1
|
Nookongbut P, Thiravetyan P, Salsabila S, Widiana A, Krobthong S, Yingchutrakul Y, Treesubsuntorn C. Application of Acinetobacter indicus to promote cigarette smoke particulate matter phytoremediation: removal efficiency and plant-microbe interactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52352-52370. [PMID: 39145908 DOI: 10.1007/s11356-024-34658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Particulate matter (PM) is one of the most hazardous atmospheric pollutants. Several plant species show high potential to reduce air pollutants and are widely used as green belts to provide clean outdoor spaces for human well-being. However, high PM concentrations cause physiological changes and stress in plants. In this study, 11 species of Thai native perennial plants were exposed to PM generated from tobacco smoke. Wrightia religiosa (Teijsm. & Binn.) Benth. ex Kurz, Bauhinia purpurea DC. ex Walp. and Tectona grandis L.f. reduced PM effectively (which is in the typical range of 43.95 to 52.97%) compared to other plant species. In addition, the responses of perennial plants under PM stress at the proteomic level were also evaluated. Proteomic analysis of these three plant species showed that plants respond negatively to high PM concentrations, such as reducing several photosynthetic-related proteins and increasing plant stress response proteins. To improve PM phytoremediation efficiency and reduce plant stress from PM, perennial plant-microbe interactions were investigated. W. religiosa was inoculated with Acinetobacter indicus PS1, and high biosurfactant-producing strains clearly showed a higher PM removal efficiency than non-inoculated plants (9.48, 9.5 and 12.6% for PM1.0, PM2.5 and PM10, respectively). Inoculating W. religiosa with A. indicus PS1 maintained chlorophyll a and b concentrations. Moreover, the malondialdehyde (MDA) concentration of W. religiosa inoculated with A. indicus PS1 was lower than that of non-inoculated W. religiosa. The leaf wax content (µg/cm2) and biosurfactant (µg/cm2) of W. religiosa inoculated with A. indicus PS1 were also higher than those of non-inoculated W. religiosa. This study clearly showed that inoculating plants with A. indicus PS1 can help plants remediate PM and improve their PM stress response.
Collapse
Affiliation(s)
- Phitthaya Nookongbut
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Salma Salsabila
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Ana Widiana
- Department of Biology, Faculty of Science and Technology, State Islamic University Sunan Gunung Djati Bandung, Bandung City, West Java, 40614, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
2
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA). Molecules 2024; 29:3113. [PMID: 38999063 PMCID: PMC11243326 DOI: 10.3390/molecules29133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.)
| | | | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.)
| |
Collapse
|
3
|
Pongkua W, Sriprapat W, Thiravetyan P, Treesubsuntorn C. Active living wall for particulate matter and VOC remediation: potential and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36180-36191. [PMID: 37428325 DOI: 10.1007/s11356-023-28480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Particulate matters (PM) and volatile organic compounds (VOCs) are the sources of toxic substances that hurt human health and can cause human carcinogens. An active living wall was applied to reduce PM and VOC contamination, while Sansevieria trifasciata cv. Hahnii, a high-performance plant for VOC removal, was selected to grow on the developing wall and used to treat PM and VOCs. The active living wall operating in a 24 m3 testing chamber showed the ability to remediate more than 90% PM within 12 h. The VOC removal can be approximately 25-80% depending on each compound. In addition, the suitable flow velocity of the living wall was also investigated. The flow rate of 1.7 m3 h-1 in front of the living wall was found as the best inlet flow velocity for the developed active living wall. The suitable condition for PM and VOC removal in the active living wall application on the real side was presented in this study. The result confirmed that the application of an active living wall for PM phytoremediation can be an alternative effective technology.
