1
|
Dong Z, Zhu Y, Che R, Chen T, Liang J, Xia M, Wang F. Unraveling the complexity of organophosphorus pesticides: Ecological risks, biochemical pathways and the promise of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179206. [PMID: 40154081 DOI: 10.1016/j.scitotenv.2025.179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Organophosphorus pesticides (OPPs) are widely used in agriculture but pose significant ecological and human health risks due to their persistence and toxicity in the environment. While microbial degradation offers a promising solution, gaps remain in understanding the enzymatic mechanisms, degradation pathways, and ecological impacts of OPP transformation products. This review aims to bridge these gaps by integrating traditional microbial degradation research with emerging machine learning (ML) technologies. We hypothesize that ML can enhance OPP degradation studies by improving the efficiency of enzyme discovery, pathway prediction, and ecological risk assessment. Through a comprehensive analysis of microbial degradation mechanisms, environmental factors, and ML applications, we propose a novel framework that combines biochemical insights with data-driven approaches. Our review highlights the potential of ML to optimize microbial strain screening, predict degradation pathways, and identify key active sites, offering innovative strategies for sustainable pesticide management. By integrating traditional research with cutting-edge ML technologies, this work contributes to the journal's scope by promoting eco-friendly solutions for environmental protection and pesticide pollution control.
Collapse
Affiliation(s)
- Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Institute of process engineering, Chinese Academy of Sciences, Beijing 100089, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tao Chen
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Jie Liang
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
2
|
Yang Y, Su S, Sun Z, Long Z, Fu X, Meng J, Zhou X, Liu L, Yang S. Discovery of new 1,2,3,4-tetrahydro-β-carboline derivatives decorated with 3-N-substituted propionyl moiety flexibly bridged-chain as reactive oxygen species inducer for efficient antibacterial treatment. Bioorg Chem 2025; 160:108473. [PMID: 40239403 DOI: 10.1016/j.bioorg.2025.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/23/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
The widespread prevalence of bacterial plant diseases imposes a severe constraint on global food production and crop security. To address the growing challenge of bacterial resistance, there is an urgent demand to develop novel agrochemicals that combine high efficacy with low toxicity. In this study, a natural product modification strategy was employed to design new bactericidal candidates with an innovative cation mechanism. Tryptamine was employed as a precursor to synthesize 1,2,3,4-tetrahydro-β-carboline (THC) intermediates via the Pictet-Spengler reaction. Subsequent acylation enabled the introduction of 3-N-substituted propionyl group as flexible bridge chain through an aza-Michael reaction. The resulting racemic THC derivatives were then evaluated for their antimicrobial activity. Notably, molecule B3 demonstrated exceptional inhibitory effects against Xanthomonas oryzae pv. oryzae (Xoo, EC50 = 1.32 μg/mL) and Xanthomonas axonopodis pv. citri (Xac, EC50 = 2.80 μg/mL), significantly outperforming commercial agents such as bismerthiazol (BT; EC50 = 40.3 μg/mL for Xoo and 89.6 μg/mL for Xac) and thiodiazole copper (TC; EC50 = 58.2 μg/mL for Xoo and 37.3 μg/mL for Xac). Moreover, molecule B3 exhibited considerably higher activity than its parent molecule B (EC50 = 7.27 μg/mL for Xoo and 4.89 μg/mL for Xac). In vivo assays at 200 μg/mL, B3 provided protective effects of 53.87 % against Xoo and 91.2 % against Xac, exceeding those of TC. Mechanistic investigations revealed that molecule B3 disrupted the intracellular redox balance, and result in the accumulation of reactive oxygen species (ROS) and subsequent induction of apoptosis. These findings not only identify B3 as a promising ROS inducer for bactericide development but also offer novel insights into the role of ROS in combating bacterial diseases.
