional blood-based research possibilities for IMPN biology.
Collapse
Affiliation(s)
- Jasmina Kuvendjiska
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Felix Müller
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Peter Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Sylvia Timme-Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Stefan Fichtner-Feigl
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Birte Kulemann
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of Surgery, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| |
Collapse
|
11
|
Asawa S, Nüesch M, Gvozdenovic A, Aceto N. Circulating tumour cells in gastrointestinal cancers: food for thought? Br J Cancer 2023; 128:1981-1990. [PMID: 36932192 DOI: 10.1038/s41416-023-02228-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Gastrointestinal (GI) cancers account for 35% of cancer-related deaths, predominantly due to their ability to spread and generate drug-tolerant metastases. Arising from different locations in the GI system, the majority of metastatic GI malignancies colonise the liver and the lungs. In this context, circulating tumour cells (CTCs) are playing a critical role in the formation of new metastases, and their presence in the blood of patients has been correlated with a poor outcome. In addition to their prognostic utility, prospective targeting of CTCs may represent a novel, yet ambitious strategy in the fight against metastasis. A better understanding of CTC biology, mechanistic underpinnings and weaknesses may facilitate the development of previously underappreciated anti-metastasis approaches. Here, along with related clinical studies, we outline a selection of the literature describing biological features of CTCs with an impact on their metastasis forming ability in different GI cancers.
Collapse
Affiliation(s)
- Simran Asawa
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Manuel Nüesch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
12
|
Jin Y, Cai W, Zhao C, Yang F, Yang C, Zhang X, Zhou Q, Zhao W, Zhang C, Zhang F, Wang M, Li M. EMT status of circulating breast cancer cells and impact of fluidic shear stress. Exp Cell Res 2022; 421:113385. [PMID: 36228736 DOI: 10.1016/j.yexcr.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
Circulating tumor cells (CTCs) play a vital role in the metastasis and recurrence of breast cancer. CTCs are highly heterogeneous at the stage of Epithelial-to-Mesenchymal Transition (EMT), but the phenotypic and biological characteristics in different EMT stages remain poorly defined. We conducted an orthotopic mouse (4T1) model of breast cancer to isolate CTCs and identified two phenotypes of CTCs: intermediate E/M and mesenchymal CTCs. MTT, Colony formation, Transwell migration and invasion assays were utilized to examined cell proliferation, colony forming, migration and invasion ability. Both the intermediate E/M and mesenchymal CTCs exhibited lower rates of proliferation, colony formation and invasion, as compared to primary tumor cells. The mesenchymal CTCs had a higher rate of invasion but lower rates of proliferation and colony formation than the intermediate E/M CTCs. They also exhibited lower rates of growth and metastasis than the primary tumor cells in vivo, but the mesenchymal CTCs had a higher rate of metastasis than the intermediate E/M CTCs. Fluid shear stress induced the EMT transition of CTCs. The comprehensive analysis of CTCs proteomics discovered proteins that differentially expressed in the two types of CTCs and their primary tumor cells.
Collapse
Affiliation(s)
- Yanling Jin
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Wei Cai
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Gansu Provincial Hospital, Lanzhou, China
| | - Chanyuan Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenguang Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyu Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Zhou
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenjie Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenli Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fangfang Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Lanzhou University, Lanzhou, China.
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China.
| |
Collapse
|
13
|
Wang WM, Shen H, Liu ZN, Chen YY, Hou LJ, Ding Y. Interaction between tumor microenvironment, autophagy, and epithelial-mesenchymal transition in tumor progression. Cancer Treat Res Commun 2022; 32:100592. [PMID: 35728404 DOI: 10.1016/j.ctarc.2022.100592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tumor microenvironment (TME) is the ecosystem surrounding a tumor to influence tumor cells' growth, metastasis and immunological battlefield, in which the tumor systems fight against the body system. TME has been considered as the essential link between the tumorigenesis and development of neoplasm. Both nutrients intake and tumor progression to malignancy require the participation of components in TME. Epithelial-mesenchymal transition (EMT) is a key step in the metastasis of tumor cells. Cells that lost polarity and acquired migration ability are prone to metastasize. Autophagy is an important self-protective mechanism in tumor cells and a necessity for the tumor cells to respond to harmful stress. Protective autophagy benefits tumor cells while abnormal autophagy leads to cell injury or death. EMT and autophagy are directly regulated by TME. To date, there are numerous studies on TME, autophagy and EMT separately, but few on their complex interrelationships. This review aims to comprehensively analyze the existing mechanisms and convincing evidence so far to seek novel therapeutic strategies and research directions.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Alberta T2N 1N4, Canada
| | - Zi-Ning Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuan-Yuan Chen
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Li-Jun Hou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Yi Ding
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China; Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
14
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
15
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Exploring the Clinical Utility of Pancreatic Cancer Circulating Tumor Cells. Int J Mol Sci 2022; 23:ijms23031671. [PMID: 35163592 PMCID: PMC8836025 DOI: 10.3390/ijms23031671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type, characterized by a dismal prognosis due to late diagnosis, frequent metastases, and limited therapeutic response to standard chemotherapy. Circulating tumor cells (CTCs) are a rare subset of tumor cells found in the blood of cancer patients. CTCs has the potential utility for screening, early and definitive diagnosis, prognostic and predictive assessment, and offers the potential for personalized management. However, a gold-standard CTC detection and enrichment method remains elusive, hindering comprehensive comparisons between studies. In this review, we summarize data regarding the utility of CTCs at different stages of PDAC from early to metastatic disease and discuss the molecular profiling and culture of CTCs. The characterization of CTCs brings us closer to defining the specific CTC subpopulation responsible for metastasis with the potential to uncover new therapies and more effective management options for PDAC.
