1
|
Vo DT, Dinh NT, Le THT, Nguyen DT, Phan LT, Do HT, Mok YS, Nguyen DB. Comprehensive analysis of experimental conditions in plasma-liquid interaction for the efficient removal of methylene blue. RSC Adv 2025; 15:14756-14766. [PMID: 40337232 PMCID: PMC12056738 DOI: 10.1039/d5ra01066g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
A comprehensive investigation of the input parameters in a plasma-liquid interaction (PLI) for the removal of methylene blue (MB) in artificial wastewater was conducted using a cold atmospheric pressure Ar plasma jet (jet temperature ≤ 40 °C). The Ar plasma jet was generated by a gliding arc configuration and driven with a 50 Hz AC high voltage. The effects of key parameters on MB removal efficiency were systematically examined, including stirring solution, distance from the plasma jet source to the liquid surface, interaction time, initial MB concentration, and Ar flow rate. These results indicate that increasing the Ar flow rate, treatment time, and stirring solution improved the MB removal efficiency. In contrast, the efficiency decreased with distance and the initial MB solution. To evaluate the magnitude of these factors, a quadratic equation was developed to predict MB removal efficiency, demonstrating good agreement with the experimental data. Consequently, the relative importance of the factors based on first-order coefficients was determined as follows: treatment time > Ar flow rate > initial MB concentration > distance > stirring solution. These findings provide valuable insights for optimizing the plasma configuration and operating conditions for efficient MB removal via PLI treatment. Remarkably, 99% of MB degradation in the feed (20 mg L-1) was achieved within 50 minutes of treatment, with an energy efficiency of 82.76 mg MB per kW per h, corresponding to 241.67 kW h m-3 for an initial MB of 20 mg L-1. This process is environmentally friendly owing to its low electrical energy consumption and the fact that no chemicals are used.
Collapse
Affiliation(s)
- Duc Trung Vo
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea
- Research Institute for Sustainable Development, Ho Chi Minh City University of Natural Resources and Environment Hochiminh City Vietnam
| | - Nga Thi Dinh
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City Go Vap Ho Chi Minh City Vietnam
| | - Tam Huynh Thanh Le
- Research Institute for Sustainable Development, Ho Chi Minh City University of Natural Resources and Environment Hochiminh City Vietnam
| | - Duc Trung Nguyen
- Research Institute for Sustainable Development, Ho Chi Minh City University of Natural Resources and Environment Hochiminh City Vietnam
| | - Lan Thi Phan
- Faculty of Electronic Engineering I, Posts and Telecommunications Institute of Technology Hanoi Vietnam
| | - Hoang Tung Do
- Institute of Physics, Vietnam Academy of Science and Technology 10 Dao Tan, Ba Dinh Hanoi Vietnam
| | - Young Sun Mok
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Duc Ba Nguyen
- Institute of Theoretical and Applied Research, Duy Tan University Hanoi 100000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 550000 Vietnam
| |
Collapse
|
2
|
Fattahi N, Fattahi T, Kashif M, Ramazani A, Jung WK. Lignin: A valuable and promising bio-based absorbent for dye removal applications. Int J Biol Macromol 2024; 276:133763. [PMID: 39002913 DOI: 10.1016/j.ijbiomac.2024.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The importance of environmental issues and the existence of humans have led to the recognition of environmental concerns as the main risk to modern life. Notably, one major concern for protecting and managing the environment and human health is the presence of dyes in wastewater. Therefore, before discharging wastewater into mainstream water, it is crucial to remove dyes. Among all lignocellulosic materials, lignin is a highly fragrant biopolymer. Its abundant availability, complex structure, and numerous functional moieties, including hydroxyl, carboxyl, and phenolic, are used in different chemicals and applications. Based on this, lignin is a very useful green material for adsorption, specifically in removing both heavy metals and organic pollutants from wastewater. This article describes the use of lignin-based adsorbents as a recent breakthrough in the removal of dye from aqueous solutions. On the other hand, the review intends to encourage readers to study both established and novel avenues in lignin-based dye removal materials.
