1
|
Alshahrani M, Parikh V, Foley B, Verkhivker G. Exploring Diverse Binding Mechanisms of Broadly Neutralizing Antibodies S309, S304, CYFN-1006 and VIR-7229 Targeting SARS-CoV-2 Spike Omicron Variants: Integrative Computational Modeling Reveals Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649027. [PMID: 40376091 PMCID: PMC12080943 DOI: 10.1101/2025.04.15.649027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229 maintain efficacy across multiple variants and achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to mutations in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
Collapse
|
2
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
3
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Seekings AH, Shipley R, Byrne AMP, Shukla S, Golding M, Amaya-Cuesta J, Goharriz H, Vitores AG, Lean FZX, James J, Núñez A, Breed A, Frost A, Balzer J, Brown IH, Brookes SM, McElhinney LM. Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021. Viruses 2024; 16:617. [PMID: 38675958 PMCID: PMC11053977 DOI: 10.3390/v16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Shweta Shukla
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joan Amaya-Cuesta
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ana Gómez Vitores
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fabian Z. X. Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alistair Breed
- Government of Jersey, Infrastructure Housing and Environment, Howard Davis Farm, La Route de la Trinité, Trinity, Jersey JE3 5JP, UK
| | - Andrew Frost
- One Health, Animal Health and Welfare Advice Team, Animal and Plant Health Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Jörg Balzer
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Humboldtstraße 2, 70806 Kornwestheim, Germany
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
5
|
Aguilar Ticona JP, Nery N, Hitchings M, Belitardo EMMA, Fofana MO, Dorión M, Victoriano R, Cruz JS, Oliveira Santana J, de Moraes LEP, Cardoso CW, Ribeiro GS, Reis MG, Khouri R, Costa F, Ko AI, Cummings DAT. Overestimation of Severe Acute Respiratory Syndrome Coronavirus 2 Household Transmission in Settings of High Community Transmission: Insights From an Informal Settlement Community in Salvador, Brazil. Open Forum Infect Dis 2024; 11:ofae065. [PMID: 38516384 PMCID: PMC10957159 DOI: 10.1093/ofid/ofae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. Methods Between November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)-related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. Results In 61 households, we detected a total of 94 RT-PCR-positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%-63.0%). Women (relative risk [RR], 1.6 [95% CI, .9-2.7]), older individuals (median difference, 15 [95% CI, 2-21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0-3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%-40.9%). Conclusions These findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19.
Collapse
Affiliation(s)
- Juan P Aguilar Ticona
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nivison Nery
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matt Hitchings
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | | | - Mariam O Fofana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Murilo Dorión
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Renato Victoriano
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Jaqueline S Cruz
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Juliet Oliveira Santana
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | | | - Cristiane W Cardoso
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Centro de Informações Estratégicas de Vigilância em Saúde (CIEVS), Secretaria Municipal de Saúde de Salvador, Salvador, Brazil
| | - Guilherme S Ribeiro
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Mitermayer G Reis
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Federico Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Albert I Ko
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Ministério da Saúde, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Derek A T Cummings
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Hu B, Chan JFW, Liu Y, Liu H, Chen YX, Shuai H, Hu YF, Hartnoll M, Chen L, Xia Y, Hu JC, Yuen TTT, Yoon C, Hou Y, Huang X, Chai Y, Zhu T, Shi J, Wang Y, He Y, Cai JP, Zhou J, Yuan S, Zhang J, Huang JD, Yuen KY, To KKW, Zhang BZ, Chu H. Divergent trajectory of replication and intrinsic pathogenicity of SARS-CoV-2 Omicron post-BA.2/5 subvariants in the upper and lower respiratory tract. EBioMedicine 2024; 99:104916. [PMID: 38101297 PMCID: PMC10733096 DOI: 10.1016/j.ebiom.2023.104916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING The full list of funding can be found at the Acknowledgements section.
