1
|
Ren G, Zhang J, Wang X, Liu G, Zhou M. A critical review of persulfate-based electrochemical advanced oxidation processes for the degradation of emerging contaminants: From mechanisms and electrode materials to applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173839. [PMID: 38871317 DOI: 10.1016/j.scitotenv.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The persulfate-based electrochemical advanced oxidation processes (PS-EAOPs) exhibit distinctive advantages in the degradation of emerging contaminants (ECs) and have garnered significant attention among researchers, leading to a consistent surge in related research publications over the past decade. Regrettably, there is still a lack of a critical review gaining deep into understanding of ECs degradation by PS-EAOPs. To address the knowledge gaps, in this review, the mechanism of electro-activated PS at the interface of the electrodes (anode, cathode and particle electrodes) is elaborated. The correlation between these electrode materials and the activation mechanism of PS is systematically discussed. The strategies for improving the performance of electrode material that determining the efficiency of PS-EAOPs are also summarized. Then, the applications of PS-EAOPs for the degradation of ECs are described. Finally, the challenges and outlook of PS-EAOPs are discussed. In summary, this review offers valuable guidance for the degradation of ECs by PS-EAOPs.
Collapse
Affiliation(s)
- Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xufei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guanyu Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Mostashari A, Sanei E, Ganjidoust H. The effect of silica-doped graphene oxide (GO-SiO 2) on persulfate activation for the removal of Acid Blue 25. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56565-56577. [PMID: 39276286 DOI: 10.1007/s11356-024-34828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.
Collapse
Affiliation(s)
- Amir Mostashari
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Emad Sanei
- School of Engineering & Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Zhou C, Wu M, Song H, Yan Z, Yang L, Liu Y, Mao X, Sun Y. Low energy consumption pathway to improve sulfamethoxazole degradation by carbon fiber@Fe 3O 4-CuO: Electrocatalysis activity, mechanism and toxicity. J Colloid Interface Sci 2024; 660:834-844. [PMID: 38277840 DOI: 10.1016/j.jcis.2024.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Catalysts play a pivotal role in advanced oxidation processes for the remediation of organic wastewater. In this study, a 3D carbon fiber@Fe3O4-CuO catalyst was fabricated, and its efficacy for persulfate activation to remove sulfamethoxazole (SMX) was investigated at extremely low current density. The results of characterization revealed that the catalyst was uniformly distributed on the carbon fiber, and the loaded catalyst was Fe3O4-CuO nanoparticles with a diameter range of 20-50 nm. The SMX removal rate was significantly enhanced at extremely low current density by the metallic oxide catalyst loaded on carbon fiber. Approximately 90 % of SMX was degraded within 90 min when the electric current density was set at 0.1 mA cm-2. This modification process not only improved the persulfate activation efficiency but also enhanced the generation of hydrogen peroxide. Both radical and non-radical pathways were involved in the degradation of SMX. The degradation pathway mainly included hydroxylation, carboxylation, aniline cleavage, and desulfonation reactions. The quantitative structure-activity relationship model indicated that the potential risk of intermediate products to fish, daphnia, and green algae significantly decreased during the electrocatalytic oxidation process. This study provides a novel strategy for persulfate activation, which can significantly enhance the degradation efficiency, toxicity abatement, and energy usage effectiveness of electrocatalytic technology.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mian Wu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Huarong Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zongyu Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yan Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Xingzhi Mao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yanlong Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
| |
Collapse
|
4
|
Yan C, Yu C, Ti X, Bao K, Wan J. Preparation of Mn-doped sludge biochar and its catalytic activity to persulfate for phenol removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18737-18749. [PMID: 38347365 DOI: 10.1007/s11356-024-32232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
In recent years, the increasing prevalence of phenolic pollutants emitted into the environment has posed severe hazards to ecosystems and living organisms. Consequently, there is an urgent need for a green and efficient method to address environmental pollution. This study utilized waste sludge as a precursor and employed a hydrothermal-calcination co-pyrolysis method to prepare manganese (Mn)-doped biochar composite material (Mn@SBC-HP). The material was used to activate peroxydisulfate (PDS) for the removal of phenol. The study investigated various factors (such as the type and amount of doping metal, pyrolysis temperature, catalyst dosage, PDS dosage, pH value, initial phenol concentration, inorganic anions, and salinity) affecting phenol removal and the mechanisms within the Mn@SBC-HP/PDS system. Results indicated that under optimal conditions, the Mn@SBC-HP/PDS system achieved 100% removal of 100 mg/L phenol within 180 min, with a TOC removal efficiency of 82.7%. Additionally, the phenol removal efficiency of the Mn@SBC-HP/PDS system remained above 90% over a wide pH range (3-9). Free radical quenching experiments and electron spin resonance (ESR) results suggested that hydroxyl radicals (·OH) and sulfate radicals (SO4-) yed a role in the removal of phenol through radical pathways, with singlet oxygen (1O2) being the dominant non-radical pathway. The phenol removal efficiency remained above 90%, demonstrating the excellent adaptability of the Mn@SBC-HP/PDS system under the interference of coexisting inorganic anions or increased salinity. This study proposes an innovative method for the resource utilization of waste, creating metal-biochar composite catalysts for the remediation of water environments. It provides a new approach for the efficiency of organic pollutants in water environments.