Collapse
|
17
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Jolly MK, Murphy RJ, Bhatia S, Whitfield HJ, Redfern A, Davis MJ, Thompson EW. Measuring and Modelling the Epithelial- Mesenchymal Hybrid State in Cancer: Clinical Implications. Cells Tissues Organs 2021; 211:110-133. [PMID: 33902034 DOI: 10.1159/000515289] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
The epithelial-mesenchymal (E/M) hybrid state has emerged as an important mediator of elements of cancer progression, facilitated by epithelial mesenchymal plasticity (EMP). We review here evidence for the presence, prognostic significance, and therapeutic potential of the E/M hybrid state in carcinoma. We further assess modelling predictions and validation studies to demonstrate stabilised E/M hybrid states along the spectrum of EMP, as well as computational approaches for characterising and quantifying EMP phenotypes, with particular attention to the emerging realm of single-cell approaches through RNA sequencing and protein-based techniques.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ryan J Murphy
- Queensland University of Technology, School of Mathematical Sciences, Brisbane, Queensland, Australia
| | - Sugandha Bhatia
- Queensland University of Technology, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Brisbane, Queensland, Australia.,Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Holly J Whitfield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Washington, Australia
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Erik W Thompson
- Queensland University of Technology, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Brisbane, Queensland, Australia.,Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Brisotto G, Guerrieri R, Colizzi F, Steffan A, Montico B, Fratta E. Long Noncoding RNAs as Innovative Urinary Diagnostic Biomarkers. Methods Mol Biol 2021; 2292:73-94. [PMID: 33651353 DOI: 10.1007/978-1-0716-1354-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The characterization of circulating tumor cells (CTCs) is now widely studied as a promising source of cancer-derived biomarkers because of their role in tumor formation and progression. However, CTCs analysis presents some limitations and no standardized method for CTCs isolation from urine has been defined so far. In fact, besides blood, urine represents an ideal source of noninvasive biomarkers, especially for the early detection of genitourinary tumors. Besides CTCs, long noncoding RNAs (lncRNAs) have also been proposed as potential noninvasive biomarkers, and the evaluation of the diagnostic accuracy of urinary lncRNAs has dramatically increased over the last years, with many studies being published. Therefore, this review provides an update on the clinical utility of urinary lncRNAs as novel biomarkers for the diagnosis of bladder and prostate cancers.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
20
|
Research Progress for the Clinical Application of Circulating Tumor Cells in Prostate Cancer Diagnosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6230826. [PMID: 33506020 PMCID: PMC7814947 DOI: 10.1155/2021/6230826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a life-threatening and highly heterogeneous malignancy. In the past decade, circulating tumor cells (CTCs) have been suggested to play a critical role in the occurrence and progression of prostate cancer. In particular, as the “seed” of the cancer metastasis cascade, CTCs determine numerous biological behaviors, such as tumor invasion into adjacent tissues and migration to distant organs. Many studies have shown that CTCs are necessary in the processes of tumor progression, including tumorigenesis, invasion, metastasis, and colonization. Furthermore, CTCs express various biomarkers relevant to prostate cancer and thus can be applied clinically in noninvasive tests. Moreover, CTCs can serve as potential prognostic targets in prostate cancer due to their roles in regulating many processes associated with cancer metastasis. In this review, we discuss the isolation and detection of CTCs as predictive markers of prostate cancer, and we discuss their clinical application in the diagnosis and prognosis of prostate cancer and in monitoring the response to treatment and the prediction of metastasis.