Collapse
Affiliation(s)
- Nadia Fattahi
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Tanya Fattahi
- Department of Environmental Health, School of Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Muhammad Kashif
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo munhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent B-9000, Belgium
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Maghrawy HH, El Kareem HA, Gomaa OM. Enhanced exopolysaccharide production in gamma irradiated Bacillus subtilis: A biofilm-mediated strategy for ZnO nanoparticles removal. Int J Biol Macromol 2024; 258:128884. [PMID: 38141708 DOI: 10.1016/j.ijbiomac.2023.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Biofilm-mediated strategy was studied for ZnO nanoparticle removal from aqueous media. Bacillus subtilis isolated from the soil rhizosphere was selected based on its high viscosity (133 Pa/s) of the cultivated culture and biofilm formation. The bacterium was exposed to gamma-irradiation to enhance EPS production along with its cultivation in EPS-producing media. The results show an increase in viscosity that reached 160 Pa/s at 2 kGy. EPS production increased from 4.45 to 7.95 mg/mL and the protein/carbohydrate ratio increased from 3 to 4.4 which reflects the stickiness of EPS. Thermal Gravimetric Analysis (TGA) showed 2 phase weight loss for gamma irradiated EPS and defined protein peaks when characterized using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Native and gamma-irradiated Bacillus subtilis cells with their enhanced EPS were grown as a biofilm on sterile waste gauze fabric, Scanning Electron Microscopy (SEM) showed an increased biofilm attachment in gamma-irradiated samples. The latter was used for the removal of ZnO NP from aqueous media. Energy dispersive X-ray (EDX) mapping confirms that ZnO NPs were entrapped within the carbon and oxygen elements forming the biofilm with net intensities of 14.04, 1713, and 1190, respectively. The results confirm that biofilm-mediated strategy is effective in nanoparticles removal.
Collapse
Affiliation(s)
- Heba Hamed Maghrawy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
4
|
Serafin J, Kishibayev K, Tokpayev R, Khavaza T, Atchabarova A, Ibraimov Z, Nauryzbayev M, Nazzal JS, Giraldo L, Moreno-Piraján JC. Functional Activated Biocarbons Based on Biomass Waste for CO 2 Capture and Heavy Metal Sorption. ACS OMEGA 2023; 8:48191-48210. [PMID: 38144099 PMCID: PMC10733959 DOI: 10.1021/acsomega.3c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Inexpensive porous activated biocarbons were prepared from biomass and agriculture waste following the method of thermal and hydrothermal carbonization and activation with superheated water vapor. The activated biocarbons were characterized by nitrogen adsorption-desorption at 77 K, SEM, XRD, Raman spectrometry, FTIR spectroscopy, determination of particle size, and elemental composition by XRF. The specific surface area was in the range of 240-709 m2/g, and the total pore volume was from 0.12 to 0.43 cm3/g. The percentage of microporosity in activated biocarbons was 89-92%. These activated biocarbons have been used for CO2 and heavy metal sorption. Activated biocarbons based on pine cones and birch prepared by thermal carbonization and activation with superheated water vapor had the highest ability to capture CO2 and amounted to 6.43 and 6.00 mmol/g at 273 K, as well as 4.57 and 4.22 mmol/g at 298 K, respectively. The best activated biocarbon was characterized by unchanged stability after 30 adsorption and desorption cycles. It was proved that the adsorption of CO2 depends on narrow micropores (<1 nm). Activated biocarbons have also been analyzed as effective adsorbents for removing Cu2+, Zn2+, Fe2+, Ni2+, Co2+, and Pb2+ ions from aqueous solutions. Activated biocarbons are effective adsorbents for the removal of lead and zinc ions from aqueous solutions.
