1
|
Shou X, Yao Z, Wang Y, Chai Y, Huang Y, Chen R, Gu W, Liu Q. Research on the causal relationship between fine particulate matter and type 2 diabetes mellitus: A two-sample multivariable mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:2729-2739. [PMID: 39366807 DOI: 10.1016/j.numecd.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND AIMS Previous research has suggested a correlation between fine particulate matter (PM2.5) and type 2 diabetes mellitus (T2DM). However, the causality was vulnerable to confounding variables. METHODS AND RESULTS A two-sample multivariable mendelian randomization study was designed to examine the causal connection between PM2.5 and T2DM. PM2.5 trait was investigated as exposure while T2DM-related traits as outcomes. The summary data were obtained from the Finngen database and the open genome-wide association study database. The mendelian randomization estimates were obtained using the inverse-variance weighted approach, and multiple sensitivity analyses were conducted. There were potential causal relationships between PM2.5 and T2DM (OR = 2.418; P = 0.019), PM2.5 and glycated hemoglobin (HbA1c) (OR = 1.590; P = 0.041), and PM2.5 and insulin metabolism. PM2.5 was found to have no causal effect on fasting glucose and insulin, 2-h glucose, and insulin-like growth factor binding protein-1 (P > 0.05), while had a potential protective effect against some diabetes complications. CONCLUSIONS Our findings indicated potential causal relationships among PM2.5 and T2DM, especially the causal relationship between PM2.5 and long-term glucose levels.
Collapse
Affiliation(s)
- Xinyang Shou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhenghong Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yimin Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuxin Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Kim D, Gil J, Bae ON. PM2.5 potentiates oxygen glucose deprivation-induced neurovascular unit damage via inhibition of the Akt/β-catenin pathway and autophagy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124728. [PMID: 39147226 DOI: 10.1016/j.envpol.2024.124728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Air pollution has recently emerged as a significant risk factor for ischemic stroke. Although there is a robust association between higher concentrations of ambient particulate matter (PM2.5) and increased incidence and mortality rates of ischemic stroke, the precise mechanisms underlying PM2.5-induced ischemic stroke remain to be fully elucidated. The purpose of this study was to examine the synergistic effect of PM2.5 and hypoxic stress using in vivo and in vitro ischemic stroke models. Intravenously administered PM2.5 exacerbated the ischemic brain damage induced by middle cerebral artery occlusion (MCAo) in Sprague Dawley rats. Alterations in autophagy flux and decreased levels of tight junction proteins were observed in the brain of PM2.5-administered rats after MCAo. The underlying mechanism of PM2.5-induced potentiation of ischemic brain damage was investigated in neurons, perivascular macrophages, and brain endothelial cells, which are the major components of the integrated neurovascular unit. Co-treatment with PM2.5 and oxygen-glucose deprivation (OGD) amplified the effects of OGD on the reduction of viability in primary neurons, immortalized murine hippocampal neuron (HT-22), and brain endothelial cells (bEND.3). After co-treatment with PM2.5 and OGD, the Akt/β-catenin and autophagy flux were significantly inhibited in HT-22 cells. Notably, the protein levels of metalloproteinase-9 and cystatin C were elevated in the conditioned media of murine macrophages (RAW264.7) exposed to PM2.5, and tight junction protein expression was significantly decreased after OGD exposure in bEND.3 cells pretreated with the conditioned media. Our findings suggest that perivascular macrophages may mediate PM2.5-induced brain endothelial dysfunction following ischemia and that PM2.5 can exacerbate ischemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
3
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Manzano-Covarrubias AL, Yan H, Luu MDA, Gadjdjoe PS, Dolga AM, Schmidt M. Unravelling the signaling power of pollutants. Trends Pharmacol Sci 2023; 44:917-933. [PMID: 37783643 DOI: 10.1016/j.tips.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Exposure to environmental pollutants contributes to diverse pathologies, including pulmonary disease, lower respiratory infections, cancer, and stroke. Pollutants' entry can occur through inhalation, traversing endothelial and epithelial barriers, and crossing the blood-brain barrier, leading to a wide distribution throughout the human body via systemic circulation. Pollutants cause cellular damage by multiple mechanisms encompassing oxidative stress, mitochondrial dysfunction, (neuro)inflammation, and protein instability/proteotoxicity. Sensing pollutants has added a new dimension to disease progression and drug failure. Understanding the molecular pathways and potential receptor binding/signaling that underpin 'sensing' could contribute to ways to combat the detrimental effects of pollutants. We highlight key points of pollutant signaling, crosstalk with receptors acting as drug targets for chronic diseases, and discuss the potential for future therapeutics.