Collapse
Affiliation(s)
- Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shanshan Su
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhouqing Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Sarailoo M, Asghariazar V, Seifimansour S, Kadkhodayi M, Zare E, Vajdi P, Vostakolaei MA. Assessment of the Cytotoxicity Mechanism of Diazinon on HFFF2 Cells: A Bioinformatic and Experimental Study. J Biochem Mol Toxicol 2025; 39:e70146. [PMID: 39987520 DOI: 10.1002/jbt.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
Pesticide exposure can cause many skin diseases such as hypopigmentation and contact dermatitis, but the underlying mechanisms remain unclear. Furthermore, Organophosphate pesticides (OPs) including Diazinon (DZN) can affect cellular pathways like ATPase, leading to mitochondrial energy deficit and even apoptosis in the cell's functions. Following cell exposure to the OP pesticide DZN through treatment, we evaluated alteration in gene expression and DNA damage. Bioinformatic analysis was performed based on the AutoDock, Protein Data Bank, STRING, Way2Drug, and Comparative Toxicogenomics databases and tools. The MTT assay, wound healing, DAPI staining, flow cytometry, and real-time PCR were applied in the current study. The results showed that the viability and migration capacity of HFFF2 cells decreased, and the apoptosis rate increased in the DZN-treated group. These findings revealed that DZN regulated the expression of the apoptotic genes in DZN cells.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Seifimansour
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parnia Vajdi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Asghari Vostakolaei
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Chen X, Tian W. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. J Chromatogr A 2025; 1741:465611. [PMID: 39718260 DOI: 10.1016/j.chroma.2024.465611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity. Using methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker, BC-MIPs were created using CPF as a template. By using the suggested dispersive solid-phase extraction (DSPE) approach, the efficiency of the synthesized BC-MIPs granules was evaluated. Analytical performance of the devised DSPE-HPLC-PDA technique was assessed under optimal settings. The optimized parameters included extraction time, aqueous sample pH, desorption time and desorption reagents. Compared with the traditional method, the established method has better selective adsorption capacity, reusability and sensitivity for CPF. The suggested method presented that limit of detection and limit of quantification were 1.0 ng/mL and 4.0 ng/mL, along with excellent linear range (4.0-1500 ng/mL) with coefficients of determination (R2=0.9982). The established method was successfully used to determination CPF in aqueous samples from the Baisha River in Qingdao, with the advantages of accuracy (recoveries: 81.2 %-103.6 %, RSDs≤9.2 %), speed (CPF-BC-MIPs-DSPE time: 75 min; HPLC-PDA time: 12 min), selectivity (imprinting factor: 4.24), and economy (50 mg of adsorbent synthesized using cheap straw and 1 mL of solvents), which partially conform to the current advanced principle of "3S+2A" in analytical chemistry. The BC-MIPs granules shown potential for CPF preconcentration in complicated samples and were effective carriers for the selective adsorption of CPF.
Collapse
Affiliation(s)
- Xinwei Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Qingdao Engineering Vocational College, Qingdao 266000, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
5
|
Farajzadeh MA, Mohammad Mehri S, Afshar Mogaddam MR. Application of core-shell magnetic metal-organic framework in developing dispersive micro solid phase extraction combined with dispersive liquid-liquid microextraction for the extraction and enrichment of some pesticides in orange blossom, Aloysia Citrodora, and fennel herbal infusions. J Chromatogr A 2025; 1741:465608. [PMID: 39721402 DOI: 10.1016/j.chroma.2024.465608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@Fe3O4) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method. To validate the successful synthesis of the adsorbent, a range of analytical techniques were utilized including vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray, and Brunauer-Emmett-Teller analyses. A vortex agitation and an external magnetic field were used during the extraction process to aid the analytes' desorption and adsorbent separation, respectively. Also, a mixture of iso-propanol and deionized water was used to desorb the analytes from the adsorbent surface. The resulting supernatant containing the desorbed pesticides was mixed with 1,2-dibromoethane as the extraction solvent and then injected into an aqueous medium. After centrifugation, 1 μL of the sedimented phase was introduced into the gas chromatograph system equipped with a flame ionization detector. The reliability of the proposed methodology was confirmed by obtaining low relative standard deviations (1.0-8.5 %), acceptable extraction recoveries (39-93 %), substantial enrichment factors (195-475), calibration curve linearity (r2=0.993-0.998), and significantly low limits of quantification (0.34-3.0 μg L-1) and detection (1.1-9.9 μg L-1). Absence of matrix effects with relative recovery values of 80-120 % for real samples, minimal use of the adsorbent and extraction solvent, a reduction in extraction time due to the elimination of two centrifugation steps (facilitated by an external magnetic field), and the use of environmentally friendly solvents collectively highlight the advantages and significant values of this approach.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Sina Mohammad Mehri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Xiao Y, Wang H, Gao C, Ye X, Lai Y, Chen M, Ren X. Fluorescence sensing techniques for quality evaluation of traditional Chinese medicines: a review. J Mater Chem B 2024; 12:12412-12436. [PMID: 39530288 DOI: 10.1039/d4tb01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Traditional Chinese medicines (TCMs) are highly valued and widely used worldwide. However, their complex compositions and various preparation processes have brought considerable challenges to the quality evaluation of Chinese medicines. The traditional methods for TCM quality evaluation suffer from the problems of cumbersome sample preparation, a long detection time, low sensitivity, etc. A more efficient and accurate evaluation method is urgently needed to ensure the stability and reliability of the quality of TCMs. As an emerging analytical technology, a fluorescent probe has the advantages of high sensitivity, high selectivity, easy operation, etc. It is capable of generating a specific fluorescent signal response to specific components in traditional Chinese medicines, realizing rapid and accurate detection of target components, which effectively solves the many difficulties of traditional methods. The purpose of this paper is to discuss the application of fluorescent probes in the quality evaluation of traditional Chinese medicines and the challenges they face. By introducing the principles, advantages and specific application cases of fluorescent probe technology in the quality evaluation of traditional Chinese medicines, we hope to provide new and efficient analytical ideas for the quality evaluation of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yanyu Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenxia Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinyi Ye