Collapse
Affiliation(s)
- Jarosław Serafin
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona 08019, Spain
| | - Kanagat Kishibayev
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Rustam Tokpayev
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Tamina Khavaza
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Azhar Atchabarova
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Zair Ibraimov
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Mikhail Nauryzbayev
- Center
of Physical-Chemical Methods of Research and Analysis, Al Farabi Kazakh National University, 96 A, Tole bi Street, Almaty 050012, Kazakhstan
| | - Joanna Sreńscek Nazzal
- Faculty
of Chemical Technology and Engineering, Department of Catalytic and
Sorbent Materials Engineering, West Pomeranian
University of Technology in Szczecin, Piastów Ave. 42, Szczecin 71-065, Poland
| | - Liliana Giraldo
- Facultad
de Ciencias, Departamento de Quimica, Grupo
de Calorimetria Universidad Nacional de Colombia, Sede Bogota 111321, Colombia
| | - Juan Carlos Moreno-Piraján
- Facultad
de Ciencias, Departamento de Quimica, Grupo de Investigación
de Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Tripathi M, Singh S, Pathak S, Kasaudhan J, Mishra A, Bala S, Garg D, Singh R, Singh P, Singh PK, Shukla AK, Pathak N. Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. TOXICS 2023; 11:940. [PMID: 37999592 PMCID: PMC10674586 DOI: 10.3390/toxics11110940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The presence of dye in wastewater causes substantial threats to the environment, and has negative impacts not only on human health but also on the health of other organisms that are part of the ecosystem. Because of the increase in textile manufacturing, the inhabitants of the area, along with other species, are subjected to the potentially hazardous consequences of wastewater discharge from textile and industrial manufacturing. Different types of dyes emanating from textile wastewater have adverse effects on the aquatic environment. Various methods including physical, chemical, and biological strategies are applied in order to reduce the amount of dye pollution in the environment. The development of economical, ecologically acceptable, and efficient strategies for treating dye-containing wastewater is necessary. It has been shown that microbial communities have significant potential for the remediation of hazardous dyes in an environmentally friendly manner. In order to improve the efficacy of dye remediation, numerous cutting-edge strategies, including those based on nanotechnology, microbial biosorbents, bioreactor technology, microbial fuel cells, and genetic engineering, have been utilized. This article addresses the latest developments in physical, chemical, eco-friendly biological and advanced strategies for the efficient mitigation of dye pollution in the environment, along with the related challenges.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sakshi Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Jahnvi Kasaudhan
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Aditi Mishra
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
6
|
Li R, Wang Y, Zeng F, Si C, Zhang D, Xu W, Shi J. Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation. Int J Mol Sci 2023; 24:15244. [PMID: 37894924 PMCID: PMC10607072 DOI: 10.3390/ijms242015244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing concerns over the environment and the growing demand for sustainable water treatment technologies have sparked substantial interest in the field of photocatalytic dye removal. Polyoxometalates (POMs), known for their intricate metal-oxygen anion clusters, have received considerable attention due to their versatile structures, compositions, and efficient facilitation of photo-induced electron transfers. This paper provides an overview of the ongoing research progress in the realm of photocatalytic dye degradation utilizing POMs and their derivatives. The details encompass the compositions of catalysts, catalytic efficacy, and light absorption propensities, and the photocatalytic mechanisms inherent to POM-based materials for dye degradation are exhaustively expounded upon. This review not only contributes to a better understanding of the potential of POM-based materials in photocatalytic dye degradation, but also presents the advancements and future prospects in this domain of environmental remediation.
