1
|
Deng J, Peng Z, Xia Z, Mo Y, Guo L, Wei J, Sun L, Liu M. Five glutathione S-transferase isozymes played crucial role in the detoxification of aflatoxin B 1 in chicken liver. J Anim Sci Biotechnol 2025; 16:54. [PMID: 40197593 PMCID: PMC11977921 DOI: 10.1186/s40104-025-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AFB1-8,9-exo-epoxide (AFBO) is the highly toxic product of Aflatoxin B1 (AFB1). Glutathione S-transferases (GSTs) play pivotal roles in detoxifying AFB1 by catalyzing the conjugation of AFBO with glutathione (GSH). Although there are over 20 GST isozymes that have been identified in chicken, GST isozymes involved in the detoxification process of AFB1 have not been identified yet. The objective of this study was to determine which GST isozymes played key role in detoxification of AFB1. RESULTS A total of 17 pcDNA3.1(+)-GST isozyme plasmids were constructed and the GST isozyme genes were overexpressed by 80-2,500,000 folds in the chicken Leghorn male hepatoma (LMH) cells. Compared to the AFB1 treatment, overexpression of GSTA2X, GSTA3, GSTT1L, GSTZ1-1, and GSTZ1-2 increased the cell viability by 6.5%-17.0% in LMH cells. Moreover, overexpression of five GST isozymes reduced the release of lactate dehydrogenase and reactive oxygen species by 8.8%-64.4%, and 57.2%-77.6%, respectively, as well as enhanced the production AFBO-GSH by 15.8%-19.6%, thus mitigating DNA damage induced by AFB1. After comprehensive evaluation of various indicators, GSTA2X displayed the best detoxification effects against AFB1. GSTA2X was expressed in Pichia pastoris X-33 and its enzymatic properties for catalyzing the conjugation of AFBO with GSH showed that the optimum temperature and pH were 20-25 °C and 7.6-8.6 as well as the enzymatic kinetic parameter Vmax was 0.23 nmol/min/mg and the Michaelis constant was 86.05 μmol/L with the AFB1 as substrate. CONCLUSIONS In conclusion, GSTA2X, GSTA3, GSTT1L, GSTZ1-1, and GSTZ1-2 played key roles in AFB1 detoxification, which will provide new remediation strategies to prevent aflatoxicosis in chickens.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hebei Panshuo Biotechnology Co., Ltd., Baoding, Hebei, 071500, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yixin Mo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijia Guo
- Hebei Panshuo Biotechnology Co., Ltd., Baoding, Hebei, 071500, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lvhui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Makaro A, Kasprzak Z, Jaczynska M, Swierczynski M, Salaga M. Role of Cytochromes P450 in Intestinal Barrier Function: Possible Involvement in the Pathogenesis of Leaky Gut Syndrome. Dig Dis Sci 2025; 70:1293-1304. [PMID: 39971825 DOI: 10.1007/s10620-025-08873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
The intestinal barrier constitutes the largest surface of the human body communicating with the external environment. Alterations affecting elements of intestinal wall may lead to increased intestinal permeability and resulting translocation of bacteria or its components to the bloodstream in the form of the "leaky gut syndrome" (LGS). One of the most common causes of LGS is the disruption of tight junctions (TJ) maintained by tight junction proteins (TJP). LGS and associated alterations in TJP are observed in numerous gastrointestinal (GI) diseases, including inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Current literature indicates the key role of LGS in many pathological processes, further emphasizing the need for effective pharmacological approaches to treat this syndrome. One of the potential pharmacological targets in LGS treatment are members of the cytochrome P450 (CYP450) superfamily. By affecting intestinal permeability, they may lead to LGS development. It was found that the expression of CYP8B1 synthesizing cholic acid and CYP26 degrading all-trans retinoic acid indirectly influence TJs. CYP2E1 responsible for the metabolism of a wide variety of chemicals, including ethanol, plays a crucial role in the impairment of the intestinal wall. Contrarily, the overexpression of CYP27B1 has a protective effect on the intestinal integrity. CYP1A1, CYP2A6, CYP2J2 and CYP3A were also suggested to influence the GI tract, through their capability to metabolize serotonin, nicotine, endocannabinoids and gemcitabine, respectively. This review summarizes the findings on the role of CYP450 isoforms in intestinal hyperpermeability and their potential involvement in the pathophysiology of LGS.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Zuzanna Kasprzak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Maria Jaczynska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Mikolaj Swierczynski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