Collapse
Affiliation(s)
- Chongchong Yan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chao Yu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xueyi Ti
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kai Bao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wan
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
5
|
Nidheesh PV, Murshid A, Chanikya P. Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. CHEMOSPHERE 2023; 338:139449. [PMID: 37437613 DOI: 10.1016/j.chemosphere.2023.139449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
To handle complex wastewater with limited biodegradability, hybrid treatment systems are necessary. The current study represents the combined effectiveness of sulfate-radical associated electro-chemical advanced oxidation process (SR-EAOP) and electro-coagulation (EC) for the treatment of stabilized landfill leachate. For SR-EAOP, Pt/Ti was employed as the anode and an iron plate as the cathode; while EC treatment was performed by switching the polarity. Hence, both electrochemical treatment was carried out in single reactor. Initially, the effects of pH, applied voltage, persulfate and Fe2+ dosage, on the performance of SR-EAOP was examined. Sulfate radical was generated in the electrolytic system via cathodic reduction of persulfate (PS) and ferrous (Fe2+) ion activation. Auxiliary processes such as anodic oxidation via Pt/Ti anode and indirect electro-chemical oxidation were also contributed for pollutant degradation. Combined process SR-EAOP followed by EC (SR-EAOP + EC) has better leachate treatment efficacy in comparison with EC + SR-EAOPs. The SR-EAOP + EC based combined treatment mechanism achieved an efficient COD reduction of 88.67% than that of EC + SR - EAOP process (74.51% COD reduction). Characterization studies have been carried out for post-treated dried-sludge using Field Emission scanning electron microscope (FE-SEM) and X-ray powder diffraction (XRD) techniques. The combined process treatment (SR-EAOP + EC) can be applied as pre-treatment for leachate decontamination.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - A Murshid
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Sacred Heart College, Thevara, Kochi, 682013, India
| | - P Chanikya
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
6
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
7
|
Zhou J, Liu J, Liu T, Liu G, Li J, Chen D, Feng Y. Electrochemical activation of persulfate by Al-doped blue TiO 2 nanotubes for the multipath degradation of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130578. [PMID: 37055983 DOI: 10.1016/j.jhazmat.2022.130578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The combination of electrolysis and persulfate activation (E/PDS) is a cost-effective method for the treatment of refractory organics. However, persulfate is difficult to be activated into radicals at the anode, resulting in insufficient electro-activation efficiency. Herein, Al doped blue TiO2 nanotube electrodes (Al-bTNT) were first employed as cost-effective anode materials to fully activate PDS to radicals. In E/PDS, the kinetic constant of atrazine removal by Al-bTNT (0.048 min-1) substantially outperformed the other anodes, including the blue TiO2 nanotube electrodes (bTNT) (0.024 min-1), Ti4O7 (0.02 min-1), and B doped diamond (BDD) anodes (0.023 min-1). The Al-bTNT-E/PDS exhibited a low energy consumption (EEO = 0.72 kWh m-3) and a high mineralization rate. Based on the results of electron paramagnetic resonance, quenching experiments, and probe experiments, we propose that atrazine degrades in the Al-bTNT-E/PDS system mainly via a novel radical pathway that involves both·OH and SO4·- and the generated SO4·- is responsible for the enhanced removal rate. The oxygen vacancies (VO) generated from interstitial Al may serve as the active sites to adsorb and dissociate the persulfate molecules based on extensive characterizations. The attempt at soil-washing wastewater disposal indicated the synergistic system possessed good potential for future practical application.
Collapse
Affiliation(s)
- Jiajie Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tongtong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dahong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Zhu D, Zhou F, Ma Y, Xiong Y, Li X, Li W, Wang D. An economic, self-supporting, robust and durable LiFe 5O 8 anode for sulfamethoxazole degradation. CHEMOSPHERE 2023; 316:137810. [PMID: 36634712 DOI: 10.1016/j.chemosphere.2023.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemically activating peroxydisulfate (PDS) to degrade organic pollutants is one of the most attractive advanced oxidation processes (AOPs) to address environmental issues, but the high cost, poor stability, and low degradation efficiency of the anode materials hinder their application. Herein, an economic, self-supporting, robust, and durable LiFe5O8 on Fe substrate (Fe@LFO) anode is reported to degrade sulfamethoxazole (SMX). When PDS is electrochemically activated by the Fe@LFO anode, the degradation rate of SMX is significantly improved. It is found that hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), Fe(Ⅳ), activated PDS (PDS*), and direct electron transfer (DET) reactions synergistically contribute to the degradation of SMX, which can realize the degradation of SMX in four possible routes: cleavage of the isoxazole ring, hydroxylation of the benzene ring, oxidation of the aniline group, and cleavage of the S-N bond, as evidenced by a series of tests of radicals quenching, electron paramagnetic resonance (EPR), linear sweep voltammetry (LSV) and liquid chromatograph mass spectrometer (LC-MS). Furthermore, Fe@LFO has good structural stability, excellent cyclability and low degradation cost, demonstrating its great potential for practical applications. This work contributes to a stable and effective anode material in the field of AOPs.