Collapse
|
21
|
Pang TCY, Po JW, Becker TM, Goldstein D, Pirola RC, Wilson JS, Apte MV. Circulating tumour cells in pancreatic cancer: A systematic review and meta-analysis of clinicopathological implications. Pancreatology 2021; 21:103-114. [PMID: 33309014 DOI: 10.1016/j.pan.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The detection and quantification of circulating tumour cells (CTCs) in pancreatic cancer (PC) has the potential to provide prognostic information. The aim of this review was to provide an overview of the literature surrounding CTCs in PC. METHODS A systematic literature review on CTCs in PC between 2005-2020 was performed. Data based on peripheral vein samples were used to determine the positivity rate of CTCs, their prognostic significance and their relative numbers compared to portal vein (PV) samples. RESULTS The overall CTC detection rate in forty-four articles was 65% (95%CI: 55-75%). Detection rate for CellSearch was 26% (95%CI: 14-38%), which was lower than for both filtration and microfluidic techniques. In nine studies with >50 patients, overall survival was worse with CTC positivity (HR 1.82; 95%CI: 1.61-2.05). Five of seven studies which described PV CTC collection provided patient-level data. PV CTC yield was 7.7-fold (95%CI 1.35-43.9) that of peripheral blood. CONCLUSIONS CTCs were detected in the peripheral circulation of most patients with PC and may be related to prognosis and disease stage. PV blood contains more CTCs than peripheral blood sampling. This review points to the maturation of techniques of CTC enrichment, and its evidence base for eventual clinical deployment.
Collapse
Affiliation(s)
- Tony C Y Pang
- Pancreatic Research Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, University of New South Wales, Australia; Surgical Innovations Unit, Westmead Hospital, Westmead, Australia; Westmead Clinical School, University of Sydney, Westmead, Australia
| | - Joseph W Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, South Western Clinical School, University of New South Wales, School of Medicine, Western Sydney University, Australia; Surgical Innovations Unit, Westmead Hospital, Westmead, Australia; Westmead Clinical School, University of Sydney, Westmead, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, South Western Clinical School, University of New South Wales, School of Medicine, Western Sydney University, Australia
| | - David Goldstein
- Pancreatic Research Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, University of New South Wales, Australia
| | - Romano C Pirola
- Pancreatic Research Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, University of New South Wales, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, University of New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, University of New South Wales, Australia.
| |
Collapse
|
22
|
Pan Y, Li D, Yang J, Wang N, Xiao E, Tao L, Ding X, Sun P, Li D. Portal Venous Circulating Tumor Cells Undergoing Epithelial-Mesenchymal Transition Exhibit Distinct Clinical Significance in Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:757307. [PMID: 34778073 PMCID: PMC8582019 DOI: 10.3389/fonc.2021.757307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Much importance is attached to the clinical application value of circulating tumor cells (CTCs), meanwhile tumor-proximal CTCs detection has interested researchers for its unique advantage. This research mainly discusses the correlation of portal venous (PoV) CTCs counts in different epithelial-mesenchymal transition status with clinicopathologic parameters and postoperative prognosis in resectable pancreatic ductal adenocarcinoma patients (PDAC). METHODS PDAC patients (n=60) who received radical resection were enrolled in this research. PoV samples from all patients and peripheral venous (PV) samples from 32 patients among them were collected to verify spatial heterogeneity of CTCs distribution, and explore their correlation with clinicopathologic parameters and clinical prognosis. RESULTS CTCs detectable rate and each phenotype count of PoV were higher than those of PV. Patients with recurrence had higher PV and PoV epithelial CTCs (E-CTCs) counts than recurrence-free patients (P<0.05). Some unfavourable clinicopathologic parameters were closely related to higher PoV CTCs counts. Multivariate regression analysis demonstrated that PoV mesenchymal CTC (M-CTC)s≥1/5 ml was an independent risk factor for metastasis free survival (MFS) (P=0.003) and overall survival (OS) (P=0.043). CONCLUSIONS Our research demonstrated that portal venous was a preferable vessel for CTC test, and patients with PoV M-CTC≥1/5 ml had shorter MFS and OS time in resectable PDAC patients. PoV CTC phenotype detection has the potential to be a reliable and accurate tool to identify resectable PDAC patients with high tendency of postoperative metastasis for better stratified management.