Collapse
Affiliation(s)
- Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yan-Xia Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Madeline Hartnoll
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Li Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Xia
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
7
|
Kow CS, Ramachandram DS, Hasan SS. The risk of mortality and severe illness in patients infected with the omicron variant relative to delta variant of SARS-CoV-2: a systematic review and meta-analysis. Ir J Med Sci 2023; 192:2897-2904. [PMID: 36754948 PMCID: PMC9908500 DOI: 10.1007/s11845-022-03266-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
We summarized through systematic review and meta-analysis of observational studies the risk of mortality as well as severe illness of COVID-19 caused by omicron variant relative to delta variant of SARS-CoV-2. A total of twelve studies were included. Our results showed significantly reduced odds of mortality (pooled OR = 0.33; 95% CI: 0.16-0.67) and significantly reduced odds of severe illness (pooled OR = 0.24; 95% CI: 0.21-0.28) in patients infected with the omicron variant of SARS-CoV-2 relative to their counterparts infected with the delta variant. Findings of lower disease severity following infection with the omicron variant of SARS-CoV-2 than the delta variant are encouraging during the ongoing transition from the pandemic phase into the endemic phase of COVID-19.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
8
|
Pietrasanta C, Ronchi A, Agosti M, Mangili G, Sinelli M, Ghirardello S, Barachetti R, Crimi R, Fasolato V, Martinelli S, Bellan C, Crippa B, Artieri G, Perniciaro S, Saruggia M, Ventura ML, Garofoli F, Pagliotta C, Uceda Renteria SC, Piralla A, Bergami F, Morandi G, Proto A, Pontiggia F, Risso FM, Bossi A, Ferrari S, Cavalleri V, Servi P, Castiglione A, Spada E, Ceriotti F, Baldanti F, Mosca F, Pugni L. Early Postnatal Infection of Neonates Born to Mothers Infected by SARS-CoV-2 Omicron Variant. Pediatrics 2023; 152:e2023062702. [PMID: 37830167 DOI: 10.1542/peds.2023-062702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVES To evaluate the rate of postnatal infection during the first month of life in neonates born to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive mothers during the predominant circulation of the omicron (B.1.1.529) variant. METHODS This prospective, 10-center study enrolled mothers infected by SARS-CoV-2 at delivery and their infants, if both were eligible for rooming-in, between December 2021 and March 2022. Neonates were screened for SARS-CoV-2 RNA at 1 day of life (DOL), 2 to 3 DOL, before discharge, and twice after hospital discharge. Mother-infant dyads were managed under a standardized protocol to minimize the risk of viral transmission. Sequencing data in the study area were obtained from the Italian Coronavirus Disease 2019 Genomic platform. Neonates were included in the final analysis if they were born when the omicron variant represented >90% of isolates. RESULTS Eighty-two percent (302/366) of mothers had an asymptomatic SARS-CoV-2 infection. Among 368 neonates, 1 was considered infected in utero (0.3%), whereas the postnatal infection rate during virtually exclusive circulation of the omicron variant was 12.1%. Among neonates infected after birth, 48.6% became positive during the follow-up period. Most positive cases at follow-up were detected concurrently with the peak of coronavirus disease 2019 cases in Italy. Ninety-seven percent of the infected neonates were asymptomatic. CONCLUSIONS The risk of early postnatal infection by the SARS-CoV-2 omicron variant is higher than that reported for previously circulating variants. However, protected rooming-in practice should still be encouraged given the paucity of symptoms in infected neonates.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Neonatology and NICU
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Massimo Agosti
- Neonatology and NICU, Del Ponte Hospital, Varese, Italy
- Department of Pediatrics, University of Insubria, Varese, Italy
| | | | - Mariateresa Sinelli
- Neonatology and NICU, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB), Italy
| | | | | | - Riccardo Crimi
- Neonatology and NICU
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valeria Fasolato
- Neonatology and NICU, ASST Mantova, Ospedale Carlo Poma, Mantova, Italy
| | | | - Cristina Bellan
- Neonatology and NICU, ASST Bergamo Est, Ospedale Bolognini Seriate, Seriate, Italy
| | | | - Giacomo Artieri
- Neonatology and NICU
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Maria Luisa Ventura
- Neonatology and NICU, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB), Italy
| | | | | | | | - Antonio Piralla
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Grazia Morandi
- Neonatology and NICU, ASST Mantova, Ospedale Carlo Poma, Mantova, Italy
| | - Alice Proto
- Neonatology and NICU, Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Pontiggia
- Neonatology and NICU, ASST Bergamo Est, Ospedale Bolognini Seriate, Seriate, Italy
| | - Francesco Maria Risso
- Neonatology and NICU, ASST Spedali Civili di Brescia, Presidio Ospedale dei Bambini - Children Hospital, Brescia, Italy
| | - Angela Bossi
- Neonatology and NICU, Del Ponte Hospital, Varese, Italy
| | | | - Valeria Cavalleri