Collapse
Affiliation(s)
- Dongdong Zhu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Fengyin Zhou
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yongsong Ma
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Yu Xiong
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Xiangyun Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| | - DiHua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
9
|
Enhanced mechanism of carbamazepine degradation by electrochemical activation of persulfate in flow-through system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Thao VD, Dung NT, Ha NT, Minh HN, Duong HC, Van Nguyen T, Son LT, Huy NN, Thu TV. Ag@AgCl nanoparticles grafted on carbon nanofiber: an efficient visible light plasmonic photocatalyst via bandgap reduction. NANOTECHNOLOGY 2022; 33:475603. [PMID: 35926317 DOI: 10.1088/1361-6528/ac86db] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
A novel silver@silver chloride/carbon nanofiber (Ag@AgCl/CNF) hybrid was synthesized by electrospinning, heat treament, and subsequentin situchemical oxidation strategy. The synthesized materials were characterized using x-ray diffraction, Fourier-transform infrared, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and energy dispersive x-ray. The experimental results reveal that the electrospun AgNO3/PAN was carbonized and reduced to Ag/CNF, the Ag/CNF was then partly oxidized to form Ag@AgCl/CNF in which Ag@AgCl nanoparticles (ca. 10-20 nm in diameter) were uniformly bounded to CNFs (ca. 165 nm in diameter). The obtained Ag@AgCl/CNF was employed for Na2S2O8activation under visible light irradiation to treat Rhodamine B (RhB). A remarkable RhB removal of ca. 94.68% was achieved under optimal conditions, and the influence of various parameters on removal efficiency was studied. Quenching experiments revealed that HO•, SO4•-,1O2, and O2•-were major reactive oxygen species, in which O2•-played a pivotal role in RhB degradation. A possible mechanistic route for RhB degradation was proposed.
Collapse
Affiliation(s)
- Vu Dinh Thao
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Trung Dung
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Thu Ha
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Ho Ngoc Minh
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | - Hung Cong Duong
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - To Van Nguyen
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Luong Trung Son
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Viet Thu
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam
| |
Collapse
|
11
|
|
12
|
Pan S, Zhai Z, Yang K, Xiang Y, Tang S, Zhang Y, Jiao T, Zhang Q, Yuan D. β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113160. [PMID: 35026583 DOI: 10.1016/j.ecoenv.2021.113160] [Citation(s) in RCA: 526] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 05/21/2023]
Abstract
The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of wastewater from a large number of textile industries without prior treatment has significant negative consequences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water resources. This review compares the most recent technologies which are commonly used to remove dye from textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is expected to spark great interest among the research community who wish to combat the widespread risk of toxic organic pollutants generated by the textile industries.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Kamal M Okasha
- Internal Medicine and Nephrology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Agrifood, Cranfield University, MK43 0AL, UK
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Dung NT, Duong LT, Hoa NT, Thao VD, Ngan LV, Huy NN. A comprehensive study on the heterogeneous electro-Fenton degradation of tartrazine in water using CoFe 2O 4/carbon felt cathode. CHEMOSPHERE 2022; 287:132141. [PMID: 34521013 DOI: 10.1016/j.chemosphere.2021.132141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this study, cobalt ferrite coated carbon felt (CoFe2O4/CF) was synthesized by solvothermal method and applied as cathode for electro-Fenton (EF) treatment of tartrazine (TTZ) in water. The materials were characterized by SEM, XRD, FTIR, CV, and EIS to explore their physical, chemical, and electrical properties. The effects of solvothermal temperature and metal content on the TTZ removal were examined, showing that 220 °C with 2 mM of Co and 4 mM of Fe precursors were the best synthesis condition. Various influencing factors such as applied current density, pH, TTZ concentration, and electrolytes were investigated, and the optimal condition was found at 8.33 mA cm-2, pH 3, 50 mgTTZ L-1, and 50 mM of Na2SO4, respectively. By radical quenching test, , 1O2, and HO were recognized as the key reactive oxygen species and the reaction mechanism was proposed for the EF decolorization of TTZ using CoFe2O4/CF cathode. The reusability and stability test showed that the highly efficient CoFe2O4/CF cathode is very promising for practical application in wastewater treatment, especially for dyes and other recalcitrant organic compounds to improve its biodegradability.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Bac Tu Liem District, Hanoi, Viet Nam.