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuting Lai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meiling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Li T, Zhou Y, Fu X, Yang L, Liu H, Zhou X, Liu L, Wu Z, Yang S. Identification of novel 4-substituted 7H-pyrrolo[2,3-d]pyrimidine derivatives as new FtsZ inhibitors: Bioactivity evaluation and computational simulation. Bioorg Chem 2024; 150:107534. [PMID: 38896935 DOI: 10.1016/j.bioorg.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 μM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Linli Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Zhang X, Gao Y, Zhao C, Wang L, Wen S, Shi B, Zhu L, Wang J, Kim YM, Wang J. Rhizosphere bacteria G-H27 significantly promoted the degradation of chlorpyrifos and fosthiazate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169838. [PMID: 38232838 DOI: 10.1016/j.scitotenv.2023.169838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Microbial remediation of polluted environments is the most promising and significant research direction in the field of bioremediation. In this study, chlorpyrifos and fosthiazate were selected as representative organophosphorus pesticides, wheat was the tested plant, and fluorescently labeled degrading Bacillus cereus G-H27 were the film-forming bacteria. Exogenous strengthening technology was used to establish degrading bacterial biofilms on the root surface of wheat. The influence of root surface-degrading bacterial biofilms on the enrichment of chlorpyrifos and fosthiazate in wheat was comprehensively evaluated. First, the fluorescently-labeled degrading bacteria G-H27 was constructed, and its film-forming ability was investigated. Second, the growth- promoting characteristics and degradation ability of the bacteria G-H27 were investigated. Finally, the degradation effect of the root surface-degrading bacterial biofilm on chlorpyrifos and fosthiazate was determined. The above research provides an important material basis and method for the bioremediation of pesticide-contaminated soil.
Collapse
Affiliation(s)
- Xuzhi Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yuanfei Gao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Changyu Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | - Shengfang Wen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Baihui Shi
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
9
|
Kaur H, Rode S, Lonare S, Demiwal P, Narasimhappa P, Arun E, Kumar R, Das J, Ramamurthy PC, Sircar D, Sharma AK. Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105844. [PMID: 38582571 DOI: 10.1016/j.pestbp.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 μM, 0.15 μM, and 0.025 μM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Etisha Arun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
10
|
Lotfalinezhad E, Taheri A, Razavi SE, Sanei SJ. Preparation and assessment of alginate-microencapsulated Trichoderma harzianum for controlling Sclerotinia sclerotiorum and Rhizoctonia solani on tomato. Int J Biol Macromol 2024; 259:129278. [PMID: 38211905 DOI: 10.1016/j.ijbiomac.2024.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
This study aimed to develop microencapsulation technology using alginate to improve the viability and performance of Trichoderma harzianum. The method of ionic gelation was used to prepare the microparticles, and the efficiency of encapsulation was estimated to be 99%. The average size of the prepared microspheres was 2600 μm (wet) and 1000 μm (dry). Scanning electron microscopy revealed that the microspheres were approximately spherical. Fourier transform infrared spectrophotometer analysis indicated an interaction between T. harzianum and the microspheres. The results of temperature resistance and light stability against ultraviolet radiation emphasized the positive impact of microencapsulation in improving the viability and resistance of T. harzianum compared to the non-microencapsulated state. The disease percentage of Rhizoctonia solani and Sclerotinia sclerotiorum in plants treated with microencapsulated T. harzianum microcapsules was 8.88 % and 20 % respectively, but in the control group was 73.33 % (p ≤ 0.05).
Collapse
Affiliation(s)
- Elahe Lotfalinezhad
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Esmaeil Razavi
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Javad Sanei
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
12
|
Hernández-Caracheo K, Guerrero-López L, Rodríguez-Sánchez B, Rodríguez-Núñez E, Rodríguez-Chávez JL, Delgado-Lamas G, Campos-Guillén J, Amaro-Reyes A, Monroy-Dosta MDC, Zavala-Gómez CE, Chaparro-Sánchez R, Rodríguez-Morales JA, Pérez-Moreno V, Ramos-López MA. Evaluation of the Insecticidal Potential of Heterotheca inuloides Acetonic and Methanolic Extracts against Spodoptera frugiperda and Their Ecotoxicological Effect on Poecilia reticulata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3555. [PMID: 37896019 PMCID: PMC10610112 DOI: 10.3390/plants12203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
For the management of Spodoptera frugiperda, botanical extracts have been used to reduce the environmental impacts of synthetic chemical pesticides. In the present investigation, the insecticidal activity of the acetonic and methanolic extracts of Heterotheca inuloides (Asteraceae) and of the main compound 7-hydroxy-3,4-dihydrocadalene on this pest as well as its ecotoxicological effect on Poecilia reticulata were evaluated. A greater insecticidal response was obtained from the acetonic extracts than from the methanolic extracts, with LC50 values of 730.4 ppm and 711.7 ppm for samples 1 and 2, respectively. Similarly, there was a lethal effect on 50% of the P. reticulata population at low concentrations in the acetonic extract compared to the methanolic extract. The sesquiterpene 7-hydroxy-3,4-dihydrocadalene has greater insecticidal activity by presenting an LC50 of 44.36 ppm; however, it is classified as moderately toxic for guppy fish.