Collapse
Affiliation(s)
- Yujin Pan
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Deyu Li
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiuhui Yang
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ning Wang
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Erwei Xiao
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangming Ding
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Peichun Sun
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital Zhengzhou, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongxiao Li
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
24
|
Frappart PO, Hofmann TG. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers (Basel) 2020; 12:E2750. [PMID: 32987786 PMCID: PMC7598647 DOI: 10.3390/cancers12102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of pancreatic malignancies. In contrast to many other tumor entities, the prognosis of PDAC has not significantly improved during the past thirty years. Patients are often diagnosed too late, leading to an overall five-year survival rate below 10%. More dramatically, PDAC cases are on the rise and it is expected to become the second leading cause of death by cancer in western countries by 2030. Currently, the use of gemcitabine/nab-paclitaxel or FOLFIRINOX remains the standard chemotherapy treatment but still with limited efficiency. There is an urgent need for the development of early diagnostic and therapeutic tools. To this point, in the past 5 years, organoid technology has emerged as a revolution in the field of PDAC personalized medicine. Here, we are reviewing and discussing the current technical and scientific knowledge on PDAC organoids, their future perspectives, and how they can represent a game change in the fight against PDAC by improving both diagnosis and treatment options.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
25
|
Cheng KS, Pan R, Pan H, Li B, Meena SS, Xing H, Ng YJ, Qin K, Liao X, Kosgei BK, Wang Z, Han RP. ALICE: a hybrid AI paradigm with enhanced connectivity and cybersecurity for a serendipitous encounter with circulating hybrid cells. Am J Cancer Res 2020; 10:11026-11048. [PMID: 33042268 PMCID: PMC7532685 DOI: 10.7150/thno.44053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
A fully automated and accurate assay of rare cell phenotypes in densely-packed fluorescently-labeled liquid biopsy images remains elusive. Methods: Employing a hybrid artificial intelligence (AI) paradigm that combines traditional rule-based morphological manipulations with modern statistical machine learning, we deployed a next generation software, ALICE (Automated Liquid Biopsy Cell Enumerator) to identify and enumerate minute amounts of tumor cell phenotypes bestrewed in massive populations of leukocytes. As a code designed for futurity, ALICE is armed with internet of things (IOT) connectivity to promote pedagogy and continuing education and also, an advanced cybersecurity system to safeguard against digital attacks from malicious data tampering. Results: By combining robust principal component analysis, random forest classifier and cubic support vector machine, ALICE was able to detect synthetic, anomalous and tampered input images with an average recall and precision of 0.840 and 0.752, respectively. In terms of phenotyping enumeration, ALICE was able to enumerate various circulating tumor cell (CTC) phenotypes with a reliability ranging from 0.725 (substantial agreement) to 0.961 (almost perfect) as compared to human analysts. Further, two subpopulations of circulating hybrid cells (CHCs) were serendipitously discovered and labeled as CHC-1 (DAPI+/CD45+/E-cadherin+/vimentin-) and CHC-2 (DAPI+ /CD45+/E-cadherin+/vimentin+) in the peripheral blood of pancreatic cancer patients. CHC-1 was found to correlate with nodal staging and was able to classify lymph node metastasis with a sensitivity of 0.615 (95% CI: 0.374-0.898) and specificity of 1.000 (95% CI: 1.000-1.000). Conclusion: This study presented a machine-learning-augmented rule-based hybrid AI algorithm with enhanced cybersecurity and connectivity for the automatic and flexibly-adapting enumeration of cellular liquid biopsies. ALICE has the potential to be used in a clinical setting for an accurate and reliable enumeration of CTC phenotypes.