| | - Le Thuy Duong
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Thi Hoa
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Bac Tu Liem District, Hanoi, Viet Nam
| | - Vu Dinh Thao
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Bac Tu Liem District, Hanoi, Viet Nam
| | - Le Viet Ngan
- National Institute for Food Control, 65 Pham Than Duat Street, Mai Dich Ward, Cau Giay District, Hanoi, Viet Nam
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
15
|
Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Peroxydisulfate activation by digestate-derived biochar for azo dye degradation: Mechanism and performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Zhao M, Xiang Y, Jiao X, Cao B, Tang S, Zheng Z, Zhang X, Jiao T, Yuan D. MoS2 co-catalysis promoted CaO2 Fenton-like process: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Li R, Zhang M, Wu Y, Tang P, Sun G, Wang L, Mandal S, Wang L, Lang J, Passalacqua A, Subramaniam S, Song G. What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers (Basel) 2021; 13:4165. [PMID: 34883668 PMCID: PMC8659889 DOI: 10.3390/polym13234165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious respiratory diseases such as the current COVID-19 have caused public health crises and interfered with social activity. Given the complexity of these novel infectious diseases, their dynamic nature, along with rapid changes in social and occupational environments, technology, and means of interpersonal interaction, respiratory protective devices (RPDs) play a crucial role in controlling infection, particularly for viruses like SARS-CoV-2 that have a high transmission rate, strong viability, multiple infection routes and mechanisms, and emerging new variants that could reduce the efficacy of existing vaccines. Evidence of asymptomatic and pre-symptomatic transmissions further highlights the importance of a universal adoption of RPDs. RPDs have substantially improved over the past 100 years due to advances in technology, materials, and medical knowledge. However, several issues still need to be addressed such as engineering performance, comfort, testing standards, compliance monitoring, and regulations, especially considering the recent emergence of pathogens with novel transmission characteristics. In this review, we summarize existing knowledge and understanding on respiratory infectious diseases and their protection, discuss the emerging issues that influence the resulting protective and comfort performance of the RPDs, and provide insights in the identified knowledge gaps and future directions with diverse perspectives.
Collapse
Affiliation(s)
- Rui Li
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Mengying Zhang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Yulin Wu
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Peixin Tang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (P.T.); (G.S.)
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (P.T.); (G.S.)
| | - Liwen Wang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Sumit Mandal
- Department of Design, Housing and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lizhi Wang
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50010, USA;
| | - James Lang
- Department of Kinesiology, Iowa State University, Ames, IA 50010, USA;
| | - Alberto Passalacqua
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA; (A.P.); (S.S.)
| | - Shankar Subramaniam
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA; (A.P.); (S.S.)
| | - Guowen Song
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| |
Collapse
|
19
|
Sulphate radical enhanced photoelectrochemical degradation of sulfamethoxazole on a fluorine doped tin oxide - copper(I) oxide photoanode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Xiong L, Ren W, Lin H, Zhang H. Efficient removal of bisphenol A with activation of peroxydisulfate via electrochemically assisted Fe(III)-nitrilotriacetic acid system under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123874. [PMID: 33264946 DOI: 10.1016/j.jhazmat.2020.123874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
In this work, an innovative electrochemically assisted Fe(III)-nitrilotriacetic acid system for the activation of peroxydisulfate (electro/Fe(III)-NTA/PDS) was proposed for the removal of bisphenol A (BPA) at neutral pH with commercial graphite electrodes. The efficient BPA decay was mainly originated from the continuous activation of PDS by Fe(II) reduced from Fe(III)-NTA complexes at the cathode. Scavenger experiments and electron paramagnetic resonance (EPR) measurements confirmed that the removal of BPA occurred through graphite adsorption, direct electron transfer (DET) and radical oxidation. Sulfate and hydroxyl radicals were primarily responsible for the oxidation of BPA while graphite adsorption and DET played a minor role in BPA removal. The influence of Fe(III) concentration, PDS dosage, input current, NTA to Fe(III) molar ratio as well as coexisting inorganic anions (Cl-, NO3-, H2PO4- and HCO3-) on BPA elimination was explored. The BPA removal efficiency reached 93.5 % after 60 min reaction in the electro/Fe(III)-NTA/PDS system under the conditions of initial pH 7.0, 0.30 mM Fe(III), 0.15 mM NTA, 5 mM PDS and 5 mA constant current. Overall, this research provided a novel perspective and potential for remediation of organic wastewater using NTA in combination with electrochemistry in the homogeneous Fe(III)/persulfate system.