3
|
Zhang X, Chen J, Ma X, Tang X, Tan B, Liao P, Yao K, Jiang Q. Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies. Metabolites 2025; 15:219. [PMID: 40278348 PMCID: PMC12029259 DOI: 10.3390/metabo15040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Mycotoxins, which are secondary metabolites produced by fungi, are prevalent in animal feed and pose a serious risk to the healthy growth of livestock and poultry. Methods: This review aims to conclude current knowledge on the detrimental effects of mycotoxins on animal health and to demonstrate the potential of plant extracts as a means to counteract mycotoxin toxicity in feed. A systematic review of the literature was conducted to identify studies on the impact of mycotoxins on livestock and poultry health, as well as research into the use of plant extracts as feed additives to mitigate mycotoxin effects. Studies were selected based on their relevance to the topic, and data were extracted regarding the mechanisms of action and the efficacy of plant extracts. Results: Excessive mycotoxins in feed can lead to reduced appetite, impaired digestion, and general health issues in animals, resulting in decreased food intake, slowed weight gain, and instances of acute poisoning. Plant extracts with antioxidant, anti-inflammatory, and anti-mutagenic properties have shown the potential to improve production efficiency and reduce the toxic effects of mycotoxins. Conclusion: This comprehensive review not only consolidates the well-documented adverse effects of mycotoxins on animal health but also introduces a novel perspective by highlighting the potential of plant extracts as a promising and natural solution to counteract mycotoxin toxicity.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| |
Collapse
|
4
|
Su D, Peng J, Hao J, Wang X, Yu P, Li S, Shi H. Integrated multiomics approach and pathological analyses provide new insights into hepatic injury and metabolic alterations in Saanen goats after dietary exposure to aflatoxin B 1. J Dairy Sci 2025; 108:1431-1450. [PMID: 39477065 DOI: 10.3168/jds.2024-25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 01/25/2025]
Abstract
Exploring the toxicity and metabolic mechanisms of aflatoxin B1 (AFB1) in ruminants can help to develop strategies to prevent or reduce the transfer of the toxin and its metabolites to milk and meat. This study aimed to explore the effects of 3 concentrations of dietary AFB1 (0, 50, and 500 μg/kg) on hepatic injury and metabolism in Saanen goats via histological examination, western blot analysis, as well as integrated multiomics techniques. Eighteen Saanen goats were assigned to 1 of 3 treatments and the AFB1 challenge lasted for 14 d. Results showed that the liver tissue was enlarged and the relative organ index of the liver was linearly increased with elevated AFB1 levels. The hepatocyte apoptosis rate was significantly increased after AFB1 exposure, and the western blotting results revealed that both the external apoptotic pathway and mitochondrial-mediated intrinsic apoptotic pathway might be involved in AFB1-induced hepatocyte apoptosis. We identified 251, 269, and 154 significant differentially expressed genes (DEG) and 340, 596, and 127 significant differential metabolites in comparisons between the control (CON; 0 μg/kg) and low-dose (LO; 50 μg/kg) groups, the CON and high-dose (HI; 500 μg/kg) groups, and the LO and HI groups, respectively. The DEG annotated were mainly involved in the cell part, cell, single-organism process, cellular process, binding, and other functional categories. The identified metabolites primarily belonged to glycerophospholipids, prenol lipids, carboxylic acids, and derivatives. Integrative analysis of transcriptomics and metabolomics revealed that glycerophospholipids metabolism and choline metabolism in cancer were the most affected pathways related to AFB1 exposure. The identified differential metabolites, DEG, and pathways might have played a crucial role in the hepatic injury induced by AFB1 in goats.