Collapse
Affiliation(s)
- Karla Hernández-Caracheo
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Lina Guerrero-López
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Benjamín Rodríguez-Sánchez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Enrique Rodríguez-Núñez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - José Luis Rodríguez-Chávez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
- Ceickor University Center, Bernal Highway, Access to Ezequiel Montes Montes Km. 3, Los Benitos, CP., Queretaro 76299, Mexico
| | | | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Aldo Amaro-Reyes
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - María del Carmen Monroy-Dosta
- Man and His Environment Department, Metropolitan Autonomous University Xochimilco Unit, Calzada del Hueso 1100, Coyoacan, Mexico City 04960, Mexico
| | - Carlos Eduardo Zavala-Gómez
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Ricardo Chaparro-Sánchez
- Faculty of Informatics, Autonomous University of Queretaro, Av. de las Ciencias s/n, Juriquilla 76101, Mexico
| | | | - Víctor Pérez-Moreno
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| | - Miguel Angel Ramos-López
- Faculty of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico (L.G.-L.); (A.A.-R.); (C.E.Z.-G.); (V.P.-M.)
| |
Collapse
|
13
|
Rajan S, Parween M, Raju NJ. Pesticides in the hydrogeo-environment: a review of contaminant prevalence, source and mobilisation in India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5481-5513. [PMID: 37183216 PMCID: PMC10183316 DOI: 10.1007/s10653-023-01608-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Chemical pesticides in the hydrogeological system are a global concern as they pose a severe threat to humans and other organisms. In agriculture, around 4.12 million tonnes of pesticides were used globally in 2018, which is 50% more than in the 1990s. Various pesticides detected in the hydrogeological system of India since the 1990s have been documented and reviewed to understand the prevalence, source, history and degradation pathways. This review contributes to a better understanding of existing pesticide pollution and the state of hydrogeological resource deterioration. Small to excess levels of pesticide residues were detected in groundwater, surface water, soil, and sediments. Pesticides that were most commonly and predominantly found in the hydrogeological system were HCHs, DDTs, endosulfan, heptachlor, drins (aldrin, dieldrin, endrin), chlordane etc. β and γ-HCH isomers among HCHs, whereas p,p'-DDT and p,p'-DDE among the DDTs were detected most prevalently. In many regions, pesticide residue levels in water have exceeded the maximum residue limits of WHO and BIS, while those in soils and sediments have exceeded the threshold effect level and probable effect level. Higher pesticide residues were detected in the water resources of rural agricultural areas compared to peri-urban or urban areas. A positive correlation of pesticide residues between water resources and soil has been observed in some regions, suggesting a similar contamination source. Diagnostic ratios of pesticides reveal their source, history and degradation pathways. Diagnostic ratios observed in various studies conducted in India suggest historical as well as recent use of banned pesticides. Strengthening current policies and regulations, monitoring pesticide use, changes in pesticide application practices, awareness among farmers, and the use of prominent removal techniques are necessary to tackle pesticide contamination in India.
Collapse
Affiliation(s)
- Shijin Rajan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Musarrat Parween
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
15
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
16
|
Lu J, Shan X, Wu Q, Zhao Y, Li C, Li H, Yang S, Tian L. ZnO-Fe2O3 based electrochemiluminescence sensor for sensitive detection of malathion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 2022; 222:1589-1604. [DOI: 10.1016/j.ijbiomac.2022.09.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
18
|
Wang P, Li X, Sun Y, Wang L, Xu Y, Li G. Rapid and reliable detection and quantification of organophosphorus pesticides using SERS combined with dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4680-4689. [PMID: 36349883 DOI: 10.1039/d2ay01321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid and reliable detection and quantification of pesticide residues in complex matrices by surface enhanced Raman spectroscopy (SERS) remain challenging due to the low level of target molecules and the interference of nontarget components. In this study, SERS was combined with dispersive liquid-liquid microextraction (DLLME) to develop a rapid and reliable method for the detection of organophosphorus pesticides (OPPs). In this method, DLLME was used to extract and enrich two representative OPPs (triazophos and parathion-methyl) from a liquid sample, and a portable Raman spectrometer was used to analyze the separated sediment using homemade gold nanoparticles colloids as enhancing substrates. The results showed that the developed method displayed good sensitivity and stability for the detection and quantification of triazophos and parathion-methyl with R2 ≥ 0.98. The calculated limits of detection (LODs) in the simultaneous detection of triazophos and parathion-methyl were 2.17 × 10-9 M (0.679 ppb) and 2.28 × 10-8 M (5.998 ppb), and the calculated limits of quantification (LOQs) were 7.23 × 10-9 M (2.26 ppb) and 7.62 × 10-8 M (19.098 ppb), respectively. Furthermore, the developed SERS method was successfully applied to the detection of triazophos and parathion-methyl in apple juice with recoveries between 78.07% and 110.87% and relative standard deviations (RSDs) ≤ 2.06%. Therefore, the developed DLLME facilitated liquid SERS method exhibited good sensitivity and stability for the rapid detection and quantification of OPPs and had the potential to be applied to the rapid detection of OPPs in complex matrices.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Xiang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Yan Sun