Collapse
Affiliation(s)
- Ana L Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Minh D A Luu
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Phoeja S Gadjdjoe
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
6
|
Gu W, Wang R, Cai Z, Lin X, Zhang L, Chen R, Li R, Zhang W, Ji X, Shui G, Sun Q, Liu C. Hawthorn total flavonoids ameliorate ambient fine particulate matter-induced insulin resistance and metabolic abnormalities of lipids in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114456. [PMID: 38321675 DOI: 10.1016/j.ecoenv.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 02/08/2024]
Abstract
Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwei Cai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Lin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
7
|
Hou Y, Wei W, Li G, Sang N. Prenatal PM 2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114151. [PMID: 36228359 DOI: 10.1016/j.ecoenv.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The epidemiological evidence has linked prenatal exposure to fine particulate matter (PM2.5) pollution with neurological diseases in offspring. However, the biological process and toxicological mechanisms remain unclear. Tau protein is a neuronal microtubule-associated protein expressed in fetal brain and plays a critical role in mediating neuronal development. Aberrant expression of tau is associated with adverse neurodevelopmental outcomes. To study whether prenatal exposure to PM2.5 pollution induce tau lesion in mice offspring and elucidate the underlying pathogenic mechanism, we exposed pregnant mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day. The results indicate that prenatal PM2.5 exposure induced hyperphosphorylation of tau in the cortex of postnatal male offspring, which was accompanied by insulin resistance through the IRS-1/PI3K/AKT signaling pathway. Importantly, we further found that prenatal PM2.5 exposure induced mitochondrial dysfunction by disrupting mitochondrial ultrastructure and decreasing the expression of rate-limiting enzymes (CS, IDH2 and FH) in the Krebs cycle and the subunits of mitochondrial complex IV and V (CO1, CO4, ATP6, and ATP8) during postnatal neurodevelopment. The findings suggest that prenatal PM2.5 exposure could induce tauopathy-like changes in male offspring, in which mitochondrial dysfunction-induced insulin resistance might play an important role.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
8
|
Younan D, Wang X, Millstein J, Petkus AJ, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Rapp SR, Chen JC. Air quality improvement and cognitive decline in community-dwelling older women in the United States: A longitudinal cohort study. PLoS Med 2022; 19:e1003893. [PMID: 35113870 PMCID: PMC8812844 DOI: 10.1371/journal.pmed.1003893] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Late-life exposure to ambient air pollution is a modifiable risk factor for dementia, but epidemiological studies have shown inconsistent evidence for cognitive decline. Air quality (AQ) improvement has been associated with improved cardiopulmonary health and decreased mortality, but to the best of our knowledge, no studies have examined the association with cognitive function. We examined whether AQ improvement was associated with slower rate of cognitive decline in older women aged 74 to 92 years. METHODS AND FINDINGS We studied a cohort of 2,232 women residing in the 48 contiguous US states that were recruited from more than 40 study sites located in 24 states and Washington, DC from the Women's Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study. They were predominantly non-Hispanic White women and were dementia free at baseline in 2008 to 2012. Measures of annual (2008 to 2018) cognitive function included the modified Telephone Interview for Cognitive Status (TICSm) and the telephone-based California Verbal Learning Test (CVLT). We used regionalized universal kriging models to estimate annual concentrations (1996 to 2012) of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at residential locations. Estimates were aggregated to the 3-year average immediately preceding (recent exposure) and 10 years prior to (remote exposure) WHIMS-ECHO enrollment. Individual-level improved AQ was calculated as the reduction from remote to recent exposures. Linear mixed effect models were used to examine the associations between improved AQ and the rates of cognitive declines in TICSm and CVLT trajectories, adjusting for sociodemographic (age; geographic region; race/ethnicity; education; income; and employment), lifestyle (physical activity; smoking; and alcohol), and clinical characteristics (prior hormone use; hormone therapy assignment; depression; cardiovascular disease (CVD); hypercholesterolemia; hypertension; diabetes; and body mass index [BMI]). For both PM2.5 and NO2, AQ improved significantly over the 10 years before WHIMS-ECHO enrollment. During a median of 6.2 (interquartile range [IQR] = 5.0) years of follow-up, declines in both general cognitive status (β = -0.42/year, 95% CI: -0.44, -0.40) and episodic memory (β = -0.59/year, 95% CI: -0.64, -0.54) were observed. Greater AQ improvement was associated with slower decline in TICSm (βPM2.5improvement = 0.026 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.001, 0.05; βNO2improvement = 0.034 per year for improved NO2 by each IQR = 3.92 parts per billion [ppb] reduction, 95% CI: 0.01, 0.06) and CVLT (βPM2.5 improvement = 0.070 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.02, 0.12; βNO2improvement = 0.060 per year for improved NO2 by each IQR = 3.97 ppb reduction, 95% CI: 0.005, 0.12) after adjusting for covariates. The respective associations with TICSm and CVLT were equivalent to the slower decline rate found with 0.9 to 1.2 and1.4 to 1.6 years of younger age and did not significantly differ by age, region, education, Apolipoprotein E (ApoE) e4 genotypes, or cardiovascular risk factors. The main limitations of this study include measurement error in exposure estimates, potential unmeasured confounding, and limited generalizability. CONCLUSIONS In this study, we found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. This novel observation strengthens the epidemiologic evidence of an association between air pollution and cognitive aging.