Collapse
Affiliation(s)
- Donghua Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jing Peng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jingjing Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Peiqiang Yu
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Zhong S, Qi YY, Yuan Y, Lian L, Deng Z, Pan F, Zhou J, Wang Z, Li H. Ganoderma lucidum spore powder after oil extraction alleviates microbiota dysbiosis to improve the intestinal barrier function in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:540-553. [PMID: 39243161 DOI: 10.1002/jsfa.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND There are few studies about the differences in the composition of moisture, ash, crude protein, crude fat, crude polysaccharide and ergothioneine in Ganoderma lucidum spore powder (GLSP) from different origins. As for GLSP after oil extraction (OE-GLSP), there are still lots of bioactive substance in it. It can be seen that OE-GLSP has certain biological activity. The effect of OE-GLSP on the improvement of intestinal barrier function has been less studied. RESULTS The results showed that there were significant differences for GLSP from five different origins (Anhui, Jilin, Jiangxi, Shandong and Zhejiang) in moisture (0.065-0.113%), ash (0.603-0.955%), crude fat (42.444-44.773%), crude polysaccharide (2.977-4.127%), crude protein (14.761-17.639%) and ergothioneine (0.552-1.816 mg g-1) (P < 0.05). The monosaccharides of GLSP polysaccharide mainly consist of glucose, galactose, mannose, rhamnose, etc. Moreover, the effects of OE-GLSP supplementation on the regulation of organ index, colonic tissue and intestinal microbiota in C57BL/6J mice were investigated. The supplement of OE-GLSP could restore the organ index and weight loss of antibiotic-treated mice. Moreover, OE-GLSP led to the improvement of intestinal dysbiosis by enriching Bacteroidetes, Firmicutes, Lactobacillus and Roseburia, and increasing the Firmicutes/Bacteroidetes ratio. In addition, OE-GLSP intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (Occludin, Claudin-1 and E-cadherin). CONCLUSION Different GLSP from five origins exhibited significant differences in microstructure and contents of crude polysaccharide, crude protein, crude fat, water, ash and ergothioneine. Moreover, it was found that OE-GLSP could improve the intestinal barrier function and induce potentially beneficial changes in intestinal flora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yao Yao Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Lian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Junfu Zhou
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Zhiyu Wang
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Ye D, Hao Z, Tang S, Velkov T, Dai C. Aflatoxin Exposure-Caused Male Reproductive Toxicity: Molecular Mechanisms, Detoxification, and Future Directions. Biomolecules 2024; 14:1460. [PMID: 39595635 PMCID: PMC11592228 DOI: 10.3390/biom14111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Widespread endocrine disorders and infertility caused by environmental and food pollutants have drawn considerable global attention. Aflatoxins (AFTs), a prominent class of mycotoxins, are recognized as one of the key contributors to environmental and food contamination. Aflatoxin B1 (AFB1) is the most potent and toxic pollutant among them and is known to cause multiple toxic effects, including neuro-, nephro-, hepato-, immune-, and genotoxicity. Recently, concerns have been raised regarding AFB1-induced infertility in both animals and humans. Exposure to AFB1 can disrupt the structure and functionality of reproductive organs, leading to gametogenesis impairment in males, subsequently reducing fertility. The potential molecular mechanisms have been demonstrated to involve oxidative stress, cell cycle arrest, apoptosis, inflammatory responses, and autophagy. Furthermore, several signaling pathways, including nuclear factor erythroid 2-related factor 2; NOD-, LRR-, and pyrin domain-containing protein 3; nuclear factor kappa-B; p53; p21; phosphoinositide 3-kinase/protein kinase B; the mammalian target of rapamycin; adenosine 5'-monophosphate-activated protein kinase; and mitochondrial apoptotic pathways, are implicated in these processes. Various interventions, including the use of small molecules, Chinese herbal extracts, probiotic supplementation, and camel milk, have shown efficacy in ameliorating AFB1-induced male reproductive toxicity, by targeting these signaling pathways. This review provides a comprehensive summary of the harmful impacts of AFB1 exposure on male reproductive organs in mammals, highlighting the potential molecular mechanisms and protective agents.