Collapse
Affiliation(s)
| | | | | | | | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| | | | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| |
Collapse
|
7
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
8
|
Bahadir T, Şimşek İ, Tulun Ş, Çelebi H. Use of different food wastes as green biosorbent: isotherm, kinetic, and thermodynamic studies of Pb 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103324-103338. [PMID: 37688702 DOI: 10.1007/s11356-023-29745-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Lead (Pb2+) can contaminate waters from many sources, especially industrial activities. This heavy metal is an amphoteric, toxic, endocrine-disrupting, bioaccumulative, and carcinogenic pollutant. One of the effective and economical processes used to remove lead from water is adsorption. The fact that the adsorbents used in this method are easily available and will contribute to waste minimization is the primary reason for preference. In this study, the adsorption abilities and surface properties of tea waste (TW), banana peels (BP), almond shells (AS), and eggshells (ES) which are easily available do not need modification and have very high (> 90%) removal efficiencies presented with isotherm, kinetic, and thermodynamic perspectives as detail. The surface structures and elemental distribution of raw adsorbents were revealed with SEM/EDX. Using FTIR analysis, carboxylic (-COOH) and hydroxyl groups (-OH) in the structure of TW, AS, BP, and ES were determined. It was determined that the Pb2+ adsorption kinetics conformed to the pseudo-quadratic model and its isotherm conformed to the Langmuir. The optimum adsorption of Pb2+ was ranked as BP > ES > AS > TW with 100, 68.6, 51.7, and 47.8 mg/g qm, respectively. The fact that the process has negative ΔG° and positive ΔH° values from a thermodynamic point of view indicates that it occurs spontaneously and endothermically. According to the experimental data, the possible adsorption mechanism for Pb2+ has occurred in the form of physisorption (van der Waals, electrostatic attraction) and cooperative adsorption including chemisorption (complexation, ion exchange) processes.
Collapse
Affiliation(s)
- Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye.
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - Hakan Çelebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| |
Collapse
|
9
|
Zayed AM, Metwally BS, Masoud MA, Mubarak MF, Shendy H, Abdelsatar MM, Petrounias P, Ragab AH, Hassan AA, Abdel Wahed MSM. Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems. RSC Adv 2023; 13:24887-24898. [PMID: 37614786 PMCID: PMC10442598 DOI: 10.1039/d3ra03105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Sugar beet crown (SBC) waste was employed to produce sustainable activated carbon (AC) by a thermo-chemical activation procedure using a fixed ratio of H3PO4/SBC (1 : 1 w/w ratio) at 550 °C/2 h. An activated carbon/polyamide nano-composite (AC/PA) was also prepared through the polymerization of the fabricated AC (90%) with polyamide (PA, 10%) synthetic textile waste using a proper dissolving agent at a specified w/w ratio with the employed polymer (formic acid/PA = 82/18%). Both AC and its derivative AC/PA were employed in the remediation of dyes from industrial wastewater in column systems, and their efficiencies were compared at various applied experimental conditions. The adsorption of the industrial dye waste (IDW) was a pH-, flow rate-, and bed thickness-controlled process by the regarded adsorbents. Kinetic studies confirmed the suitability of the Thomas equation over the Yoon and Nelson model in predicting the dynamic adsorption process of IDW by AC and AC/PA as was assured by the close agreement among the calculated and experimental uptake capacities of both adsorbents at the same applied flow rates, suggesting the chemisorption nature of IDW adsorption. Additionally, electrostatic attraction was the leading mechanism of IDW adsorption by AC and AC/PA composite with some advantages of the former over the latter.
Collapse
Affiliation(s)
- Ahmed M Zayed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Bahaa S Metwally
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
- Textile Technology Department, Faculty of Technology and Education, Beni-Suef University Beni-Suef 62521 Egypt
| | - Mostafa A Masoud
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute 1 Ahmed El-Zomor Street, El-Zohour Region, Nasr City Cairo 11765 Egypt
| | - Hussain Shendy
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud M Abdelsatar
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Petros Petrounias
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH) 15125 Athens Greece
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Abeer A Hassan
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Mahmoud S M Abdel Wahed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| |
Collapse
|
10
|
Tofan L. Insights into the Applications of Natural Fibers to Metal Separation from Aqueous Solutions. Polymers (Basel) 2023; 15:polym15092178. [PMID: 37177324 PMCID: PMC10181014 DOI: 10.3390/polym15092178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There is a wide range of renewable materials with attractive prospects for the development of green technologies for the removal and recovery of metals from aqueous streams. A special category among them are natural fibers of biological origin, which combine remarkable biosorption properties with the adaptability of useful forms for cleanup and recycling purposes. To support the efficient exploitation of these advantages, this article reviews the current state of research on the potential and real applications of natural cellulosic and protein fibers as biosorbents for the sequestration of metals from aqueous solutions. The discussion on the scientific literature reports is made in sections that consider the classification and characterization of natural fibers and the analysis of performances of lignocellulosic biofibers and wool, silk, and human hair waste fibers to the metal uptake from diluted aqueous solutions. Finally, future research directions are recommended. Compared to other reviews, this work debates, systematizes, and correlates the available data on the metal biosorption on plant and protein biofibers, under non-competitive and competitive conditions, from synthetic, simulated, and real solutions, providing a deep insight into the biosorbents based on both types of eco-friendly fibers.