Collapse
Affiliation(s)
- Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Daniel P. Beavers
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Eric A. Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine and Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Wang X, Younan D, Petkus AJ, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Chen JC. Ambient Air Pollution and Long-Term Trajectories of Episodic Memory Decline among Older Women in the WHIMS-ECHO Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97009. [PMID: 34516296 PMCID: PMC8437247 DOI: 10.1289/ehp7668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Episodic memory decline varies by age and underlying neuropathology. Whether ambient air pollution contributes to the heterogeneity of episodic memory decline in older populations remains unclear. OBJECTIVES We estimated associations between air pollution exposures and episodic memory decline according to pollutant, exposure time window, age, and latent class subgroups defined by episodic memory trajectories. METHODS Participants were from the Women's Health Initiative Memory Study-Epidemiology of Cognitive Health Outcomes. Older women (n = 2,056 ; 74-92 years of age) completed annual (2008-2018) episodic memory assessments using the telephone-based California Verbal Learning Test (CVLT). We estimated 3-y average fine particulate matter [PM with an aerodynamic diameter of ≤ 2.5 μ m (PM 2.5 )] and nitrogen dioxide (NO 2 ) exposures at baseline and 10 y earlier (recent and remote exposures, respectively), using regionalized national universal kriging. Separate latent class mixed models were used to estimate associations between interquartile range increases in exposures and CVLT trajectories in women ≤ 80 and > 80 years of age , adjusting for covariates. RESULTS Two latent classes were identified for women ≤ 80 years of age (n = 828 ), "slow-decliners" {slope = - 0.12 / y [95% confidence interval (CI): - 0.23 , - 0.01 ] and "fast-decliners" [slope = - 1.79 / y (95% CI: - 2.08 , - 1.50 )]}. In the slow-decliner class, but not the fast-decliner class, PM 2.5 exposures were associated with a greater decline in CVLT scores over time, with a stronger association for recent vs. remote exposures [- 0.16 / y (95% CI: - 2.08 , - 0.03 ) per 2.88 μ g / m 3 and - 0.11 / y (95% CI: - 0.22 , 0.01) per 3.27 μ g / m 3 , respectively]. Among women ≥ 80 years of age (n = 1,128 ), the largest latent class comprised "steady-decliners" [slope = - 1.35 / y (95% CI: - 1.53 , - 1.17 )], whereas the second class, "cognitively resilient", had no decline in CVLT on average. PM 2.5 was not associated with episodic memory decline in either class. A 6.25 -ppb increase in recent NO 2 was associated with nonsignificant acceleration of episodic memory decline in the ≤ 80 -y-old fast-decliner class [- 0.21 / y (95% CI: - 0.45 , 0.04)], and in the > 80 -y-old cognitively resilient class [- 0.10 / y (95% CI: - 0.24 , 0.03)] and steady-decliner class [- 0.11 / y (95% CI: - 0.27 , 0.05)]. Associations with recent NO 2 exposure in women > 80 years of age were stronger and statistically significant when 267 women with incident probable dementia were excluded [e.g., - 0.12 / y (95% CI: - 0.22 , - 0.02 ) for the cognitively resilient class]. In contrast with changes in CVLT over time, there were no associations between exposures and CVLT scores during follow-up in any subgroup. DISCUSSION In a community-dwelling U.S. population of older women, associations between late-life exposure to ambient air pollution and episodic memory decline varied by age-related cognitive trajectories, exposure time windows, and pollutants. https://doi.org/10.1289/EHP7668.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Andrew J Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel P Beavers
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mark A Espeland
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - JoAnn E Manson
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Younan D, Wang X, Gruenewald T, Gatz M, Serre ML, Vizuete W, Braskie MN, Woods NF, Kahe K, Garcia L, Lurmann F, Manson JE, Chui HC, Wallace RB, Espeland MA, Chen JC. Racial/Ethnic Disparities in Alzheimer's Disease Risk: Role of Exposure to Ambient Fine Particles. J Gerontol A Biol Sci Med Sci 2021; 77:977-985. [PMID: 34383042 PMCID: PMC9071399 DOI: 10.1093/gerona/glab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Whether racial/ethnic disparities in Alzheimer's disease (AD) risk may be explained by ambient fine particles (PM2.5) has not been studied. METHOD We conducted a prospective, population-based study on a cohort of Black (n = 481) and White (n = 6 004) older women (aged 65-79) without dementia at enrollment (1995-1998). Cox models accounting for competing risk were used to estimate the hazard ratio (HR) for racial/ethnic disparities in AD (1996-2010) defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edition and the association with time-varying annual average PM2.5 (1999-2010) estimated by spatiotemporal model. RESULTS Over an average follow-up of 8.3 (±3.5) years with 158 incident cases (21 in Black women), the racial disparities in AD risk (range of adjusted HRBlack women = 1.85-2.41) observed in various models could not be explained by geographic region, age, socioeconomic characteristics, lifestyle factors, cardiovascular risk factors, and hormone therapy assignment. Estimated PM2.5 exposure was higher in Black (14.38 ± 2.21 µg/m3) than in White (12.55 ± 2.76 µg/m3) women, and further adjustment for the association between PM2.5 and AD (adjusted HRPM2.5 = 1.18-1.28) slightly reduced the racial disparities by 2%-6% (HRBlack women = 1.81-2.26). The observed association between PM2.5 and AD risk was ~2 times greater in Black (HRPM2.5 = 2.10-2.60) than in White (HRPM2.5 = 1.07-1.15) women (range of interaction ps: <.01-.01). We found similar results after further adjusting for social engagement (social strain, social support, social activity, living alone), stressful life events, Women's Health Initiative's clinic sites, and neighborhood socioeconomic characteristics. CONCLUSIONS PM2.5 may contribute to racial/ethnic disparities in AD risk and its associated increase in AD risk was stronger among Black women.
Collapse
Affiliation(s)
- Diana Younan
- University of Southern California, Los Angeles, USA
| | - Xinhui Wang
- University of Southern California, Los Angeles, USA
| | | | | | | | | | | | - Nancy F Woods
- University of Washington School of Nursing, Seattle, USA
| | - Ka Kahe
- Columbia University Irving Medical Center, New York, New York, USA
| | | | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California, USA
| | - JoAnn E Manson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Mark A Espeland
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jiu-Chiuan Chen
- Address correspondence to: Jiu-Chiuan Chen, MD, ScD, University of Southern California, 2001 N Soto Street, Los Angeles, CA 90032, USA. E-mail:
| |
Collapse
|
11
|
Herr D, Jew K, Wong C, Kennell A, Gelein R, Chalupa D, Raab A, Oberdörster G, Olschowka J, O'Banion MK, Elder A. Effects of concentrated ambient ultrafine particulate matter on hallmarks of Alzheimer's disease in the 3xTgAD mouse model. Neurotoxicology 2021; 84:172-183. [PMID: 33794265 DOI: 10.1016/j.neuro.2021.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to air pollution has been identified as a possible environmental contributor to Alzheimer's Disease (AD) risk. As the number of people with AD worldwide continues to rise, it becomes vital to understand the nature of this potential gene-environment interaction. This study assessed the effects of short-term exposures to concentrated ambient ultrafine particulates (UFP, <100 nm) on measurements of amyloid-β, tau, and microglial morphology. METHODS Two cohorts of aged (12.5-14 months) 3xTgAD and NTg mice were exposed to concentrated ambient UFP or filtered air for 2 weeks (4-h/day, 4 days/week). Bronchoalveolar lavage fluid and brain tissue were collected twenty-four hours following the last exposure to evaluate lung inflammation, tau pathology, amyloid-β pathology, and glial cell morphology. RESULTS No exposure- or genotype-related changes were found with any of the measures of lung inflammation or in the hippocampal staining density of astrocyte marker glial fibrillary acidic protein. The microglia marker, ionized calcium binding adaptor molecule 1, and amyloid-β marker, 6E10, exhibited significant genotype by exposure interactions such that levels were lower in the UFP-exposed as compared to filtered air-exposed 3xTgAD mice. When microglia morphology was assessed by Sholl analysis, microglia from both NTg mouse groups were ramified. The 3xTgAD air-exposed mice had the most ameboid microglia, while the 3xTgAD UFP-exposed mice had microglia that were comparatively more ramified. The 3xTgAD air-exposed mice had more plaques per region of interest as measured by Congo red staining as well as more plaque-associated microglia than the 3xTgAD UFP-exposed mice. The number of non-plaque-associated microglia was not affected by genotype or exposure. Levels of soluble and insoluble human amyloid-β42 protein were measured in both 3xTgAD groups and no exposure effect was found. In contrast, UFP-exposure led to significant elevations in phosphorylated tau in 3xTgAD mice as compared to those that were exposed to air, as measured by pT205 staining. CONCLUSIONS Exposure to environmentally relevant levels of ultrafine particulates led to changes in tau phosphorylation and microglial morphology in the absence of overt lung inflammation. Such changes highlight the need to develop greater mechanistic understanding of the link between air pollution exposure and Alzheimer's disease.