Collapse
Affiliation(s)
- Waleeporn Pongkua
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Wararat Sriprapat
- Biotechnology Research and Development Office, Department of Agriculture, Pathum Thani, 12110, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
4
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
5
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Liu C, Li B, Dong Y, Lin H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128829. [PMID: 35429753 DOI: 10.1016/j.jhazmat.2022.128829] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator P. acinosa and its endophyte B. cereus, and evaluated the variation of rhizosphere/endosphere microecology characteristics. The result showed that endophyte PE31, which could successfully colonize on P. acinosa root, increased plant Cd uptake by 42.90% and 28.85% in low and high Cd contaminated soils by promotion of plant biomass and Cd concentration in plant tissues. The improved phytoremediation may attribute to the endophyte inoculation, which significantly improved the bioavailable heavy metal (HM) percentage, nutrient cycling related enzyme activities and nutrient contents including available potassium, phosphorus and organic matter. Additionally, the relative abundance beneficial bacteria Bacillus (significantly increased by 81.23% and 34.03% in the endosphere, and by 4.86% and 8.54% in rhizosphere in low and high Cd contaminated soils) and Lysobacter, showed positive and close correlation with plant growth and HM accumulation. These results indicated that endophyte inoculation could reshape rhizosphere and endosphere microecology characteristics, which enhanced the potential for phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
7
|
Cai XY, Xu M, Zhu YX, Shi Y, Wang HW. Removal of Dinotefuran, Thiacloprid, and Imidaclothiz Neonicotinoids in Water Using a Novel Pseudomonas monteilii FC02-Duckweed ( Lemna aequinoctialis) Partnership. Front Microbiol 2022; 13:906026. [PMID: 35756054 PMCID: PMC9218866 DOI: 10.3389/fmicb.2022.906026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Neonicotinoids (NEOs) are the most widely used insecticides in the world and pose a serious threat to aquatic ecosystems. The combined use of free-floating aquatic plants and associated microorganisms has a tremendous potential for remediating water contaminated by pesticides. The aim of this study was to determine whether plant growth-promoting bacteria (PGPB) could enhance the phytoremediation efficiency of duckweed (Lemna aequinoctialis) in NEO-contaminated water. A total of 18 different bacteria were isolated from pesticide-stressed agricultural soil. One of the isolates, Pseudomonas monteilii FC02, exhibited an excellent ability to promote duckweed growth and was selected for the NEO removal experiment. The influence of strain FC02 inoculation on the accumulation of three typical NEOs (dinotefuran, thiacloprid, and imidaclothiz) in plant tissues, the removal efficiency in water, and plant growth parameters were evaluated during the 14-day experimental period. The results showed that strain FC02 inoculation significantly (p < 0.05) increased plant biomass production and NEO accumulation in plant tissues. The maximum NEO removal efficiencies were observed in the inoculated duckweed treatment after 14 days, with 92.23, 87.75, and 96.42% for dinotefuran, thiacloprid, and imidaclothiz, respectively. This study offers a novel view on the bioremediation of NEOs in aquatic environments by a PGPB–duckweed partnership.
Collapse
Affiliation(s)
- Xiao-Yu Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yu-Xuan Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Ying Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| |
Collapse
|
8
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenol A-A Dangerous Pollutant Distorting the Biological Properties of Soil. Int J Mol Sci 2021; 22:ijms222312753. [PMID: 34884560 PMCID: PMC8657726 DOI: 10.3390/ijms222312753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA–microorganism–plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon–Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg−1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and β-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.
Collapse
|
9
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Perna canaliculus as an Ecological Material in the Removal of o-Cresol Pollutants from Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6685. [PMID: 34772211 PMCID: PMC8588315 DOI: 10.3390/ma14216685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10727 Olsztyn, Poland; (M.Z.); (A.B.); (J.K.)
| | | | | |
Collapse
|
10
|
Zhang C, Li J, Wu X, Long Y, An H, Pan X, Li M, Dong F, Zheng Y. Rapid degradation of dimethomorph in polluted water and soil by Bacillus cereus WL08 immobilized on bamboo charcoal-sodium alginate. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122806. [PMID: 32497856 DOI: 10.1016/j.jhazmat.2020.122806] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The presence of hazardous dimethomorph residues in the environment poses a threat to birds, aquatic organisms and mammals. The novel pure strain Bacillus cereus WL08 responsible for detoxifying dimethomorph was isolated from dimethomorph-polluted soils. The immobilized system of WL08 was developed using bamboo charcoal (BC) and sodium alginate (SA). Immobilization significantly improved tolerance and stability of strain WL08. Under optimal conditions of pH 7.0 and 30 ℃, free and immobilized WL08 degraded 66.95% and 96.88% of 50 mg/L dimethomorph within 72 h, respectively. Moreover, strain WL08 effectively degraded dimethomorph to simple products which were lower toxic than dimethomorph. In a continuous reactor system, immobilized WL08 removed 85.61% of dimethomorph for 30 d at an influent concentration of 50-100 mg/L. In the field soil sprayed with 4.20 kg a.i./ha 80% dimethomorph water dispersible granule (WDG) was treated by immobilized WL08, the lower half-life (1.93 d) was observed, as compared with free WL08 (4.28 d) and natural dissipation (23.82 d). Immobilized WL08 can be considered as a tool for the removal of dimethomorph in water-soil systems. This study provides a feasible microbe-based strategy for bioremediation of dimethomorph-polluted environments.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, College of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiaohong Li
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Xiaomao Wu
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Youhua Long
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Huaming An
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ming Li
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
11
|
Dolphen R, Treesubsuntorn C, Santawee N, Setsungnoen A, Thiravetyan P. Modified coir pith with glucose syrup as a supporter in non-external nutrient supplied biofilter for benzene removal by Bacillus megaterium. ENVIRONMENTAL TECHNOLOGY 2020; 41:3607-3618. [PMID: 31081467 DOI: 10.1080/09593330.2019.1615994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Coir pith glucose syrup beads were used as a supporter in a biofilter system. The modified coir pith beads provided a carbon source and controlled humidity for microorganism growth for long-term operation without external nutrient supplementation. For the screening, Bacillus spp. were immobilised on coir pith beads and used for benzene bioremediation. The result showed that coir pith beads immobilised with Bacillus megaterium can remove on average 85-100% of the benzene (215-day operation). In addition, B. megaterium presented the ability to transform benzene to catechol. For an up-scaled application, a 25-L biofilter system was developed and tested in a closed 24-m3 container re-injected with 0.6 ppm benzene for 8 cycles. The system presented the ability to remove 100% of the benzene. This biofilter has the potential to be applied in a real benzene-contaminated site.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Thailand
| | - Nuttapong Santawee
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Thailand
| | - Arnon Setsungnoen
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Thailand
| |
Collapse
|
12
|
Parvari R, Ghorbani-Shahna F, Bahrami A, Azizian S, Assari MJ, Farhadian M. A novel core-shell structured α-Fe2O3/Cu/g-C3N4 nanocomposite for continuous photocatalytic removal of air ethylbenzene under visible light irradiation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Zaborowska M, Wyszkowska J, Borowik A. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci 2020; 21:ijms21103529. [PMID: 32429402 PMCID: PMC7278947 DOI: 10.3390/ijms21103529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)—analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.
