1
|
Bai Y, Song Y, He X, He W, Chen Y, Zhao M, Zhang J, Han W, Bai W. Evidence of microplastic accumulation on the surface of lettuce and analysis of contamination sources. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138201. [PMID: 40209404 DOI: 10.1016/j.jhazmat.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Microplastic (MP) pollution has emerged as a significant environmental concern. Microplastics land on vegetable surfaces with airborne deposition and agronomic activities. However, research on the sources of microplastics on vegetable surfaces is limited by the lack of monitoring of microplastics in the growing environment. Therefore, we detected microplastics on lettuce surfaces, in air, and in pesticides to determine the correlation between them. In addition, this study compared microplastics on the surface of different types of lettuce to explore their differences. The results showed that the content, in descending order, was old leaves of leaf lettuce > new leaves of leaf lettuce > nodular lettuce. A total of 19 polymers, mainly polyamide polyethylene and polypropylene, were detected on the surface of the lettuce. The contribution of microplastics on the surface of lettuce was air and pesticides in descending order of origin. Microplastic risk assessment index was determined that the risk level of microplastics on lettuce surfaces could be classed as level IV, indicating a high dietary health risk. The results presented here will enable scientific assessments of the exposure pathways of MPs in fresh vegetables and their potential harm to human health.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Xiaoxuan He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Han
- Shandong Agro-tech Extension Center, Jinan 250013, China
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China.
| |
Collapse
|
2
|
Binelli A, Tognetto M, Cremonesi C, Della Torre C, Caorsi G, Magni S. Dietary exposure and risk assessment of plastic particles in cow's milk stored in various packaging materials. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138052. [PMID: 40154130 DOI: 10.1016/j.jhazmat.2025.138052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Food packaging is a crucial step in the storage of many food products, but it raises several concerns related to the materials used in its production. Among these, various types of plastic particles are commonly used in food containers, posing a risk of migration into food. One of them frequently stored in different types of packaging is cow's milk. Despite its nutritional significance, very limited data are available on the occurrence of plastic contaminants in milk, and no study has investigated the influence of packaging type. To partially address this gap, the present study aimed to compare the quantity and types of plastic particles detected in 11 different cow's milk samples stored in multilayer containers, PET (polyethylene terephthalate) bottles, and glass bottles. In addition to a qualitative and quantitative comparison, we assessed dietary plastic intake and conducted a risk assessment based on quantitative and qualitative indices. The main findings revealed that milk stored in multilayer packaging contained a higher amount of plastic than milk stored in PET or glass bottles. Quantitative indices for risk assessment confirmed these differences, while the qualitative one highlighted that the presence of "unconventional" polymers increased the potential hazard for milk stored in PET and glass packaging.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Matteo Tognetto
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Cristina Cremonesi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Giada Caorsi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
3
|
Abedi D, Niari MH, Ramavandi B, De-la-Torre GE, Renner G, Schmidt TC, Dobaradaran S. Microplastics and phthalate esters in yogurt and buttermilk samples: characterization and health risk assessment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:14. [PMID: 40226515 PMCID: PMC11992273 DOI: 10.1007/s40201-025-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
The contamination of yogurt and buttermilk (doogh), two widely consumed dairy products, with microplastics (MPs) and phthalic acid esters (PAEs), and subsequently the health effects caused by the contamination of these products on humans, is a potential concern. In this study, the abundance and characteristics of MPs as well as the PAEs concentration in different types of yogurts and buttermilk available in the Iranian market were investigated. The average abundance of MPs in different types of yogurts and buttermilk was between 0.63 and 0.76 and 0.52-0.7 items/mL, respectively. Most detected MPs in yogurt and buttermilk samples were in the size range of 1000-5000 μm with the predominant color and shape of transparent and fiber, respectively. Polyethylene terephthalate (PET) and polyamide (PA) were the dominant polymers in yogurt and buttermilk samples, respectively. The average concentrations of PAEs in different types of yogurt and buttermilk samples were between 5.79 and 11.36 and 1.46-6.93 µg/L, respectively. The findings showed that Di(2-ethylhexyl) phthalate (DEHP) levels in yogurt and buttermilk samples may have a carcinogenic risk for adults and adolescents. According to the results of this study, the intake of MPs and PAEs through high consumption of yogurt and buttermilk should be recognized as a significant source of MPs in the human body. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-025-00939-z.