Collapse
Affiliation(s)
- Dongyun Ye
- Department of Obstetrics and Gynecology, Ezhou Central Hospital, Hubei University of Science and Technology, Ezhou 436000, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
7
|
Li J, Shi M, Wang Y, Liu J, Liu S, Kang W, Liu X, Chen X, Huang K, Liu Y. Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation. J Nanobiotechnology 2024; 22:697. [PMID: 39529091 PMCID: PMC11555919 DOI: 10.1186/s12951-024-02979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a mycotoxin that widely found in the environment and mouldy foods. AFB1 initially targets the intestine, and AFB1-induced intestinal injury cannot be ignored. Lactobacillus amylovorus (LA), a predominant species of Lactobacillus, plays a role in carbohydrate metabolism. Extracellular vesicles (EVs), small lipid membrane vesicles, are widely involved in diverse cellular processes. However, the mechanism by which Lactobacillus amylovorus-QC1H-derived EVs (LA.EVs) protect against AFB1-induced intestinal injury remains unclear. RESULTS In our study, a new strain named Lactobacillus amylovorus-QC1H (LA-QC1H) was isolated from pig faeces. Then, EVs derived from LA-QC1H were extracted via ultracentrifugation. Our results showed that LA.EVs significantly alleviated AFB1-induced intestinal injury by inhibiting the production of proinflammatory cytokines, decreasing intestinal permeability and increasing the expression of tight junction proteins. Moreover, 16 S rRNA analysis revealed that LA.EVs modulated AFB1-induced gut dysbiosis in mice. However, LA.EVs did not exert beneficial effects in antibiotic-treated mice. LA.EVs treatment increased intestinal levels of indole-3-acetic acid (IAA) and activated intestinal aryl hydrocarbon receptor (AHR)/interleukin-22 (IL-22) signalling in AFB1-exposed mice. Inhibition of intestinal AHR signalling markedly weakened the protective effect of LA.EVs in AFB1-exposed mice. CONCLUSIONS LA.EVs alleviated AFB1-induced intestinal injury by modulating the gut microbiota, activating the intestinal AHR/IL-22 signalling, reducing the inflammatory response and promoting intestinal barrier repair in mice.
Collapse
Affiliation(s)
- Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yubo Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xianjiao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Kibugu J, Munga L, Mburu D, Maloba F, Auma JE, Grace D, Lindahl JF. Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals. Toxins (Basel) 2024; 16:483. [PMID: 39591238 PMCID: PMC11598113 DOI: 10.3390/toxins16110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches.
Collapse
Affiliation(s)
- James Kibugu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Leonard Munga
- Department of Animal Science, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - David Mburu
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Fredrick Maloba
- Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Joanna E. Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya;
- Natural Resources Institute, University of Greenwich, UK, Central Avenue, Chatham ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 75189 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
9
|
Zhang L, Gong X, Zhang S, Cui C, Zhang Q, Wang X, Shi W, Bao Y. Danshen polysaccharides alleviate AFB1 induced Jejunal injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117115. [PMID: 39342752 DOI: 10.1016/j.ecoenv.2024.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
AFB1 is a common foodborne toxin known for its potent carcinogenicity. Danshen polysaccharide (DSP) is an active ingredient of Danshen, which has been demonstrated to possess support intestinal homeostasis and anti-inflammatory activities. We utilized New Zealand White rabbits as an animal model to examine the impact of co-exposure to DSP and AFB1 on the intestines, as well as their underlying mechanisms. The results indicate that DSP elevated the abundance of Oscillospira, Coprococcus, Alistipes, Akkermansia, Bacteroides, Odoribacter, Blautia and Parabacteroides, while decreased the abundance of Sutterella, and Desulfovibrio, correcting AFB1-induced intestinal microbiota dysbiosis and enhancing microbial diversity within the gut. Moreover, DSP reduced the levels of diamine oxidase (DAO), D-Lactate, and malondialdehyde (MDA), while upregulating the expression of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), zonula occludens-1 (ZO-1), occludin, claudin-4, mucin-2 (MUC2), and secretory immunoglobulin A (sIgA), thereby alleviating the oxidative stress and intestinal barrier dysfunction induced by AFB1. DSP downregulated jejunal lipopolysaccharide (LPS) levels and the mRNA expression and proteins abundance of toll-like receptor 4 (TLR4), myeloiddifferentiationfactor 88 (MyD88), and nuclear factor kappa-B (NF-κB), thereby inhibiting the jejunal inflammation induced by AFB1. In summary, DSP alleviates AFB1-induced jejunal injury by remodeling the gut microbiota, bolstering antioxidant capabilities within the jejunum, fortifying the intestinal barrier, and suppressing the TLR4-mediated release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Shijia Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Chanchan Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qiongyi Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
10
|
Yang D, Zhang S, Cao H, Wu H, Liang Y, Teng CB, Yu HF. Detoxification of Aflatoxin B 1 by Phytochemicals in Agriculture and Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14481-14497. [PMID: 38897919 DOI: 10.1021/acs.jafc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.