Collapse
|
14
|
Zaborowska M, Wyszkowska J, Kucharski J. Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:20. [PMID: 31820108 DOI: 10.1007/s10661-019-7999-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The concept of the study resulted from the lack of accurate data on the toxicity of bisphenol F (BPF) coinciding with the need for immediate changes in the global economic policy eliminating the effects of environmental contamination with bisphenol A (BPA). The aim of the experiment was to determine the scale of the previously unstudied inhibitory effect of BPF on soil biochemical activity. To this end, in a soil subjected to increasing BPF pressure at three contamination levels of 0, 5, 50 and 500 mg BPF kg-1 DM, responses of soil enzymes, dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulphatase and β-glucosidase, were examined. Moreover, the study suggested a potentially effective way of biostimulating the soil by means of bioaugmentation with a consortium of four bacterial species: Pseudomonas umsongensis, Bacillus mycoides, Bacillus weihenstephanensis and Bacillus subtilis, and the following fungal species: Mucor circinelloides, Penicillium daleae, Penicillium chrysogenum and Aspergillus niger. It was found that BPF was a controversial BPA analogue due to the fact that it contributed to the inhibition of all the enzyme activities. Dehydrogenases proved to be the most sensitive to bisphenol contamination of the soil. The addition of 5 mg BPF kg-1 DM of soil triggered an escalation of the inhibition comparable to that for the other enzymes only after exposing them to the effects of 50 and 500 mg BPF kg-1 DM of soil. Moreover, BPF generated low activity of urease, acid phosphatase, alkaline phosphatase and β-glucosidase. Bacterial inoculum increased the activity of urease, β-glucosidase, catalase and alkaline phosphatase. Seventy-six percent of BPF underwent biodegradation during the 5 days of the study.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland.
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
15
|
Pheomphun P, Treesubsuntorn C, Jitareerat P, Thiravetyan P. Contribution of Bacillus cereus ERBP in ozone detoxification by Zamioculcas zamiifolia plants: Effect of ascorbate peroxidase, catalase and total flavonoid contents for ozone detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:805-812. [PMID: 30660974 DOI: 10.1016/j.ecoenv.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 05/18/2023]
Abstract
Eighteen plant species were screened for ozone (O3) removal in a continuous system. Zamioculcas zamiifolia had the highest O3 removal efficiency. To enhance O3 removal by Z. zamiifolia, adding a compatible endophytic bacteria, Bacillus cereus ERBP into Z. zamiifolia was studied. After operating under an O3 continuous system (150-250 ppb) at a flow rate of 0.3 L min-1 for 80 h, inoculated plants (74%) exhibited higher O3 removal efficiency than non-inoculated ones (53%). In addition, after O3 exposure (80 h), the population of B. cereus ERBP in inoculated plants was significantly increased in both shoots approximately 35 folds and leaves 13 folds compared to inoculated plants without O3 exposure. The results also showed that B. cereus ERBP had the ability to protect Z. zamiifolia against O3 stress conditions. The increase in B. cereus ERBP populations was attributed to the significant increase in ascorbate peroxidase (APX) and catalase (CAT) activity. In addition, increasing B. cereus ERBP populations led to raise total flavonoid contents which is one of antioxidant compounds. Increasing APX, CAT activities, and total flavonoid contents can enhance O3 detoxification in plant tissues. The mechanism of B. cereus ERBP for enhancing O3 phytoremediation was proposed in this study. The results suggested that B. cereus ERBP was a potential tool for alleviating O3 stress on Z. zamiifolia and enhancing O3 phytoremediation efficiency.
Collapse
Affiliation(s)
- Piyatida Pheomphun
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Pongphen Jitareerat
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|