Collapse
Affiliation(s)
- Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Hazrati Niari
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gabriel E. De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Gerrit Renner
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, , University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
4
|
Malekzadeh M, Dehghanzadeh R, Ebrahimi SM, Sarbakhsh P, Fathifar Z, Aslani H. Occurrence, sampling, identification and characterization of microplastics in tap water: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118347. [PMID: 40393317 DOI: 10.1016/j.ecoenv.2025.118347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Identifying microplastics (MPs) in tap water has recently attracted considerable attention. The present study aimed to systematically review MPs contamination and characteristics in tap water. All techniques used for sampling, processing, and analyzing MPs in tap water were also assessed. Furthermore, the characteristics of MPs, including abundance, type, color, and shape, were summarized. Various databases, including Web of Science, PubMed, ScienceDirect, Scopus, Springer, and MDPI, were searched to find published articles up to January 2025. The occurrence of MPs in tap water was meta-analyzed using a random-effects model. A total of 6100 articles were found, of which 43 were included in the systematic review. The results indicated that the pooled mean concentration of MPs in tap water was 56.98 particles per liter (P/L). Manual sampling with a sample volume of less than 1 liter was most commonly used, and microscopic, Raman, and Fourier-transform infrared spectroscopy (FTIR) methods were frequently applied for extracting and identifying MPs. The most abundant polymer identified was polyethylene (PE), followed by polyethylene terephthalate (PET) and polypropylene (PP). Fibers and fragments were the dominant forms of MPs found in water. The lack of a harmonized protocol and the difficulty in validating MP analysis methods in tap water have led to inconsistent and sometimes contradictory results, making comparisons unreliable. The findings of this systematic review can support the development of a comprehensive protocol and promote standardized, harmonized methods for MP analysis in tap water.
Collapse
Affiliation(s)
- Masoumeh Malekzadeh
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Dehghanzadeh
- Reza Dehghanzadeh, Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyedeh Masoumeh Ebrahimi
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Sarbakhsh
- Parvin Sarbakhsh, Epidemiology and Biostatistics Department, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Fathifar
- Zahra Fathifar, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Aslani
- Reza Dehghanzadeh, Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Bai Y, He X, Song Y, He W, Chen Y, Zhao M, Zhang J, Bai W. New insights from correlation analysis of microplastics on strawberry surfaces with microplastics in air and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138676. [PMID: 40398037 DOI: 10.1016/j.jhazmat.2025.138676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
With the global increase in plastic pollution, microplastic contamination of agricultural products has become an emerging environmental issue that threatens food safety. In this study, linear analysis combined with principal component analysis was used to determine the correlation between microplastics in air and pesticides and the abundance and components of microplastics on the surface of strawberries, which fills the gap of traceability studies of microplastics on the surface of agricultural products. A high correlation coefficient of 0.65 was observed between microplastics on strawberry surfaces and the microplastic abundance in the air; however, the correlation coefficient with the abundance of microplastics in pesticides was only 0.30, which was weak. Polypropylene, polyamide and polyethylene were the polymers detected in the largest proportion of all experimental samples. Polypropylene had the highest percentage of detections in air and pesticides at 70.66 % and 74.04 %, respectively. The percentages of polypropylene, polyamide and polyethylene on strawberry surfaces were 36.97 %, 29.20 % and 17.36 %, respectively. This study provides scientific support for the formulation of microplastic limit standards for agricultural products and the optimization of agricultural production norms, which is of strategic significance for guaranteeing food safety and promoting the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agri-culture and Rural Affairs, Beijing 100081, China
| | - Xiaoxuan He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agri-culture and Rural Affairs, Beijing 100081, China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agri-culture and Rural Affairs, Beijing 100081, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agri-culture and Rural Affairs, Beijing 100081, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, P.R. China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agri-culture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
6
|
Mondal R, Sarkar DJ, Bhattacharyya S, Raja R, Chaudhuri P, Biswas JK, Kumar Das B. Health risk assessment of microplastics contamination in the daily diet of South Asian countries. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138527. [PMID: 40378741 DOI: 10.1016/j.jhazmat.2025.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
South Asian countries face a major threat concerning microplastics (MPs) contamination in food. This study explores the existing evidence of MPs in major foods of South Asian countries and links with available health risk indices through meta-analysis. Overall range of MPs in treated water, bottled water, fish, milk, salt, wheat, rice, and sugar were 0.75-35.33 particles L-1, 0.07-500 particles L-1, 0.006-361.6 particles g-1, 11.1-295.5 particles L-1, 0.01-350 particles g-1, 4.57 particles g-1, 0.303 particles g-1 and 0.343 particles g-1, respectively. Daily intake of MPs through food items was estimated with a range of 508-2280 particles person-1 day-1 depending on age group. Hazard score of MPs contaminated food indicates high to very high hazard scores in salt with an average PHI of 10,817.6 followed by fish (9012.9), milk (4900.4) and drinking water (3752.9) which are higher than the global values. High-risk polymers include Polyvinyl Chloride, Polyacrylamide, Styrene-Butadiene copolymer, Polyester, Polyurethane, and Polyamide. Average rate of microplastics ingestion ranged between 0.64 and 36.3 g person-1 year-1 with fish stand apex followed by bottled water, salt and milk. This study further investigates research gaps on MPs contamination in the foods of South Asian countries. Overall, the present study summarised the present level of MPs ingestion through different food sources in South Asian countries, highlighting the need for strong regulation to monitor level of MPs contamination in food.