- Neonatology and NICU, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB), Italy
| | | | | | - Elena Spada
- Neonatology and NICU
- Laboratorio della Conoscenza Carlo Corchia- APS, Firenze, Italy
| | - Ferruccio Ceriotti
- Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Baldanti
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Pediatric and Diagnostic Sciences, University of Pavia, Pavia, Italy
| | - Fabio Mosca
- Neonatology and NICU
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | |
Collapse
|
9
|
Radhakrishnan N, Liu M, Idowu B, Bansari A, Rathi K, Magar S, Mundhra L, Sarmiento J, Ghaffar U, Kattan J, Jones R, George J, Yang Y, Southwick F. Comparison of the clinical characteristics of SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) infected patients from a single hospitalist service. BMC Infect Dis 2023; 23:747. [PMID: 37907849 PMCID: PMC10617227 DOI: 10.1186/s12879-023-08714-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND While existing evidence suggests less severe clinical manifestations and lower mortality are associated with the Omicron variant as compared to the Delta variant. However, these studies fail to control for differences in health systems facilities and providers. By comparing patients hospitalized on a single medical service during the Delta and Omicron surges we were able to conduct a more accurate comparison of the two varaints' clinical manifestations and outcomes. METHODS We conducted a prospective study of 364 Omicron (BA.1) infected patients on a single hospitalist service and compared these findings to a retrospective analysis of 241 Delta variant infected patients managed on the same service. We examined differences in symptoms, laboratory measures, and clinical severity between the two variants and assessed potential risk drivers for case mortality. FINDINGS Patients infected with Omicron were older and had more underlying medical conditions increasing their risk of death. Although they were less severely ill and required less supplemental oxygen and dexamethasone, in-hospital mortality was similar to Delta cases, 7.14% vs. 4.98% for Delta (q-value = 0.38). Patients older than 60 years or with immunocompromised conditions had much higher risk of death during hospitalization, with estimated odds ratios of 17.46 (95% CI: 5.05, 110.51) and 2.80 (1.03, 7.08) respectively. Neither vaccine history nor variant type played a significant role in case fatality. The Rothman score, NEWS-2 score, level of neutrophils, level of care, age, and creatinine level at admission were highly predictive of in-hospital death. INTERPRETATION In hospitalized patients, the Omicron variant is less virulent than the Delta variant but is associated with a comparable mortality. Clinical and laboratory features at admission are informative about the risk of death.
Collapse
Affiliation(s)
- N Radhakrishnan
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - M Liu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - B Idowu
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - A Bansari
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - K Rathi
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - S Magar
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - L Mundhra
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J Sarmiento
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - U Ghaffar
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J Kattan
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - R Jones
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J George
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - Y Yang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, 310 Herty Drive, Athens, GA, 30602, Greece.
| | - F Southwick
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA.
| |
Collapse
|
10
|
de Melo GD, Perraud V, Alvarez F, Vieites-Prado A, Kim S, Kergoat L, Coleon A, Trüeb BS, Tichit M, Piazza A, Thierry A, Hardy D, Wolff N, Munier S, Koszul R, Simon-Lorière E, Thiel V, Lecuit M, Lledo PM, Renier N, Larrous F, Bourhy H. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun 2023; 14:4485. [PMID: 37495586 PMCID: PMC10372078 DOI: 10.1038/s41467-023-40228-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Anosmia was identified as a hallmark of COVID-19 early in the pandemic, however, with the emergence of variants of concern, the clinical profile induced by SARS-CoV-2 infection has changed, with anosmia being less frequent. Here, we assessed the clinical, olfactory and neuroinflammatory conditions of golden hamsters infected with the original Wuhan SARS-CoV-2 strain, its isogenic ORF7-deletion mutant and three variants: Gamma, Delta, and Omicron/BA.1. We show that infected animals develop a variant-dependent clinical disease including anosmia, and that the ORF7 of SARS-CoV-2 contributes to the induction of olfactory dysfunction. Conversely, all SARS-CoV-2 variants are neuroinvasive, regardless of the clinical presentation they induce. Taken together, this confirms that neuroinvasion and anosmia are independent phenomena upon SARS-CoV-2 infection. Using newly generated nanoluciferase-expressing SARS-CoV-2, we validate the olfactory pathway as a major entry point into the brain in vivo and demonstrate in vitro that SARS-CoV-2 travels retrogradely and anterogradely along axons in microfluidic neuron-epithelial networks.