Collapse
Affiliation(s)
- Dian Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sihua Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hongda Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Deng J, Yang JC, Feng Y, Xu ZJ, Kuča K, Liu M, Sun LH. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB 1 in chicken. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1468-1478. [PMID: 38703348 DOI: 10.1007/s11427-023-2512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 05/06/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Hesperetin protects hippocampal neurons from the neurotoxicity of Aflatoxin B1 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115782. [PMID: 38056121 DOI: 10.1016/j.ecoenv.2023.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
14
|
Hao WB, Gu X, Yu X, Zhao Y, Li C, Jia M, Du XD. Laccase Lac-W detoxifies aflatoxin B 1 and degrades five other major mycotoxins in the absence of redox mediators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122581. [PMID: 37748638 DOI: 10.1016/j.envpol.2023.122581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
A multicopper oxidase Lac-W from Weizmannia coagulans 36D1 was identified and characterized as a laccase (Lac-W) with a robust enzymatic activity, which was used in various mycotoxins degradation. We demonstrated that Lac-W could directly degrade six major mycotoxins in the absence of redox mediators in pH 9.0, 24h static incubation at room temperature, including aflatoxin B1 (AFB1, 88%), zearalenone (60%), deoxynivalenol (34%), T-2 toxin (19%), fumonisin B1 (18%), and ochratoxin A (12%). The optimal condition for Lac-W to degrade AFB1 was 30 °C, pH 9.0, enzyme-substrate ratio 3U/μg in 24h static condition. Furthermore, we characterized aflatoxin Q1 as a Lac-W-mediated degradation product of AFB1 using UHPLC-MS/MS. Interestingly, degradation products of AFB1 failed to generate cell death and apoptosis of intestinal porcine epithelial cells. Finally, our molecular docking simulation results revealed that the substrate-binding pocket of Lac-W was large enough to allow the entry of six mycotoxins with different structures, and their degradation rates were positively correlated to their interacting affinity with Lac-W. In summary, the unique properties of the Lac-W make it a great candidate for detoxifying multiple mycotoxins contaminated food and feed cost-effectively and eco-friendly. Our study provides new insights into development of versatile enzymes which could simultaneously degrade multiple mycotoxins.
Collapse
Affiliation(s)
- Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaodan Gu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaohu Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengshuang Jia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
15
|
Wang Y, Wang X, Li Q. Aflatoxin B 1 in poultry liver: Toxic mechanism. Toxicon 2023; 233:107262. [PMID: 37619742 DOI: 10.1016/j.toxicon.2023.107262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Aflatoxin B1 (AFB1) is the most common carcinogenic toxin in livestock and poultry feed, seriously endangering poultry production and public health. Liver is the most important organ for the metabolism of exogenous and endogenous substances in the body. AFB1 produces toxicity under the biotransformation of cytochrome P450 microparticle oxidase (CYP450). Hepatocytes are the most important cells for synthesizing CYP450 enzymes, so that AFB1 has the most significant effect on the liver. AFB1 can induce liver cell damage in poultry through a variety of molecular mechanisms, and the main of damage mechanisms have been discovered so far include oxidative damage, promoting apoptosis, influencing hepatocyte gene expression, interfering with hepatocyte autophagy, pyroptosis and necroptosis. This article reviewed the molecular mechanism of AFB1 inducing liver injury in poultry, hopefully, to provid a new direction and theoretical basis for the development of a new AFB1 detoxification method.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100091, China.