Collapse
Affiliation(s)
- Liangliang Xiong
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Heng Lin
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
21
|
Karim AV, Jiao Y, Zhou M, Nidheesh PV. Iron-based persulfate activation process for environmental decontamination in water and soil. CHEMOSPHERE 2021; 265:129057. [PMID: 33272667 DOI: 10.1016/j.chemosphere.2020.129057] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sulfate radical based advanced oxidation processes have been extensively studied for the degradation of environmental contaminants. Iron-based materials such as ferrous, ferric, ZVI, iron oxides, sulfides etc., and various natural iron minerals have been explored for activating persulfate to generate sulfate radicals. In this review, an overview of different iron activated persulfate systems and their application in the removal of organic pollutants and metals in water and soil are summarised. The chemistry behind the activation of persulfate by homogenous and heterogeneous iron-based materials with/without the assistance of electrochemical techniques are also discussed. Besides, the soil decontamination by iron persulfate system and a brief discussion on the ability of the persulfate system to reduce metals presence in wastewater are also summarised. Finally, future research prospects, believed to be useful for all researchers in this field, based on up to date research progress is also given.
Collapse
Affiliation(s)
- Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Yongli Jiao
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
22
|
|
23
|
|
24
|
Saeed T, Naeem A, Ud Din I, Alotaibi MA, Alharthi AI, Wali Khan I, Huma Khan N, Malik T. Structure, nomenclature and viable synthesis of micro/nanoscale metal organic frameworks and their remarkable applications in adsorption of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105579] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Chen S, Zhou L, Yang T, He Q, Zhou P, He P, Dong F, Zhang H, Jia B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO 2-RuO 2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green. CHEMOSPHERE 2020; 261:128201. [PMID: 33113663 DOI: 10.1016/j.chemosphere.2020.128201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang, 621010, Sichuan, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
26
|
Xia X, Zhu F, Li J, Yang H, Wei L, Li Q, Jiang J, Zhang G, Zhao Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front Chem 2020; 8:592056. [PMID: 33330379 PMCID: PMC7729018 DOI: 10.3389/fchem.2020.592056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
High levels of toxic organic pollutants commonly detected during domestic/industrial wastewater treatment have been attracting research attention globally because they seriously threaten human health. Sulfate-radical-based advanced oxidation processes (SR-AOPs) have been successfully used in wastewater treatment, such as that containing antibiotics, pesticides, and persistent organic pollutants, for refractory contaminant degradation. This review summarizes activation methods, including physical, chemical, and other coupling approaches, for efficient generation of sulfate radicals and evaluates their applications and economic feasibility. The degradation behavior as well as the efficiency of the generated sulfate radicals of typical domestic and industrial wastewater treatment is investigated. The categories and characteristics of the intermediates are also evaluated. The role of sulfate radicals, their kinetic characteristics, and possible mechanisms for organic elimination are assessed. In the last section, current difficulties and future perspectives of SR-AOPs for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Fengyi Zhu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiaoyang Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
27
|
Chen S, Li J, Liu L, He Q, Zhou L, Yang T, Wang X, He P, Zhang H, Jia B. Fabrication of Co/Pr co-doped Ti/PbO 2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid. CHEMOSPHERE 2020; 256:127139. [PMID: 32470737 DOI: 10.1016/j.chemosphere.2020.127139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The existence of β-naphthoxyacetic acid (BNOA) pesticide in water system has aroused serious environmental problem because of its potential toxicity for humans and organisms. Therefore, exploiting an efficient method without secondary pollution is extremely urgent. Herein, a promising Ti/PbO2-Co-Pr composite electrode has been successfully fabricated through simple one-step electrodeposition for efficiently electrocatalytic degradation of BNOA. Compared with Ti/PbO2, Ti/PbO2-Co and Ti/PbO2-Pr electrodes, Ti/PbO2-Co-Pr electrode with smaller pyramidal particles possesses higher oxygen evolution potential, excellent electrochemical stability and outstanding electrocatalytic activity. The optimal degradation condition is assessed by major parameters including temperature, initial pH, current density and Na2SO4 concentration. The degradation efficiency and chemical oxygen demand removal efficiency of BNOA reach up to 94.6% and 84.6%, respectively, under optimal condition (temperature 35 °C, initial pH 5, current density 12 mA cm-2, Na2SO4 concentration 8.0 g L-1 and electrolysis time 3 h). Furthermore, Ti/PbO2-Co-Pr electrode presents economic energy consumption and superior repeatability. Finally, the possible degradation mechanism of BNOA is put forward according to the main intermediate products identified by liquid chromatography-mass spectrometer. The present research paves a new path to degrade BNOA pesticide wastewater with Ti/PbO2-Co-Pr electrode.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Liya Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| |
Collapse
|
28
|
Yuan D, Zhang C, Tang S, Sun M, Zhang Y, Rao Y, Wang Z, Ke J. Fe 3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138773. [PMID: 32335455 DOI: 10.1016/j.scitotenv.2020.138773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/21/2023]
Abstract
To improve the cycle between Fe3+ and Fe2+ in persulfate (PS) Fenton-like system, sulfite (Na2SO3) was used as the iron complexing agent to enhance the degradation of sulfamethoxazole (SMX) antibiotic in water. Response surface methodology (RSM) was applied to regulate the operation parameters for the Fe3+/Na2SO3/PS synergistic system. Based on the RSM, the SMX could be completely degraded when the concentration of Fe3+, Na2SO3, and PS were 0.4, 0.5, and 2.5 mM, respectively. The result showed that the synergistic process represented a high Fe3+ utilization rate and SMX degradation efficiency. After 1 h reaction, 100.00% of SMX and 27.80% of total organic carbon were removed under the ambient conditions containing the initial SMX concentration of 10 μM and initial pH of 5.96. Free radical masking and electron spin-resonance tests proved that hydroxyl radical (HO) and oxysulfur radicals (SOx-, x = 3, 4, 5) were all played the significant role in the antibiotic removal, and the primary active radical was HO. The SMX decomposition pathways based on the formed intermediates was proposed through the high-performance liquid chromatography and mass spectrum analyses. The toxicity assessment prediction indicated that the toxicities of decomposed SMX byproducts were reduced after the coupling treatment.