Collapse
|
26
|
Bian J, Yan K, Liu N, Xu X. Correlations between circulating tumor cell phenotyping and 18F-fluorodeoxyglucose positron emission tomography uptake in non-small cell lung cancer. J Cancer Res Clin Oncol 2020; 146:2621-2630. [PMID: 32661602 DOI: 10.1007/s00432-020-03244-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) phenotype-based subsets of circulating tumor cells (CTCs) might be predictors of tumor progression. We evaluated the clinical properties of different phenotypic CTCs in patients with non-small cell lung cancer (NSCLC). Secondly, we explored the association between different phenotypic CTCs and the uptake of 18F-fluorodeoxyglucose (FDG) by the primary tumor on a positron emission tomographic (PET) scan. METHODS Venous blood samples from 34 pathologically confirmed Stage IIB-IVB NSCLC patients were collected prospectively. CTCs were immunoassayed using a SE-i·FISH®CTC kit. We identified CTCs into cytokeratin positive (CK+) and cytokeratin negative (CK-) phenotypes. CTC classifications were correlated with the maximum standardized uptake value (SUVmax) measured by 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Overall survival (OS) and progression-free survival (PFS) curves were produced using the Kaplan-Meier method. RESULTS CTCs were detected in 91.2% of NSCLC patients. CTC counting was associated with TNM stage (P = 0.014) and distant metastasis (P = 0.007). The number of CK-CTCs was also positively associated with TNM stage (P = 0.022) and distant metastasis (P = 0.007). Both total CTC counting and CK-CTC counting did not show association with SUVmax value (P = 0.959, P = 0.903). Kaplan-Meier survival analysis demonstrated that patients with ≥ 7 CTCs had shorter OS (P = 0.003) and PFS (P = 0.001) relative to patients with < 7 CTCs). Notably, the number of CK-CTCs can act as independent risk factors for PFS (P = 0.044) and OS (P = 0.043) in NSCLC patients. However, SUVmax value was not associated with OS (P = 0.895) and PFS (P = 0.686). CONCLUSION The CTC subpopulations could be useful evidence for testing metastasis and prognosis in NSCLC patients. The SUVmax value of the primary tumor was not related to prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Jiarong Bian
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China
| | - Ke Yan
- Department of Neurosurgery, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Na Liu
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China
| | - Xingxiang Xu
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
27
|
Wu C, Zhang J, Li H, Xu W, Zhang X. The potential of liquid biopsies in gastrointestinal cancer. Clin Biochem 2020; 84:1-12. [PMID: 32540214 DOI: 10.1016/j.clinbiochem.2020.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liquid biopsy is a novel approach for cancer diagnosis, the value of which in human gastrointestinal (GI) cancer has been confirmed by the previous studies. This article summarized the recent advances in liquid biopsy with a focus on novel technologies and the use of it in the screening, monitoring, and treatment of human GI cancer. CONTENT The concept of liquid biopsy was first used to define the detection of circulating tumor cells (CTCs) in cancer patients, and has been expanded to other biomarkers in blood and body fluids, such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs) and circulating tumor RNA. If analyzed with proper and advanced techniques like next generation sequencing (NGS) or proteomics, liquid biopsies can open an enormous array of potential biomarkers. The amount changes of target biomarkers and the mutation of genetic materials provide quantitative and qualitative information, which can be utilized clinically for cancer diagnosis and disease monitoring. SUMMARY As a highly efficient, minimally invasive, and cost-effective approach to diagnose and evaluate prognosis of GI cancer, liquid biopsy has lots of advantages over traditional biopsy and is promising in future clinical utility. If the challenges are overcome in the near future, liquid biopsy will become a widely available and dependable option.
Collapse
Affiliation(s)
- Chenxi Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
28
|
Dell'Aquila E, Fulgenzi CAM, Minelli A, Citarella F, Stellato M, Pantano F, Russano M, Cursano MC, Napolitano A, Zeppola T, Vincenzi B, Tonini G, Santini D. Prognostic and predictive factors in pancreatic cancer. Oncotarget 2020; 11:924-941. [PMID: 32206189 PMCID: PMC7075465 DOI: 10.18632/oncotarget.27518] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer death worldwide. Its high mortality rate has remained unchanged for years. Radiotherapy and surgery are considered standard treatments in early and locally advanced stages. Chemotherapy is the only option for metastatic patients. Two treatment regimens, i. e. the association of 5-fluorouracil- irinotecan-oxaliplatin (FOLFIRINOX) and the association of nab-paclitaxel with gemcitabine, have been shown to improve outcomes for metastatic pancreatic adenocarcinoma patients. However, there are not standardized predictive biomarkers able to identify patients who benefit most from treatments. CA19-9 is the most studied prognostic biomarker, its predictive role remains unclear. Other clinical, histological and molecular biomarkers are emerging in prognostic and predictive settings. The aim of this review is to provide an overview of prognostic and predictive markers used in clinical practice and to explore the most promising fields of research in terms of treatment selection and tailored therapy in pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Alessandro Minelli
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Fabrizio Citarella
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Marco Stellato
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Francesco Pantano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Marco Russano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | | | - Andrea Napolitano
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Tea Zeppola
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio-Medico, Rome 00128, Italy
| |
Collapse
|
29
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
30
|
Saxena K, Subbalakshmi AR, Jolly MK. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 2019; 46:4-5. [PMID: 31399383 PMCID: PMC6712058 DOI: 10.1016/j.ebiom.2019.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|