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Li Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Ying Xu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
19
|
P S, Thasale R, Kumar D, Mehta TG, Limbachiya R. Human health risk assessment of pesticide residues in vegetable and fruit samples in Gujarat State, India. Heliyon 2022; 8:e10876. [PMID: 36217455 PMCID: PMC9547241 DOI: 10.1016/j.heliyon.2022.e10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The present study was initiated with the purpose to evaluate possible health risks associated with pesticide residues through consumption of vegetables and fruits by general population of Gujarat, India. A total of 1075 samples comprising of twelve different varieties of commonly consumed food commodities were collected from twenty-five divergent locations in Gujarat. The collected samples were extracted using QuEChERS method and analyzed for the presence of organophosphorus (OPs), organochlorine (OCs) and synthetic pyrethroids (SPs) pesticides using UHPLC-HR/MS, GC-μECD and GC-MS/SIM. The results indicated that 2.3% of vegetable and fruit samples showed the presence of pesticide residues exceeding maximum residue limits (MRLs). The results suggested that, detected residue levels in samples were within safe limits and their consumption will not pose any significant health risk to human. The outcomes present significant information regarding the status of vegetable and fruit contamination and pointed out the prerequisite for further studies with reference to monitoring of pesticides and other toxic contaminants in different samples for assessing cumulative health risk.
Collapse
Affiliation(s)
- Sivaperumal P
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India,Corresponding author.
| | - Rupal Thasale
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| | - Dhirendra Kumar
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India,ICMR- National Animal Resource Facility for Biomedical Research, Hyderabad- 500007, India
| | - Tejal G. Mehta
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| | - Riddhi Limbachiya
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| |
Collapse
|
20
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
21
|
Luo M, Chen L, Wei J, Cui X, Cheng Z, Wang T, Chao I, Zhao Y, Gao H, Li P. A two-step strategy for simultaneous dual-mode detection of methyl-paraoxon and Ni (Ⅱ). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113668. [PMID: 35623151 DOI: 10.1016/j.ecoenv.2022.113668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.
Collapse
Affiliation(s)
- Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinchao Wei
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Xiping Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Incheng Chao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yunyang Zhao
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
22
|
Yan L, Bu J, Zhou Y, Zhao G, Zha J. Identification of toxicity factors and causal analysis of toxicity in surface sediments from Liaohe river basin, Northeast China using an effect guidance strategy. ENVIRONMENTAL RESEARCH 2022; 207:112153. [PMID: 34619126 DOI: 10.1016/j.envres.2021.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Sediments play a pivotal role in maintaining the aquatic ecological status of rivers. However, the determination of the key toxicants that consider the combined effects of all sediment-related contaminants are still challenging and necessary for an appropriate sediment risk assessment. The effects of sediments on aquatic organisms have been reported in Liaohe River, but their key toxicity factors are not well known. To determine the key toxicity factors, twenty-six surface sediment samples from Liaohe River tributaries in Northeast China were collected. Acute toxicity test of midge larvae results showed that 6 of 26 tributaries had obvious toxic effects, with survival rates of 37%-57% (p < 0.05). The masking test showed that the main pollutants in the surface sediments of T7 and T16 were metals, that of T8 was an organic pollutant, those of T19 and T26 were organic pollutants and ammonia, and those of T17 were heavy metal and ammonia. Chemical analysis showed that the relatively high concentrations of ammonia were only presented in surface sediments of T17, T19, and T26, with PTU of 1.5, 1.2 and 1.1, respectively, whereas heavy metals were markedly high in surface sediments from T7 and T16, with PTU of 0.92 and 0.61, respectively. Interestingly, the observed toxicity in surface sediments agreed with the toxicity predicted by chemical analysis Moreover, the significant correlation between the survival and volume ratio of the sediment and overlying water confirmed ammonia nitrogen was key toxicity factor in T17, T19, and T26, whereas Cu was the key toxicity factor in T7 that cause the biological toxicity. In conclusion, the major toxic factors of ammonia and copper in the sediments were identified. Moreover, our study suggested that effect guidance strategy was an effective method for sediment quality assessment.
Collapse
Affiliation(s)
- Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihong Bu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiqi Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Tan X, Xie W, Jia Q, Zhao F, Wu W, Yang Q, Hou X. An aptamer and flower-shaped AuPtRh nanoenzyme-based colorimetric biosensor for the detection of profenofos. Analyst 2022; 147:4105-4115. [DOI: 10.1039/d2an00668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO grafted SSM was prepared to load the freely mobile capture probe and novel flower-shaped AuPtRh nanospheres were synthesized to be a signal probe, which were constructed to form a colorimetric biosensor for the detection of profenofos.