Collapse
Affiliation(s)
- Deling Yuan
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Chen Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Shoufeng Tang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Mengting Sun
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Yating Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Yandi Rao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhibin Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, PR China
| |
Collapse
|
29
|
Abstract
Wastewater from the textile industry has a substantial impact on water quality. Synthetic dyes used in the textile production process are often discharged into water bodies as residues. Highly colored wastewater causes various of problems for the aquatic environment such as: reducing light penetration, inhibiting photosynthesis and being toxic to certain organisms. Since most dyes are resistant to biodegradation and are not completely removed by conventional methods (adsorption, coagulation-flocculation, activated sludge, membrane filtration) they persist in the environment. Advanced oxidation processes (AOPs) based on hydrogen peroxide (H2O2) have been proven to decolorize only some of the dyes from wastewater by photocatalysis. In this article, we compared two very different photocatalytic systems (UV/peroxydisulfate and UV/H2O2). Photocatalyzed activation of peroxydisulfate (PDS) generated sulfate radicals (SO4•−), which reacted with the selected anthraquinone dye of concern, Acid Blue 129 (AB129). Various conditions, such as pH and concentration of PDS were applied, in order to obtain an effective decolorization effect, which was significantly better than in the case of hydroxyl radicals. The kinetics of the reaction followed a pseudo-first order model. The main reaction pathway was also proposed based on quantum chemical analysis. Moreover, the toxicity of the solution after treatment was evaluated using Daphnia magna and Lemna minor, and was found to be significantly lower compared to the toxicity of the initial dye.
Collapse
|
30
|
Ding J, Bu L, Zhao Q, Kabutey FT, Wei L, Dionysiou DD. Electrochemical activation of persulfate on BDD and DSA anodes: Electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121789. [PMID: 31818663 DOI: 10.1016/j.jhazmat.2019.121789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The combination of electrolysis and persulfate (PS) activation was investigated to enhance the degradation of bisphenol A (BPA) using boron-doped diamond (BDD) and dimensional stable anode (DSA) in perchlorate, sulfate, and chloride media. The acceleration effect of BPA degradation followed the order of Cl->ClO4->SO42- in BDD/PS and BDD system, while the degradation order in DSA/PS and DSA system was Cl->SO42->ClO4-. The contribution of radical species (SO4- and OH), active chlorine and electrolysis were confirmed for the degradation in different media with PS. Active chlorine dominated the degradation process with 85 % and 60 % removal in BDD/PS and DSA/PS system at 10 min, while the contribution of SO4- decreased from 20 % and 18 % in perchlorate to 5 % and 6 % in chloride media, respectively. The aromatic intermediates resulting from hydroxylation and carboxylation pathway and chlorinated products via hydroxylation and chlorine substitution pathway were detected in perchlorate and chloride media in BDD/PS system, respectively. The attempt of BDD/PS system in actual wastewater indicated potential for further application. This study aims to provide a deep insight to comprehensively understand the enhanced performance, contributions of different removal mechanisms, and degradation pathway of pollutants during the activation of PS in BDD and DSA systems in different media.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lingjun Bu
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
31
|
Wang Q, Rao P, Li G, Dong L, Zhang X, Shao Y, Gao N, Chu W, Xu B, An N, Deng J. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: Kinetics, impact of key factors and degradation pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109779. [PMID: 31639643 DOI: 10.1016/j.ecoenv.2019.109779] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/20/2023]
Abstract
UV-activated persulfate (UV/PS) and peroxymonosulfate (UV/PMS) processes as alternative methods for removal of imidacloprid (IMP) were conducted for the first time. The reaction rate constants between IMP and the sulfate or hydroxyl radical were calculated as 2.33×109 or 2.42×1010 M-1 s-1, respectively. The degradation of IMP was greatly improved by UV/PS and UV/PMS compared with only UV or oxidant. At any given dosage, UV/PS achieved higher IMP removal rate than UV/PMS. The pH range affecting the degradation in the UV/PS and UV/PMS systems were different in the ranges of 6-8 and 9 to 10. SO42-, F- and NO3- had no obvious effect on the degradation in the UV/PS and UV/PMS systems. CO32- and PO43- inhibited the degradation of IMP in the UV/PS system, while they enhanced the degradation in the UV/PMS system. Algae organic matters (AOM) were used to consider the impact of the degradation of IMP for the first time. The removal of IMP were restrained by both AOM and natural organic matters. The higher removal rate of IMP demonstrated that both UV/PS and UV/PMS were suitable for treating the water containing IMP, while UV/PS was cost-effective than UV/PMS based on the total cost calculation. Finally, the degradation pathways of IMP were proposed.