Collapse
Affiliation(s)
- Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Victoire Perraud
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Flavio Alvarez
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Alba Vieites-Prado
- Institut du Cerveau et de la Moelle Épinière, Laboratoire de Plasticité Structurale, , Sorbonne Université, INSERM U1127, CNRS UMR7225, 75013, Paris, France
| | - Seonhee Kim
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Anthony Coleon
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Bettina Salome Trüeb
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Magali Tichit
- Institut Pasteur, Université Paris Cité, Histopathology Platform, F-75015, Paris, France
| | - Aurèle Piazza
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - Agnès Thierry
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, F-75015, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, F-75015, Paris, France
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA viruses Unit, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, Evolutionary Genomics of RNA Viruses Group, F-75015, Paris, France
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Perception and Memory Unit, F-75015 Paris, France; CNRS UMR3571, 75015, Paris, France
| | - Nicolas Renier
- Institut du Cerveau et de la Moelle Épinière, Laboratoire de Plasticité Structurale, , Sorbonne Université, INSERM U1127, CNRS UMR7225, 75013, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France.
| |
Collapse
|
11
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
12
|
Facciuolo A, Van Kessel J, Kroeker A, Liao M, Lew JM, Falzarano D, Kelvin AA, Gerdts V, Napper S. Longitudinal analysis of SARS-CoV-2 reinfection reveals distinct kinetics and emergence of cross-neutralizing antibodies to variants of concern. Front Microbiol 2023; 14:1148255. [PMID: 37065160 PMCID: PMC10090301 DOI: 10.3389/fmicb.2023.1148255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The ongoing evolution of SARS-CoV-2 continues to raise new questions regarding the duration of immunity to reinfection with emerging variants. To address these knowledge gaps, controlled investigations in established animal models are needed to assess duration of immunity induced by each SARS-CoV-2 lineage and precisely evaluate the extent of cross-reactivity and cross-protection afforded. Using the Syrian hamster model, we specifically investigated duration of infection acquired immunity to SARS-CoV-2 ancestral Wuhan strain over 12 months. Plasma spike- and RBD-specific IgG titers against ancestral SARS-CoV-2 peaked at 4 months post-infection and showed a modest decline by 12 months. Similar kinetics were observed with plasma virus neutralizing antibody titers which peaked at 2 months post-infection and showed a modest decline by 12 months. Reinfection with ancestral SARS-CoV-2 at regular intervals demonstrated that prior infection provides long-lasting immunity as hamsters were protected against severe disease when rechallenged at 2, 4, 6, and 12 months after primary infection, and this coincided with the induction of high virus neutralizing antibody titers. Cross-neutralizing antibody titers against the B.1.617.2 variant (Delta) progressively waned in blood over 12 months, however, re-infection boosted these titers to levels equivalent to ancestral SARS-CoV-2. Conversely, cross-neutralizing antibodies to the BA.1 variant (Omicron) were virtually undetectable at all time-points after primary infection and were only detected following reinfection at 6 and 12 months. Collectively, these data demonstrate that infection with ancestral SARS-CoV-2 strains generates antibody responses that continue to evolve long after resolution of infection with distinct kinetics and emergence of cross-reactive and cross-neutralizing antibodies to Delta and Omicron variants and their specific spike antigens.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Antonio Facciuolo,
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Mingmin Liao
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne M. Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Heinrich F, Huter T, Mertens S, Lange P, Vering J, Heinemann A, Nörz DS, Hoffmann A, Aepfelbacher M, Ondruschka B, Krasemann S, Lütgehetmann M. New Postmortem Perspective on Emerging SARS-CoV-2 Variants of Concern, Germany. Emerg Infect Dis 2023; 29:652-656. [PMID: 36787498 PMCID: PMC9973696 DOI: 10.3201/eid2903.221297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We performed autopsies on persons in Germany who died from COVID-19 and observed higher nasopharyngeal SARS-CoV-2 viral loads for variants of concern (VOC) compared with non-VOC lineages. Pulmonary inflammation and damage appeared higher in non-VOC than VOC lineages until adjusted for vaccination status, suggesting COVID-19 vaccination may mitigate pulmonary damage.