Collapse
Affiliation(s)
- Xin Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Qi Jia
- Qingdao Science and Technology Service Centre, Qingdao, Shangdong Province 266000, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| |
Collapse
|
24
|
Azizi A, Shahhoseini F, Langille EA, Akhoondi R, Bottaro CS. Micro-gel thin film molecularly imprinted polymer coating for extraction of organophosphorus pesticides from water and beverage samples. Anal Chim Acta 2021; 1187:339135. [PMID: 34753563 DOI: 10.1016/j.aca.2021.339135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Molecularly imprinted polymers (MIPs) have become an important class of materials for selective and efficient adsorption of target analytes. Despite versatility of MIPs for fabrication in numerous formats, these materials have been primarily reported as solid phase extraction packing materials. An effective thin film MIP prepared on stainless steel substrate is reported here for high throughput enrichment of organophosphorus pesticides (OPPs) from water and beverage samples followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The key factors controlling performance as well as best practices for optimized fabrication of thin film MIPs are presented. A pseudo-phase diagram is introduced to evaluate and predict the effect of the ratio of porogen (solvent, 1-octanol) volume to relative crosslinker mass on the desired polymer features (i.e., porosity, surface area, capacity, and selectivity). At low porogen ratios, a macroporous polymer with insignificant selectivity is formed, whereas at high porogen ratios a micro-gel polymer with superior selectivity towards targets is obtained. The porosity and morphology determined with nitrogen adsorption and scanning electron microscopy were attributed to specific regions in the pseudo-phase diagram. Other factors influencing selectivity and stability of the polymer, such as type of the template and its ratios with monomer (methacrylic acid) and crosslinker (ethylene glycol dimethacrylate) were optimized. The prepared thin film MIPs were characterized using adsorption isotherms and adsorption kinetics, and evaluated for matrix effects (high humic acid content) and cross-reactivity in presence of other pesticides and pharmaceuticals. The optimized method provided limits of quantitation (LOQs) ranged from 0.002 to 0.02 ng mL-1 in water and from 0.095 to 0.48 ng g-1 in apple juice. Regarding inter-device variability (CV∼10% without normalization), excellent linearity (R2 > 0.99), satisfactory accuracies (90-110%) and precisions (<15%) were obtained.
Collapse
Affiliation(s)
- Ali Azizi
- Department of Chemistry, Memorial University of Newfoundland, Canada
| | | | - Evan A Langille
- Department of Chemistry, Memorial University of Newfoundland, Canada
| | - Reza Akhoondi
- Department of Chemistry, Memorial University of Newfoundland, Canada
| | | |
Collapse
|
25
|
Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal-organic framework nanosensor for environment assessment and food safety. Food Chem 2021; 370:131034. [PMID: 34500291 DOI: 10.1016/j.foodchem.2021.131034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Developing a rapid and accurate strategy of sensing Dufulin is a vital challenge for risk assessment and food crops along with its spreading usage. Herein a dye-encapsulated azoterephthalate metal-organic framework (MOF)-based fluorescent sensing system was designed for Dufulin analysis by acid phosphatase (ACP) enzyme-controlled collapse of MOF framework and subsequent release of the encapsulated dye. The fluorescence intensity of the DMOF/AAP/ACP system was negatively related to the dosage of Dufulin (0-5 μg mL-1) with detection limit of 2.96 ng mL-1. The sensing system able to rapidly and sensitively sense the activity of ACP and Dufulin, and was also applicable for assessment of the real samples including paddy water and soil, polished rice and cucumber. Accordingly, this study illustrated the feasibility and the potential of MOF-derived nanosensors for improving pesticide analysis and opening up the design of the enzyme-based probes for pesticide sensing in environmental assessment and food safety.
Collapse
|
26
|
Yang G, Lv L, Di S, Li X, Weng H, Wang X, Wang Y. Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5407-5416. [PMID: 32965645 DOI: 10.1007/s11356-020-10883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L-1, from 0.016 to 6.38 mg a.i. L-1, and from 0.39 to 1.08 mg a.i. L-1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L-1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L-1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam-tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| |
Collapse
|
27
|
Jouni F, Brouchoud C, Capowiez Y, Sanchez-Hernandez JC, Rault M. Elucidating pesticide sensitivity of two endogeic earthworm species through the interplay between esterases and glutathione S-transferases. CHEMOSPHERE 2021; 262:127724. [PMID: 32805653 DOI: 10.1016/j.chemosphere.2020.127724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Earthworms are common organisms in soil toxicity-testing framework, and endogeic species are currently recommended due to their ecological role in agroecosystem. However, little is known on their pesticide metabolic capacities. We firstly compared the baseline activity of B-esterases and glutathione-S-transferase in Allolobophora chlorotica and Aporrectodea caliginosa. Secondly, vulnerability of these species to pesticide exposure was assessed by in vitro trials using the organophosphate (OP) chlorpyrifos-ethyl-oxon (CPOx) and ethyl-paraoxon (POx), and by short-term (7 days) in vivo metabolic responses in soil contaminated with pesticides. Among B-esterases, acetylcholinesterase (AChE) activity was abundant in the microsomal fraction (80% and 70% of total activity for A. caliginosa and A. chlorotica, respectively). Carboxylesterase (CbE) activities were measured using three substrates to examine species differences in isoenzyme and sensitivity to both in vitro and in vivo exposure. CbEs were mainly found in the cytosolic fraction (80% and 60% for A. caliginosa and A. chlorotica respectively). GST was exclusively found in the soluble fraction for both species. Both OPs inhibited B-esterases in a concentration-dependent manner. In vitro trials revealed a pesticide-specific response, being A. chlorotica AChE more sensitive to CPOx compared to POx. CbE activity was inhibited at the same extent in both species. The 7-d exposure showed A. chlorotica less sensitive to both OPs, which contrasted with outcomes from in vitro experiments. This non-related functional between both approaches for assessing pesticide toxicity suggests that other mechanisms linked with in vivo OP bioactivation and excretion could have a significant role in the OP toxicity in endogeic earthworms.