Collapse
Affiliation(s)
- Lavinia Tofan
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof.Dr. D. Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
11
|
Kyere-Yeboah K, Bique IK, Qiao XC. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. CHEMOSPHERE 2023; 320:138061. [PMID: 36754299 DOI: 10.1016/j.chemosphere.2023.138061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
With development and urbanization, the amount of wastewater generated due to human activities drastically increases yearly, causing water pollution and intensifying the already worsened water crisis. Although convenient, conventional wastewater treatment methods such as activated sludge, stabilization ponds, and adsorption techniques cannot fully eradicate the complex and recalcitrant contaminants leading to toxic byproducts generation. Recent advancements in wastewater treatment techniques, specifically non-thermal plasma technology, have been extensively investigated for the degradation of complex pollutants in wastewater. Non-thermal plasma is an effective alternative for degrading and augmenting the biodegradability of recalcitrant pollutants due to its ability to generate reactive species in situ. This article critically reviews the non-thermal plasma technology, considering the plasma discharge configuration and reactor types. Furthermore, the influence of operational parameters on the efficiency of the plasma systems and the reactive species generated by the system during discharge has gained significant interest and hence been discussed. Also, the application of non-thermal plasma technology for the degradation of pharmaceuticals, pesticides, and dyes and the inactivation of microbial activities are outlined in this review article. Additionally, optimistic applications involving the combination of non-thermal plasma and catalysts and pilot and industrial-scale projects utilizing non-thermal plasma technology have been addressed. Concluding perceptions on the challenges and future perspectives of the non-thermal technology on wastewater treatment are accentuated. Overall, this review outlines a comprehensive understanding of the non-thermal plasma technology for recalcitrant pollutant degradation from a scientific perspective providing detailed instances for reference.
Collapse
Affiliation(s)
- Kwasi Kyere-Yeboah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ikenna Kemba Bique
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xiu-Chen Qiao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Choi H, Kim T. Adsorption and quantitative fluorescence-based measurement of ammonium ions using a chitosan-based hydrogel combined with p-hydroxybenzoic acid. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Saheed IO, Azeez SO, Suah FBM. Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review. Carbohydr Polym 2022; 298:120138. [DOI: 10.1016/j.carbpol.2022.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
14
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
|
16
|
Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113160. [PMID: 35026583 DOI: 10.1016/j.ecoenv.2021.113160] [Citation(s) in RCA: 538] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 05/21/2023]
Abstract
The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of wastewater from a large number of textile industries without prior treatment has significant negative consequences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water resources. This review compares the most recent technologies which are commonly used to remove dye from textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is expected to spark great interest among the research community who wish to combat the widespread risk of toxic organic pollutants generated by the textile industries.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Kamal M Okasha
- Internal Medicine and Nephrology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Agrifood, Cranfield University, MK43 0AL, UK
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
18
|
Liu J, Liu H, Yang X, Jia X, Cai M, Bao Y. Preparation of Si-Mn/biochar composite and discussions about characterizations, advances in application and adsorption mechanisms. CHEMOSPHERE 2021; 281:130946. [PMID: 34289614 DOI: 10.1016/j.chemosphere.2021.130946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