Collapse
|
14
|
Salmonella-mediated oral delivery of multiple-target vaccine constructs with conserved and variable regions of SARS-CoV-2 protect against the Delta and Omicron variants in hamster. Microbes Infect 2023; 25:105101. [PMID: 36657635 PMCID: PMC9841750 DOI: 10.1016/j.micinf.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Since the emergence of the pandemic COVID19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of vaccines has been the prime strategy to control the disease transmission. Most of the developed vaccines target the spike protein, however, the emerging variants have alterations, particularly at the same region which may pose resistance to neutralizing antibodies. In this study, we explored the variable and conserved regions of SARS-CoV-2 as a potential inclusion in a multiple-target vaccine with the exploitation of Salmonella-based vector for oral mRNA vaccine against Delta and Omicron variants. Increased IgG and IgA levels imply the induction of humoral response and the CD4+, CD8+ and IFN-γ+ sub-population level exhibits cell-mediated immune responses. The degree of CD44+ cells indicates the induction of memory cells corresponding to long-term immune responses. Furthermore, we assessed the protective efficacy of the vaccines against the Delta and Omicron variants in the hamster model. The vaccine constructs induced neutralizing antibodies and protected the viral-challenged hamsters with significant decrease in lung viral load and reduced histopathological lesions. These results reinforce the use of the conserved and variable regions as potential antigen targets of SARS-CoV-2 as well as the exploitation of bacteria-mediated delivery for oral mRNA vaccine development.
Collapse
|
15
|
da Silva SJR, Kohl A, Pena L, Pardee K. Recent insights into SARS-CoV-2 omicron variant. Rev Med Virol 2023; 33:e2373. [PMID: 35662313 PMCID: PMC9347414 DOI: 10.1002/rmv.2373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/28/2023]
Abstract
The SARS-CoV-2 omicron variant (B.1.1.529) was first identified in Botswana and South Africa, and its emergence has been associated with a steep increase in the number of SARS-CoV-2 infections. The omicron variant has subsequently spread very rapidly across the world, resulting in the World Health Organization classification as a variant of concern on 26 November 2021. Since its emergence, great efforts have been made by research groups around the world that have rapidly responded to fill our gaps in knowledge for this novel variant. A growing body of data has demonstrated that the omicron variant shows high transmissibility, robust binding to human angiotensin-converting enzyme 2 receptor, attenuated viral replication, and causes less severe disease in COVID-19 patients. Further, the variant has high environmental stability, high resistance against most therapeutic antibodies, and partial escape neutralisation by antibodies from convalescent patients or vaccinated individuals. With the pandemic ongoing, there is a need for the distillation of literature from primary research into an accessible format for the community. In this review, we summarise the key discoveries related to the SARS-CoV-2 omicron variant, highlighting the gaps in knowledge that guide the field's ongoing and future work.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Department of Pharmaceutical SciencesLeslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
- Department of VirologyLaboratory of Virology and Experimental Therapy (LAVITE)Aggeu Magalhães Institute (IAM)Oswaldo Cruz Foundation (Fiocruz)RecifePernambucoBrazil
| | - Alain Kohl
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Lindomar Pena
- Department of VirologyLaboratory of Virology and Experimental Therapy (LAVITE)Aggeu Magalhães Institute (IAM)Oswaldo Cruz Foundation (Fiocruz)RecifePernambucoBrazil
| | - Keith Pardee
- Department of Pharmaceutical SciencesLeslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
16
|
Castelán-Sánchez HG, Martínez-Castilla LP, Sganzerla-Martínez G, Torres-Flores J, López-Leal G. Genome Evolution and Early Introductions of the SARS-CoV-2 Omicron Variant in Mexico. Virus Evol 2022; 8:veac109. [PMID: 36582501 PMCID: PMC9793848 DOI: 10.1093/ve/veac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
A new variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named Omicron (Pango lineage designation B.1.1.529), was first reported to the World Health Organization by South African health authorities on 24 November 2021. The Omicron variant possesses numerous mutations associated with increased transmissibility and immune escape properties. In November 2021, Mexican authorities reported Omicron's presence in the country. In this study, we infer the first introductory events of Omicron and the impact that human mobility has had on the spread of the virus. We also evaluated the adaptive evolutionary processes in Mexican SARS-CoV-2 genomes during the first month of the circulation of Omicron. We inferred 160 introduction events of Omicron in Mexico since its first detection in South Africa; subsequently, after the first introductions there was an evident increase in the prevalence of SARS-CoV-2 during January. This higher prevalence of the novel variant resulted in a peak of reported cases; on average 6 weeks after, a higher mobility trend was reported. During the peak of cases in the country from January to February 2022, the Omicron BA.1.1 sub-lineage dominated, followed by the BA.1 and BA.15 sub-lineages. Additionally, we identified the presence of diversifying natural selection in the genomes of Omicron and found six non-synonymous mutations in the receptor binding domain of the spike protein, all of them related to evasion of the immune response. In contrast, the other proteins in the genome are highly conserved; however, we identified homoplasic mutations in non-structural proteins, indicating a parallel evolution.