| | - Xinghe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China.
| | - Qingzhu Li
- Liaoning Center for Animal Disease Control and Prevention, Shenyang, Liaoning, 110161, China.
| |
Collapse
|
16
|
Huang M, Guo J, Jia Y, Liao C, He L, Li J, Wei Y, Chen S, Chen J, Shang K, Guo R, Ding K, Yu Z. A Bacillus subtilis Strain ZJ20 with AFB1 Detoxification Ability: A Comprehensive Analysis. BIOLOGY 2023; 12:1195. [PMID: 37759594 PMCID: PMC10525747 DOI: 10.3390/biology12091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
As a class I carcinogen, aflatoxin can cause serious damage to various tissues and organs through oxidative stress injuries. The liver, as the target organ of AFB1, is the most seriously damaged. Biological methods are commonly used to degrade AFB1. In our study, the aflatoxin B1-degrading strain ZJ20 was screened from AFB1-contaminated feed and soil, and the degradation of AFB1 by ZJ20 was investigated. The whole genome of strain ZJ20 was analyzed, revealing the genomic complexity of strain ZJ20. The 16S rRNA analysis of strain ZJ20 showed 100% identity to Bacillus subtilis IAM 12118. Through whole gene functional annotation, it was determined that ZJ20 has high antioxidant activity and enzymatic activity; more than 100 CAZymes and 11 gene clusters are involved in the production of secondary metabolites with antimicrobial properties. In addition, B. subtilis ZJ20 was predicted to contain a cluster of genes encoding AFB1-degrading enzymes, including chitinase, laccase, lactonase, and manganese oxidase. The comprehensive analysis of B. subtilis provides a theoretical basis for the subsequent development of the biological functions of ZJ20 and the combinatorial enzyme degradation of AFB1.
Collapse
Affiliation(s)
- Meixue Huang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Shang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
17
|
Jia W, Wang X. Zanthoxylum bungeanum as a natural pickling spice alleviates health risks in animal-derived foods via up-regulating glutathione S-transferase, down-regulating cytochrome P450 1A. Food Chem 2023; 411:135535. [PMID: 36701916 DOI: 10.1016/j.foodchem.2023.135535] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endogenous aflatoxin B1 (AFB1) was quantified in five hundred and forty Hengshan goat meat samples (0.00 ± 23.09 μg kg-1). Zanthoxylum bungeanum (Z. bungeanum), as a natural pickling spice, can ameliorate the flavor of animal-derived food (goat meat). Yet, considering the direct administration of Z. bungeanum in AFB1-contaminated goat meat, the degradation mechanisms of AFB1 remain elusive. Here, UHPLC-Q-Orbitrap HRMS-based integrative metabolomics (LOQ: 1.74-59.54 μg kg-1) and proteomics analyses were executed to determine the effects of Z. bungeanum in the biotransformation of AFB1. Z. bungeanum (1.50 %, w/w) application mediated the metabolism of xenobiotics by cytochrome P450, significantly down-regulated cytochrome P450 1A and stimulated the up-regulation of glutathione S-transferase levels in AFB1-contaminated goat meat, leading to degradation of AFB1 (20.00-3.39 μg kg-1). Metabolomics assays indicated that Z. bungeanum up-regulated l-histidine (1.43-2.21 mg kg-1) and l-arginine, manifesting potential applications for the contribution of Z. bungeanum to the nutritional value of goat meat.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Tao W, Zhu W, Nabi F, Li Z, Liu J. Penthorum chinense Pursh compound flavonoids supplementation alleviates Aflatoxin B1-induced liver injury via modulation of intestinal barrier and gut microbiota in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114805. [PMID: 36958264 DOI: 10.1016/j.ecoenv.2023.114805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a commonly occurring toxicant in animal and human diets, leading to hazardous effects on health. AFB1 is known to be a hepato-toxicant, and the intestinal barrier may play a crucial role in reversing AFB1-induced liver injury. This study aimed to optimize