Collapse
Affiliation(s)
- Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201600, China.
| | - Pinhua Rao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201600, China
| | - Guanghui Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201600, China
| | - Lei Dong
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China; Shanghai Municipal Engineering Design Institute(Group)Co.,LTD, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute(Group)Co.,LTD, China
| | - Yisheng Shao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China; China Academy of Urban Planning & Design, Beijing, 100037, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China
| | - Na An
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai, 200092, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
32
|
Synthesis of Si/Cu Amorphous Adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Media. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01436-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Tang S, Tang J, Yuan D, Wang Z, Zhang Y, Rao Y. Elimination of humic acid in water: comparison of UV/PDS and UV/PMS. RSC Adv 2020; 10:17627-17634. [PMID: 35515628 PMCID: PMC9053580 DOI: 10.1039/d0ra01787f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Humic substances are polyelectrolytic macromolecules; their presence in water leads to many environmental problems without effective treatment. In this work, the elimination of humic acid (HA), a typical humic substance, has been examined through ultraviolet (UV) activation systems in the presence of peroxydisulfate (PDS) and peroxymonosulfate (PMS), respectively. The results indicated that 92.9% and 97.1% of HA were eliminated with rate constants of 0.0328 ± 0.0006 and 0.0436 ± 0.0011 min−1 with 180 and 60 min treatment times at pH 6 and 3 when adding 3 and 1 mmol L−1 oxidant during UV/PDS and UV/PMS, respectively; the corresponding electric energies per order were 0.0287 and 0.0131 kW h m−3. The HA removal was systematically investigated by varying different reaction parameters, including radical scavengers, persulphate dose, solution pH, and initial HA concentration, and by addition of various common ions. Moreover, the decomposition details were identified through the changes in the dissolved organic carbon, unique UV absorbances, and UV spectroscopic ratios. Furthermore, the destruction mechanism was verified by fluorescence spectroscopy, demonstrating that the HA structure was decomposed to small molecular fractions in the two UV/persulphate systems. In addition, the purification of HA by the two UV/persulphate processes was assessed in actual water matrices. In this work, UV-activated persulphate treatment (UV/PDS and UV/PMS) was found to be an effective method for HA removal.![]()
Collapse
Affiliation(s)
- Shoufeng Tang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| | - Jiachen Tang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| | - Deling Yuan
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| | - Zetao Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| | - Yating Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| | - Yandi Rao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
| |
Collapse
|
34
|
Tang S, Li N, Yuan D, Tang J, Li X, Zhang C, Rao Y. Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: Simultaneous dye removal and electricity generation. CHEMOSPHERE 2019; 234:658-667. [PMID: 31234083 DOI: 10.1016/j.chemosphere.2019.06.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/25/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Introducing peroxymonosulfate (PMS) and peroxydisulfate (PDS) into the photocatalytic fuel cell (PFC) system were investigated by comparing the Reactive Brilliant Blue (KN-R) degradation and synchronous electricity production. The two persulfates (PS) themselves are strong oxidant, and could be activated and as electron sacrificial agent in the PFCs, facilitating the photoelectrocatalysis and expanding redox to the entire cell space. Hence, the two established PFC/PS systems manifested prominent cell performances, enhancing the KN-R decomposition and electric power production relative to the virgin PFC. Thereinto, the KN-R removal rate of PFC/PMS was faster than that of PFC/PDS, but an opposite trend appeared in the electricity generation. Besides, the cell performances of the two cooperative systems were evaluated at different operation conditions, including PS dosage, solution pH, and irradiation strength. Moreover, the dye elimination principle was explored by radicals scavenging experiment, and the consequence revealed that hydroxyl radical (HO•), sulfate radical (SO4•-) and singlet oxygen were chief active species in the PFC/PMS, and HO•, SO4•- and superoxide anion played the key roles in the PFC/PDS. Furthermore, the calculated economic indicator demonstrated that the economy of the two synergistic processes were greater than that of UV/PS and solo PFC, and the PFC/PDS was more cost-effective than PFC/PMS.