Collapse
Affiliation(s)
- Hugo G Castelán-Sánchez
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| | - León P Martínez-Castilla
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| | - Gustavo Sganzerla-Martínez
- Laboratory of Immunity, Shantou University Medical College, Shantou, People’s Republic of China, No. 22 Xinling Road Shantou, Guangdong Province 515041, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, 5850 College street, Halifax, NS B3H 4R2, Canada
| | - Jesús Torres-Flores
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
- Laboratorio Nacional de Vacunología y Virus Tropicales, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tómas, Alcaldía Miguel Hidalgo CDMX C.P. 11340, México
| | - Gamaliel López-Leal
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México C.P. 03940, México
| |
Collapse
|
17
|
Rainey AL, Loeb JC, Robinson SE, Davis P, Liang S, Lednicky JA, Coker ES, Sabo-Attwood T, Bisesi JH, Maurelli AT. Assessment of a mass balance equation for estimating community-level prevalence of COVID-19 using wastewater-based epidemiology in a mid-sized city. Sci Rep 2022; 12:19085. [PMID: 36352013 PMCID: PMC9645338 DOI: 10.1038/s41598-022-21354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has emerged as a valuable epidemiologic tool to detect the presence of pathogens and track disease trends within a community. WBE overcomes some limitations of traditional clinical disease surveillance as it uses pooled samples from the entire community, irrespective of health-seeking behaviors and symptomatic status of infected individuals. WBE has the potential to estimate the number of infections within a community by using a mass balance equation, however, it has yet to be assessed for accuracy. We hypothesized that the mass balance equation-based approach using measured SARS-CoV-2 wastewater concentrations can generate accurate prevalence estimates of COVID-19 within a community. This study encompassed wastewater sampling over a 53-week period during the COVID-19 pandemic in Gainesville, Florida, to assess the ability of the mass balance equation to generate accurate COVID-19 prevalence estimates. The SARS-CoV-2 wastewater concentration showed a significant linear association (Parameter estimate = 39.43, P value < 0.0001) with clinically reported COVID-19 cases. Overall, the mass balance equation produced accurate COVID-19 prevalence estimates with a median absolute error of 1.28%, as compared to the clinical reference group. Therefore, the mass balance equation applied to WBE is an effective tool for generating accurate community-level prevalence estimates of COVID-19 to improve community surveillance.
Collapse
Affiliation(s)
- Andrew L Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Paul Davis
- Gainesville Regional Utilities, Gainesville, FL, 32614, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
- Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, PO Box 110885, Gainesville, FL, 32611, USA.
| | - Anthony T Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
19
|
Yadav PD, Mohandas S, Shete A, Sapkal G, Deshpande G, Kumar A, Wakchaure K, Dighe H, Jain R, Ganneru B, Yemul J, Gawande P, Vadrevu KM, Abraham P. Protective efficacy of COVAXIN® against Delta and Omicron variants in hamster model. iScience 2022; 25:105178. [PMID: 36164480 PMCID: PMC9493142 DOI: 10.1016/j.isci.2022.105178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.