the extraction conditions of Penthorum chinense Pursh Compound Flavonoids (PCPCF) by the response surface method with a Box-Behnken design and investigate the effects of PCPCF on AFB1-induced liver injury in broilers. A total of 164 one-day-old broilers were divided into seven groups, including Control, PCPCF (400 mg PCPCF/kg feed), AFB1 (3 mg AFB1/kg feed), and YCHT (Yin-Chen-Hao-Tang extract, 3 mg AFB1 +10 mL YCHT/kg feed) and low, medium, and high dose groups (PCPCF at 3 mg AFB1 +200, 400, 600 mg respectively). Samples of serum, liver, duodenum, and cecum contents were collected at 14th and 28th days for further analysis. The results showed that the maximum extraction rate of PCPCF was 8.15 %. PCPCF was rich in rutin, quercetin, liquiritin and kaempferol, and significantly inhibited the growth of Aspergillus flavus. The addition of PCPCF improved the growth performance of AFB1-injury broilers, modulated liver function, and increased serum immunoglobulin levels. PCPCF also alleviated liver pathological and oxidative stress damages caused by AFB1 and decreased AFB1-DNA and AFB1-lysine content in the liver. Furthermore, PCPCF supplementation ameliorated intestinal pathological damage, improved intestinal permeability of duodenum in the AFB1-induced broilers, and repaired the intestinal mucosal and mechanical barrier associated with the Notch signaling pathway. Meanwhile, PCPCF improved the intestinal flora structure of AFB1-damaged broilers and increased the abundance of beneficial bacteria. In conclusion, PCPCF ameliorated the adverse effects of AFB1 on growth performance and alleviated liver damage by repairing the intestinal barrier and improving intestinal health of broiler chicken.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
19
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
20
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Hwang HJ, Lee SR, Yoon JG, Moon HR, Zhang J, Park E, Yoon SI, Cho JA. Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11081448. [PMID: 35892649 PMCID: PMC9331426 DOI: 10.3390/antiox11081448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelial barrier is the primary and most significant defense barrier against ingested toxins and pathogenic bacteria. When the intestinal epithelium barrier is breached, inflammatory response is triggered. GWAS data showed that endoplasmic reticulum (ER) stress markers are elevated in Inflammatory Bowel Disease (IBD) patients, which suggests ER stress regulation might alleviate IBD symptoms. Ferulic acid (FA) is a polyphenol that is abundant in plants and has antioxidant and anti-inflammatory properties, although it is unclear whether FA has these effects on the intestine. Therefore, we investigated the effect of FA in vitro and in vivo. It was found that FA suppressed ER stress, nitric oxide (NO) generation, and inflammation in polarized Caco-2 and T84 cells, indicating that the ER stress pathway was implicated in its anti-inflammatory activities. The permeability of polarized Caco-2 cells in the presence and absence of proinflammatory cytokines were decreased by FA, and MUC2 mRNA was overexpressed in the intestines of mice fed a high-fat diet (HFD) supplemented with FA. These results suggest that FA has a protective effect on intestinal tight junctions. In addition, mouse intestine organoids proliferated significantly more in the presence of FA. Our findings shed light on the molecular mechanism responsible for the antioxidant effects of FA and its protective benefits on the health of the digestive system.
Collapse
Affiliation(s)
- Hye-Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Ju-Gyeong Yoon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Hye-Ri Moon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Jingnan Zhang
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, 1646, Yuseung-daero, Yusung-gu, Daejeon 34054, Korea;
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
- Correspondence: ; Tel.: +82-42-821-6833
| |
Collapse
|