Collapse
Affiliation(s)
- Denise Herr
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Katrina Jew
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Andrea Kennell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alexandria Raab
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - John Olschowka
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Petkus AJ, Younan D, Wang X, Beavers DP, Espeland MA, Gatz M, Gruenewald T, Kaufman JD, Chui HC, Millstein J, Rapp SR, Manson JE, Resnick SM, Wellenius GA, Whitsel EA, Widaman K, Chen JC. Associations Between Air Pollution Exposure and Empirically Derived Profiles of Cognitive Performance in Older Women. J Alzheimers Dis 2021; 84:1691-1707. [PMID: 34744078 PMCID: PMC9057084 DOI: 10.3233/jad-210518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Elucidating associations between exposures to ambient air pollutants and profiles of cognitive performance may provide insight into neurotoxic effects on the aging brain. OBJECTIVE We examined associations between empirically derived profiles of cognitive performance and residential concentrations of particulate matter of aerodynamic diameter < 2.5 (PM2.5) and nitrogen dioxide (NO2) in older women. METHOD Women (N = 2,142) from the Women's Health Initiative Study of Cognitive Aging completed a neuropsychological assessment measuring attention, visuospatial, language, and episodic memory abilities. Average yearly concentrations of PM2.5 and NO2 were estimated at the participant's addresses for the 3 years prior to the assessment. Latent profile structural equation models identified subgroups of women exhibiting similar profiles across tests. Multinomial regressions examined associations between exposures and latent profile classification, controlling for covariates. RESULT Five latent profiles were identified: low performance across multiple domains (poor multi-domain; n = 282;13%), relatively poor verbal episodic memory (poor memory; n = 216; 10%), average performance across all domains (average multi-domain; n = 974; 45%), superior memory (n = 381; 18%), and superior attention (n = 332; 15%). Using women with average cognitive ability as the referent, higher PM2.5 (per interquartile range [IQR] = 3.64μg/m3) was associated with greater odds of being classified in the poor memory (OR = 1.29; 95% Confidence Interval [CI] = 1.10-1.52) or superior attention (OR = 1.30; 95% CI = 1.10-1.53) profiles. NO2 (per IQR = 9.86 ppb) was associated with higher odds of being classified in the poor memory (OR = 1.38; 95% CI = 1.17-1.63) and lower odds of being classified with superior memory (OR = 0.81; 95% CI = 0.67-0.97). CONCLUSION Exposure to PM2.5 and NO2 are associated with patterns of cognitive performance characterized by worse verbal episodic memory relative to performance in other domains.
Collapse
Affiliation(s)
- Andrew J Petkus
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Diana Younan
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Xinhui Wang
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Daniel P Beavers
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Mark A Espeland
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Margaret Gatz
- University of Southern California, Center for Economic and Social Research, Los Angeles, CA, USA
| | - Tara Gruenewald
- Chapman University, Department of Psychology, Orange, CA, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Helena C Chui
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Joshua Millstein
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Stephen R Rapp
- Wake Forest School of Medicine, Department of Psychiatry and Behavioral Medicine, Winston-Salem, NC, USA
| | - JoAnn E Manson
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Susan M Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, USA
| | - Gregory A Wellenius
- Boston University, Boston, Department of Environmental Health, Boston, MA, USA
| | - Eric A Whitsel
- University of North Carolina, Departments of Epidemiology and Medicine, Chapel Hill, NC, USA
| | - Keith Widaman
- University of California, Riverside, Graduate School of Education, Riverside, CA, USA
| | - Jiu-Chiuan Chen
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| |
Collapse
|