Collapse
Affiliation(s)
- Pragya D. Yadav
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Sreelekshmy Mohandas
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Anita Shete
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Gajanan Sapkal
- Diagnostic Virology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Gururaj Deshpande
- Diagnostic Virology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Abhimanyu Kumar
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Kundan Wakchaure
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Hitesh Dighe
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Rajlaxmi Jain
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Brunda Ganneru
- Bharat Biotech International Limited, Genome Valley, Hyderabad 500 078, Telangana, India
| | - Jyoti Yemul
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Pranita Gawande
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Krishna Mohan Vadrevu
- Bharat Biotech International Limited, Genome Valley, Hyderabad 500 078, Telangana, India
| | - Priya Abraham
- Director, Indian Council of Medical Research-National Institute of Virology, Pune 411001, Maharashtra, India
| |
Collapse
|
20
|
Martins M, do Nascimento GM, Nooruzzaman M, Yuan F, Chen C, Caserta LC, Miller AD, Whittaker GR, Fang Y, Diel DG. The Omicron Variant BA.1.1 Presents a Lower Pathogenicity than B.1 D614G and Delta Variants in a Feline Model of SARS-CoV-2 Infection. J Virol 2022; 96:e0096122. [PMID: 36000850 PMCID: PMC9472624 DOI: 10.1128/jvi.00961-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Omicron (B.1.1.529) is the most recent SARS-CoV-2 variant of concern, which emerged in late 2021 and rapidly achieved global predominance by early 2022. In this study, we compared the infection dynamics, tissue tropism, and pathogenesis and pathogenicity of SARS-CoV-2 D614G (B.1), Delta (B.1.617.2), and Omicron BA.1.1 (B.1.1.529) variants in a highly susceptible feline model of infection. Although D614G- and Delta-inoculated cats became lethargic and showed increased body temperatures between days 1 and 3 postinfection (pi), Omicron-inoculated cats remained subclinical and, similar to control animals, gained weight throughout the 14-day experimental period. Intranasal inoculation of cats with D614G- and the Delta variants resulted in high infectious virus shedding in nasal secretions (up to 6.3 log10 TCID50.Ml-1), whereas strikingly lower level of viruses shedding (<3.1 log10 TCID50.Ml-1) was observed in Omicron-inoculated animals. In addition, tissue distribution of the Omicron variant was markedly reduced in comparison to the D614G and Delta variants, as evidenced by lower in situ viral RNA detection, in situ viral immunofluorescence staining, and viral loads in tissues on days 3, 5, and 14 pi. Nasal turbinate, trachea, and lung were the main-but not the only-sites of replication for all three viral variants. However, only scarce virus staining and lower viral titers suggest lower levels of viral replication in tissues from Omicron-infected animals. Notably, while D614G- and Delta-inoculated cats presented pneumonia, histologic examination of the lungs from Omicron-infected cats revealed mild to modest inflammation. Together, these results demonstrate that the Omicron variant BA.1.1 is less pathogenic than D614G and Delta variants in a highly susceptible feline model. IMPORTANCE The SARS-CoV-2 Omicron (B.1.1.529) variant of concern emerged in South Africa late in 2021 and rapidly spread across the world causing a significant increase in the number of infections. Importantly, this variant was also associated with an increased risk of reinfections. However, the number of hospitalizations and deaths due to COVID-19 did not follow the same trends. These early observations suggested effective protection conferred by immunizations and/or overall lower virulence of the highly mutated variant virus. In this study we present novel evidence demonstrating that the Omicron BA.1.1 variant of concern presents a lower pathogenicity when compared to D614G- or Delta variants in cats. Clinical, virological, and pathological evaluations revealed lower disease severity, viral replication, and lung pathology in Omicron-infected cats when compared with D614G and Delta variant inoculated animals, confirming that Omicron BA.1.1 is less pathogenic in a highly susceptible feline model of infection.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gabriela M. do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Leonardo C. Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Blaurock C, Breithaupt A, Weber S, Wylezich C, Keller M, Mohl BP, Görlich D, Groschup MH, Sadeghi B, Höper D, Mettenleiter TC, Balkema-Buschmann A. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci Rep 2022; 12:15069. [PMID: 36064749 PMCID: PMC9442591 DOI: 10.1038/s41598-022-19222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Receptor-Binding-Motif-Targeted Sanger Sequencing: a Quick and Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 Variants. Microbiol Spectr 2022; 10:e0066522. [PMID: 35638906 PMCID: PMC9241651 DOI: 10.1128/spectrum.00665-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) is the gold standard for characterizing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and identification of new variants. However, the cost involved and time needed for WGS prevent routine, rapid clinical use. This study aimed to develop a quick and cost-effective surveillance strategy for SARS-CoV-2 variants in saliva and nasal swab samples by spike protein receptor-binding-motif (RBM)-targeted Sanger sequencing. Saliva and nasal swabs prescreened for the presence of the nucleocapsid (N) gene of SARS-CoV-2 were subjected to RBM-specific single-amplicon generation and Sanger sequencing. Sequences were aligned by CLC Sequence Viewer 8, and variants were identified based upon specific mutation signature. Based on this strategy, the present study identified Alpha, Beta/Gamma, Delta, and Omicron variants in a quick and cost-effective manner. IMPORTANCE The coronavirus disease 2019 (COVID-19) pandemic resulted in 427 million infections and 5.9 million deaths globally as of 21 February 2022. SARS-CoV-2, the causative agent of the COVID-19 pandemic, frequently mutates and has developed into variants of major public health concerns. Following the Alpha variant (B.1.1.7) infection wave, the Delta variant (B.1.617.2) became prevalent, and now the recently identified Omicron (B.1.1.529) variant is spreading rapidly and forming BA.1, BA.1.1, BA.2, BA.3, BA.4, and BA.5 lineages of concern. Prompt identification of mutational changes in SARS-CoV-2 variants is challenging but critical to managing the disease spread and vaccine/therapeutic modifications. Considering the cost involved and resource limitation of WGS globally, an RBM-targeted Sanger sequencing strategy is adopted in this study for quick molecular surveillance of SARS-CoV-2 variants.