Collapse
Affiliation(s)
- Fatina Jouni
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Corinne Brouchoud
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Yvan Capowiez
- INRAE, UMR 1114 EMMAH Domaine Saint Paul, 84914, Avignon Cedex 09, France
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III S/n, 45071, Toledo, Spain
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France.
| |
Collapse
|
28
|
Yang N, Zhou X, Yu D, Jiao S, Han X, Zhang S, Yin H, Mao H. Pesticide residues identification by impedance time‐sequence spectrum of enzyme inhibition on multilayer paper‐based microfluidic chip. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Xu Zhou
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Defei Yu
- One‐Lin Tea Professional Cooperative of Dantu District Zhenjiang China
| | - Siying Jiao
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Xue Han
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Suliang Zhang
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Hang Yin
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Hanping Mao
- School of Agricultural Equipment Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
29
|
Combination of dispersive solid phase extraction with solidification organic drop–dispersive liquid–liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples. J Chromatogr A 2020; 1627:461390. [DOI: 10.1016/j.chroma.2020.461390] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
|
30
|
A simple enzymeless approach for Paraoxon determination using imidazole-functionalized carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111140. [PMID: 32806307 DOI: 10.1016/j.msec.2020.111140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022]
Abstract
This work describes the application of a glassy carbon electrode (GCE) modified with imidazole functionalized carbon nanotubes (CNT-H-IMZ) for Paraoxon (PX) determination in samples of commercial, fresh and 100% orange juice. Homemade multi-walled CNTs were treated according to the Hummers procedure to oxidize graphite and later chemically functionalized with imidazole groups. Modified electrodes with CNT-H-IMZ presented a high peak current of PX reduction and an electrocatalytic effect in comparison to the other electrodes. This behavior was associated with the synergistic contribution of IMZ and CNT that increases the electrochemical activity of PX. Repeatability and reproducibility studies showed that the relative peak current values did not show significant differences between them, less than 10%, and it was possible to define that the diffusional process is the mechanism that limits the electrode mass transport. After the optimization of parameters inherent to the methodology and the voltammetric technique, the proposed device presented a linear region of 1.0 to 16.0 μM-1 (R2 = 0.99), presenting LOD and LOQ as 120 and 400 nM-1, respectively. The method proposed was successfully applied to PX determination in spiked samples.
Collapse
|
31
|
Manafi Khoshmanesh S, Hamishehkar H, Razmi H. Trace analysis of organophosphorus pesticide residues in fruit juices and vegetables by an electrochemically fabricated solid-phase microextraction fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3268-3276. [PMID: 32930190 DOI: 10.1039/d0ay00626b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a solid-phase microextraction pencil lead fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite (GG/GO/PANI) was fabricated by an in situ electrochemical technique for the trace analysis of organophosphorus pesticide residues in packed grape and apple juice and also fresh tomato samples. The effects of various parameters, including the type of desorption solvent, adsorption time, desorption time, pH, salt addition, and stirring rate, on the extraction efficiency of the studied pesticides were investigated and accordingly, these parameters were optimized. The proposed fiber demonstrated desirable linear ranges (0.01-300 μg L-1) with good correlation coefficients (R2 ≥ 0.996) as well as low limits of detection (0.003-0.03 μg L-1) for the studied pesticides. The relative standard deviations (n = 5) for the extraction of 50 μg L-1 of each analyte were less than 7 and 11.5% for inter and intra-day precisions, respectively. This fast, facile, and repeatable electrochemical fabrication method produced a porous and homogeneous coating. The proposed fiber demonstrated good extraction efficiency, high stability, and long life-time despite being low cost. The successful application of the proposed fiber for the trace determination of pesticides in complex food matrices was proven by the satisfactory relative recoveries of 80.7-116.5%.