A novel Si-Mn binary modified biochar composite material (SMBC) was prepared after being sintered 450 °C for 2 h. The crystal structure, surface functional groups, surface morphology and element composition, specific surface area and pore structure were characterized by XRD, FTIR, XPS, SEM + EDS and BET etc. The results showed that the surface of SMBC was rough and loose, and the specific surface area increased to 35.4284 m2/g. Si and Mn were uniformly attached to the surface of biochar in the form of SiO2, MnOx, MnSiO3. Batch adsorption experiments showed that SMBC had a higher removal efficiency (139.06 mg/g, above 98%) for Cu(II) when the dosage was 2 g/L and pH = 6. The cycle experiments showed that SMBC had good reusability, and its regeneration efficiency still reached 80.24%. The leaching amount of Mn (0.65 mg/L) was greatly reduced and avoid second-pollution resulted from ion exchange, which was attributed to the existence of Si-O-Mn bonds, and they could help Mn adhere to the surface of biochar more stable. The adsorption process was dominated by single-layer chemical adsorption and mainly occurred in the membrane diffusion stage. Cu(II) mainly formed -COOCu, -OCu, Cu(OH)2, Cu(OH)2CO3, Si-O-Cu, Mn-O-Cu by the mechanisms such as precipitation (4.74%), ion exchange (13.81%), complexation and physical adsorption (total 81.45% of the two mechanisms). Among them, complexation was dominant in the adsorption process.
Collapse
Affiliation(s)
- Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Honghao Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoyu Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xuping Jia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Mengfan Cai
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yongchao Bao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
19
|
Akpomie KG, Conradie J. Enhanced surface properties, hydrophobicity, and sorption behavior of ZnO nanoparticle-impregnated biomass support for oil spill treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25283-25299. [PMID: 33453027 DOI: 10.1007/s11356-021-12451-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Metallic nanoparticles (NPs) have gained significant attention in recent years due to their efficiency in the adsorption of water pollutants. Except for magnetic NPs, metallic NPs are rarely used in oil sorption studies, due to the difficulty in recovering the NPs from the treated water. This study reports for the first time the application of ZnONPs for oil spill treatment. The ZnONPs were impregnated onto Musa acuminata peel (MP) support to form a novel material (ZnOMP), which was utilized for the sorption of oil from synthetic oil spills. The as-prepared sorbents were characterized by the SEM, EDS, BET, FTIR, FE-SEM, TGA, and XRD techniques. The presence of 31.32-nm average-sized ZnONPs enhanced the oil uptake characteristics, with clear affinity for the oil phase in comparison to the pristine MP. A maximum sorption capacity of 4.146 g/g and 5.236 g/g was obtained for biosorbents MP and ZnOMP, respectively, which was higher than most reported sorbents. The Freundlich model presented the best fit for the isotherm data, while the pseudo-second-order model was most suited for the kinetics. The presence of competing heavy metal ions in solution did not have any significant effect on the oil sorption capacity onto ZnOMP. The sorption mechanism was attributed to absorption and hydrophobic interactions. ZnONPs impregnated onto the biomass enhanced the spontaneity of oil uptake at higher temperatures. Over 82% desorption of the oil contaminant from the biosorbents was achieved during recovery, using petroleum ether and n-pentane as eluents. Concisely, ZnONPs enhanced the uptake and hydrophobic characteristic of MP biomass and showed good recovery and reusability. Thus, the application of ZnONPs impregnated onto biosorbents in oil spill treatment is highly recommended.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
20
|
Preparation of Poly(acrylic acid) ‐Boron Nitride Composite as a Highly Efficient Adsorbent for Adsorptive Removal of Heavy Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Chang SH. Gold(III) recovery from aqueous solutions by raw and modified chitosan: A review. Carbohydr Polym 2021; 256:117423. [PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