Collapse
Affiliation(s)
- Shoufeng Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Na Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Deling Yuan
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Jiachen Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Xue Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Chen Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Yandi Rao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
35
|
Ke J, Zhou H, Liu J, Zhang Z, Duan X, Wang S. Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J Colloid Interface Sci 2019; 555:413-422. [DOI: 10.1016/j.jcis.2019.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
|
36
|
Li J, Li B, Huang H, Lv X, Zhao N, Guo G, Zhang D. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:460-469. [PMID: 31212154 DOI: 10.1016/j.scitotenv.2019.05.400] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/12/2019] [Accepted: 05/26/2019] [Indexed: 05/28/2023]
Abstract
Excessive phosphorus emission is mainly responsible for eutrophication. Recently, the application of modified biochars for phosphorus removal from aqueous solution has set off a boom. In the present study, a novel modified biochar was developed, from urban sewage sludge by decorating dolomite according to the dried mass ratio of sludge to dolomite being 1:1. The experimental results showed that the adsorption process preferred lower pH, with the biochar under investigation exhibiting high phosphate removal efficiency of 96.8% at the adsorbent dosage of 2.6 g/L and the initial solution pH of 4.5. Moreover, for the tested biochar, the phosphate removal kinetics data at different temperatures were all well fitted by the pseudo-second-order model, thereby establishing the endothermic nature of the adsorption process. Furthermore, the phosphate removal data upon being well fitted by the Langmuir model showed the maximal removal capacity of 29.18 mg/g. Further, for determining the mechanism involved in the removal process, SEM, XRD, and FTIR analysis were carried out, which in turn revealed that the phosphate combines with the biochar via electrostatic attraction, thereby forming a new outer-sphere surface complex and inner-sphere surface complex in the acidic condition. Additionally, the calcium and magnesium precipitation of phosphate may contribute to the removal of phosphate in the adsorption process. The presence of SO42-, HCO3-, and C5H7O5COO- could negatively affect the removal of phosphate, while CH3COO- had a positive effect on the adsorption of phosphate on the biochar. Thus, an economic assessment showed that the proposed adsorption process had a commercial attraction.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bing Li
- Department of Chemical & Materials Engineering, University of Auckland, New Zealand
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ning Zhao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guojun Guo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Dingding Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
37
|
Wang Q, Yu J, Chen X, Du D, Wu R, Qu G, Guo X, Jia H, Wang T. Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109237. [PMID: 31310932 DOI: 10.1016/j.jenvman.2019.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Cu2+ readily complexes with ethylenediaminetetraacetic acid (EDTA) to form a heavy metal complex (Cu-EDTA) that is typical in the effluents from mining and electroplating industries. It was difficult for the classical alkaline precipitation method to eliminate the heavy metal complex due to the strong bonding ability between Cu(II) and EDTA. Cu(II) release and removal performance after Cu-EDTA decomplexation in a non-thermal plasma oxidation system was carried out in this study. The removal process was characterized by chemical oxygen demand, total organic carbon, atomic force microscopy, and electroconductivity analysis. The toxicity effect of the treated Cu-EDTA solution was also tested by photobacterium bioassay. The experimental results showed that 80.2% of Cu was released and removed within 60 min of the non-thermal plasma treatment/alkaline precipitation. Relatively higher energy input, lower Cu-EDTA concentration, and acidic conditions were necessary to obtain greater Cu release and removal performance, and there existed an appropriate air flow rate for high-efficient Cu release and removal. O2-, OH, 1O2, and O3 were the main active substances leading to Cu2+ release. Its residual toxicity to P.phosphoreum sp.-T3 was significantly reduced after treatment.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jinxian Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - XueYao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Danting Du
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Renren Wu
- South China Institute of Environmental Science, MEE, Guangzhou, 510655, PR China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
38
|
Yang S, Yin K, Wu J, Wu Z, Chu D, He J, Duan JA. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. NANOSCALE 2019; 11:17607-17614. [PMID: 31329193 DOI: 10.1039/c9nr04381k] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Massive discharging of oily wastewater has a serious impact on the ecological environment and human health. However, the rapid development of an efficient separation membrane exhibiting anti-fouling and long-term stability for highly emulsified oily wastewater separation remains a challenge. Herein, a superwettable porous Ti foam was fabricated via a facile and ultrafast strategy of femtosecond laser direct writing. The obtained surface possessed numerous nanoparticle-covered nanoripple structures with intriguing superhydrophilicity and underwater superoleophobicity. Further, the laser-treated foam possessed high porosity and exhibited an excellent performance separating oil-in-water emulsions. A high permeation flux up to ∼1900 L m-1 h-1 was achieved, with a separation efficiency of >99% under a negative pressure (-5 kPa). Moreover, the as-prepared foam exhibited outstanding properties of anti-oil fouling and stability, indicating robust reusability for long-term separation application. This work may provide an efficient and low-cost route for overcoming future large-scale oily wastewater separation issues.
Collapse
Affiliation(s)
- Shuai Yang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Albukhari SM, Ismail M, Akhtar K, Danish EY. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Hou L, Niu Y, Jiang Y, Jiao T, Guo Y, Zhou Y, Gao F. Insulin amyloid fibrils-templated rational self-assembly of vine-tree-like PtRh nanocatalysts for efficient methanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|