Collapse
Affiliation(s)
- Sara Manafi Khoshmanesh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
32
|
|
33
|
Maruyama CR, Bilesky-José N, de Lima R, Fraceto LF. Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Front Bioeng Biotechnol 2020; 8:225. [PMID: 32269991 PMCID: PMC7110528 DOI: 10.3389/fbioe.2020.00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Trichoderma harzianum is a biological control agent used against phytopathogens and biostimulation in agriculture. However, its efficacy can be affected by biotic and abiotic factors, and microencapsulation has been used to maximize the efficacy. The objective was to develop polymeric microparticles to encapsulate T. harzianum, to perform physicochemical characterization to evaluate its stability, to evaluate effects on the soil microbiota, antifungal activity in vitro and enzymatic activity. Size distribution of wet and dry microparticles was 2000 and 800 μm, respectively. Scanning electron microscopy showed spherical morphology and encapsulation of T. harzianum. Photostability assays showed that encapsulation protected the fungus against ultraviolet radiation. The evaluation of the microbiota showed that the proportion of denitrifying bacteria increased when compared to the control. The T. harzianum encapsulation showed an improvement in the chitinolytic and cellulosic activity. In vitro tests showed that encapsulated fungus were able to provide a greater control of S. sclerotiorum.
Collapse
Affiliation(s)
- Cintia Rodrigues Maruyama
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, Brazil.,Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Natália Bilesky-José
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- Environmental Nanotechnology Laboratory, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Sorocaba, Brazil
| |
Collapse
|
34
|
Bilal M, Rasheed T, Nabeel F, Iqbal HMN, Zhao Y. Hazardous contaminants in the environment and their laccase-assisted degradation - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:253-264. [PMID: 30634118 DOI: 10.1016/j.jenvman.2019.01.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/05/2023]
Abstract
In recent years, owing to the serious ecological risks and human health-related adverse effects, the wide occurrence of hazardous contaminants along with their potential to enter the environment have gained great public concerns. In this context, significant actions are urgently required to tackle the ignorance and inefficient monitoring/removal of emerging/(re)-emerging contaminants (ECs) in the environment from different routes of concerns, i.e., industrial waste, pharmaceutical, personal care products (PCPs), toxic effluents, etc. Laccases are multinuclear copper-containing oxidoreductases and can carry out one electron oxidation of a broad spectrum of environmentally related contaminants. In biotechnology, this group of versatile enzymes is known as a green catalyst/green tool with enormous potentialities to tackle ECs of high concern. In this review, we endeavored to present up-to-date literature concerning the potential use of immobilized laccases for the degradation and remediation of various types of environmental pollutants present in the environment. Both, pristine and immobilized, laccases have shown great capacity to oxidative degradation and mineralization of endocrine disrupting chemicals (EDs) in batch treatment processes as well as in large-scale continuous reactors. These properties make laccase as particularly attractive biocatalysts in environmental remediation processes, and their use might be advantageous over the conventional treatments. This review summarizes the most significant recent advances in the use of laccases and their future perspectives in environmental biotechnology.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faran Nabeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
35
|
Jaiswal S, Singh DK, Shukla P. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol 2019; 10:87. [PMID: 30853940 PMCID: PMC6396717 DOI: 10.3389/fmicb.2019.00087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
36
|
Wu P, Zhang Y, Chen Z, Wang Y, Zhu F, Cao B, Wu Y, Li N. The organophosphorus pesticides in soil was degradated by Rhodobacter sphaeroides after wastewater treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Carusi A, Davies MR, De Grandis G, Escher BI, Hodges G, Leung KMY, Whelan M, Willett C, Ankley GT. Harvesting the promise of AOPs: An assessment and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1542-1556. [PMID: 30045572 PMCID: PMC5888775 DOI: 10.1016/j.scitotenv.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 05/22/2023]
Abstract
The Adverse Outcome Pathway (AOP) concept is a knowledge assembly and communication tool to facilitate the transparent translation of mechanistic information into outcomes meaningful to the regulatory assessment of chemicals. The AOP framework and associated knowledgebases (KBs) have received significant attention and use in the regulatory toxicology community. However, it is increasingly apparent that the potential stakeholder community for the AOP concept and AOP KBs is broader than scientists and regulators directly involved in chemical safety assessment. In this paper we identify and describe those stakeholders who currently-or in the future-could benefit from the application of the AOP framework and knowledge to specific problems. We also summarize the challenges faced in implementing pathway-based approaches such as the AOP framework in biological sciences, and provide a series of recommendations to meet critical needs to ensure further progression of the framework as a useful, sustainable and dependable tool supporting assessments of both human health and the environment. Although the AOP concept has the potential to significantly impact the organization and interpretation of biological information in a variety of disciplines/applications, this promise can only be fully realized through the active engagement of, and input from multiple stakeholders, requiring multi-pronged substantive long-term planning and strategies.
Collapse
Affiliation(s)
- Annamaria Carusi
- Medical Humanities Sheffield, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | - Giovanni De Grandis
- Science, Technology, Engineering and Public Policy (STEaPP), Boston House, 36-37 Fitzroy Square, London W1T 6EY, UK.
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Catherine Willett
- The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD, 20879, USA.
| | - Gerald T Ankley
- US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA.
| |
Collapse
|