22
|
Ultrasonic aided sorption of oil from oil-in-water emulsion onto oleophilic natural organic-silver nanocomposite. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Akpomie KG, Conradie J. Biosorption and regeneration potentials of magnetite nanoparticle loaded Solanum tuberosum peel for celestine blue dye. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:347-361. [PMID: 32898434 DOI: 10.1080/15226514.2020.1814198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This research evaluated the adsorption of celestine blue (CB) onto a novel Solanum tuberosum waste-magnetite nanocomposite (Mt@STB), prepared by an ecofriendly impregnation of magnetite (Mt) nanoparticles onto Solanum tuberosum waste (STB). The adsorbents characterization revealed that Mt@STB had a surface area (18.92 m2/g), pHpzc (7.55), porous morphology as well as suitable functional groups for efficient sequestration of CB onto the composite. The SEM, XRD, and EDX showed successful incorporation of 31.21 nm average size Mt nanoparticles on Mt@STB. Faster kinetics of CB sequestration from the wastewater was obtained for Mt@STB (100 min) compared to STB (140 min). Among four isotherm models, the Langmuir exhibited the best fit with R2 > 0.9971 and sum square errors (SSE) < 0.0151. The pristine STB and Mt@STB composite showed maximum monolayer CEB uptake of 7.61 and 9.02 mg/g, as well as optimum removal of 73.8 and 84.7%, respectively. The pseudo-second-order model was more suitable in the kinetic description, while thermodynamics revealed a physical, spontaneous, and endothermic CB uptake. Besides, the efficacy of the composite for CB was confirmed from efficient regeneration over three adsorption/desorption cycles, which specified the viability of Mt@STB as a sustainable material for the decontamination of CB polluted water. NOVELTY STATEMENT The adsorption of dyes from wastewaters has been widely studied due to the harmful effects on the ecosystem. However, research on the removal of celestine blue (CB) dye is rare despite its wide use in the nuclear and textile industries. Until date, there is no report on the adsorption of CB on biomaterial via biosorption. Therefore, the biosorption behavior of CB is presently unknown. Hence, this study reports the biosorption of CB onto a biosorbent (Solanum tuberosum peel [STB]) in an attempt to understand its biosorption behavior. Besides, the impregnation of magnetite (Mt) nanoparticles has been reported to enhance the uptake of most adsorbents for dye. To the best of our knowledge, such magnetic nanoparticle impregnation of STB has not been reported. We, therefore, synthesized a novel biowaste-magnetite composite (Mt@STB) and evaluated its potentials for the uptake as well as its reuse for CB biosorption.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
24
|
Synthesis, characterization, and regeneration of an inorganic-organic nanocomposite (ZnO@biomass) and its application in the capture of cationic dye. Sci Rep 2020; 10:14441. [PMID: 32879352 PMCID: PMC7468233 DOI: 10.1038/s41598-020-71261-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Despite the efficiency of ZnO nanoparticle (NPs) composite adsorbents in the adsorption of various pollutants, there is presently no report on the combo of ZnONPs with biomass for adsorption. Besides, there is a dearth of information on the biosorption of celestine blue (CEB), a dye used in the nuclear and textile industry. In this study, biogenic-chemically mediated synthesis of a composite (ZnO@ACP) was prepared by the impregnation of ZnONPs onto Ananas comosus waste (ACP) for the adsorption of CEB. The SEM, EDX, FTIR, XRD, BET, and TGA characterizations showed the successful presence of ZnONPs on the biomass to form a nanocomposite. The uptake of CEB was enhanced by the incorporation of ZnONPs on ACP. A faster CEB adsorption onto ZnO@ACP (120 min) compared to ACP (160 min) was observed. The Langmuir (R2 > 0.9898) and pseudo-second-order (R2 > 0.9518) models were most appropriate in the description of the adsorption process. The impregnation of ZnONPs onto the biomass enhanced the spontaneity of the process and displayed endothermic characteristics. High CEB desorption of 81.3% from the dye loaded ZnO@ACP as well as efficient reusability showed the efficacy of the prepared nanocomposite for CEB adsorption.
Collapse
|