Collapse
|
23
|
Martins M, do Nascimento GM, Nooruzzaman M, Yuan F, Chen C, Caserta LC, Miller AD, Whittaker GR, Fang Y, Diel DG. The Omicron variant BA.1.1 presents a lower pathogenicity than B.1 D614G and Delta variants in a feline model of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.15.496220. [PMID: 35734088 PMCID: PMC9216722 DOI: 10.1101/2022.06.15.496220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Omicron (B.1.1.529) is the most recent SARS-CoV-2 variant of concern (VOC), which emerged in late 2021 and rapidly achieved global predominance in early 2022. In this study, we compared the infection dynamics, tissue tropism and pathogenesis and pathogenicity of SARS-CoV-2 D614G (B.1), Delta (B.1.617.2) and Omicron BA.1.1 sublineage (B.1.1.529) variants in a highly susceptible feline model of infection. While D614G- and Delta-inoculated cats became lethargic, and showed increased body temperatures between days 1 and 3 post-infection (pi), Omicron-inoculated cats remained subclinical and, similar to control animals, gained weight throughout the 14-day experimental period. Intranasal inoculation of cats with D614G- and the Delta variants resulted in high infectious virus shedding in nasal secretions (up to 6.3 log10 TCID 50 .ml -1 ), whereas strikingly lower level of viruses shedding (<3.1 log10 TCID 50 .ml -1 ) was observed in Omicron-inoculated animals. In addition, tissue distribution of the Omicron variant was markedly reduced in comparison to the D614G and Delta variants, as evidenced by in situ viral RNA detection, in situ immunofluorescence, and quantification of viral loads in tissues on days 3, 5, and 14 pi. Nasal turbinate, trachea, and lung were the main - but not the only - sites of replication for all three viral variants. However, only scarce virus staining and lower viral titers suggest lower levels of viral replication in tissues from Omicron-infected animals. Notably, while D614G- and Delta-inoculated cats had severe pneumonia, histologic examination of the lungs from Omicron-infected cats revealed mild to modest inflammation. Together, these results demonstrate that the Omicron variant BA.1.1 is less pathogenic than D614G and Delta variants in a highly susceptible feline model. Author Summary The SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VOC) emerged in South Africa late in 2021 and rapidly spread across the world causing a significant increase in the number of infections. Importantly, this variant was also associated with an increased risk of reinfections. However, the number of hospitalizations and deaths due to COVID-19 did not follow the same trends. These early observations, suggested effective protection conferred by immunizations and/or overall lower virulence of the highly mutated variant virus. In this study we present novel evidence demonstrating that the Omicron BA.1.1 variant of concern (VOC) presents a lower pathogenicity when compared to D614G- or Delta variants in cats. Clinical, virological and pathological evaluations revealed lower disease severity, viral replication and lung pathology in Omicron-infected cats when compared to D614G and Delta variant inoculated animals, confirming that Omicron BA.1.1 is less pathogenic in a highly susceptible feline model of infection.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gabriela M do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chi Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
24
|
Chan JFW, Chu H. Pathogenicity of SARS-CoV-2 Omicron BA.1.1 in hamsters. EBioMedicine 2022; 80:104035. [PMID: 35490459 PMCID: PMC9046704 DOI: 10.1016/j.ebiom.2022.104035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|