Collapse
Affiliation(s)
- Riashree Mondal
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India.
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Ramij Raja
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| |
Collapse
|
7
|
Haddad NR, Badiei B, Curvin-Aquilla SL, Johnson AY, Willis A, Minsky HB, Williams KL, Garza LA. Links between Plastics Use, Processed Food, Sweating, and Hidradenitis Suppurativa. J Invest Dermatol 2025; 145:1199-1202. [PMID: 39481530 PMCID: PMC12018160 DOI: 10.1016/j.jid.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Affiliation(s)
- Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Beita Badiei
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Leigh Curvin-Aquilla
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arieana Y Johnson
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aiden Willis
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hana B Minsky
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kaitlin L Williams
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Adjama I, Dave H. Tackling microplastic contamination in sewage sludge: Optimizing organic matter degradation, quantifying microplastic presence, and evaluating ecological risks for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179201. [PMID: 40138911 DOI: 10.1016/j.scitotenv.2025.179201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The omnipresence of Microplastics (MPs) is a growing global concern. Using sewage sludge as fertilizer for soil amendment can be a potential source of MPs in agricultural soil if sludge contains MPs. Sludge is a complex matrix rich in organic matter, which hinders MPs separation. For maximal organic matter degradation, in this study, the application of Fenton reagents optimized for (Fe2+/H2O2) molar ratios, i.e., 1/2, 1/4, 1/6, 1/8, and 1/10. The results show that a molar ratio of 1/2 of Fe2+/H2O2 can remove 86.6 % of the organic matter in the sewage sludge. The greenness of the optimized method was assessed and compared to available methods using AGREEprep software. The method achieved a greenness score of 0.61, significantly higher than the highest score of 0.45 among the previously reported optimized methods. This optimized method was used in the analysis of MPs in sewage sludge from 14 sewage treatment plants in Ahmedabad. Also, the ecological risks due to the application of such sludge in agriculture were assessed. MPs analysis reveals variability in MPs contamination ranging from 2.43 to 22.72 × 103 units/kg of sludge. Small-sized MPs (0.05-0.25 mm) constitute the highest proportion (65 %), predominantly comprising fibers and fragments. From a chemical composition point of view, six different types of MPs are identified, among which PU, Nylon, HDPE, and PP are the most abundant. Ecological risk assessment indicated extreme hazards in terms of the potential ecological risk index being higher than 1200 for all the sludge samples due to the abundance of MPs, specifically of PU and Nylon.
Collapse
Affiliation(s)
- Irédon Adjama
- School of Doctoral Studies & Research (SDSR), National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Hemen Dave
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
9
|
Santonicola S, Volgare M, Cocca M, Colavita G. Study of fibrous microplastic and natural microfiber levels in branded milk samples from Italy. Ital J Food Saf 2025. [PMID: 40152942 DOI: 10.4081/ijfs.2025.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
As far as we know, there is no evidence regarding the microfiber (MF) occurrence and abundance in branded milk samples from Italy. Therefore, a total of 20 milk samples from 5 brands were collected and analyzed using a digestion step with hydrogen peroxide followed by filtration. Natural and synthetic MFs were classified according to the evaluation of surface morphology (i.e., shape and texture), followed by chemical identification using Fourier transform infrared spectroscopy (FTIR) microspectroscopy. Results revealed the occurrence of MFs in 67.5% of the analyzed samples and showed variability ranging between 1-27 particles/100 mL with an overall average of 3.85 MFs/100 mL. The FTIR analyses confirmed the presence of polyethylene, polyester, acrylic, and cellulosic MFs. According to the literature, the contamination of milk may occur at various stages along the production chain. The blood-milk barrier would prevent MFs from being transferred across the mammary gland into the milk. The highest MF levels found in ultra-high temperature skimmed milk of some brands may indicate the more complex the processing of milk, the more MFs they contain. However, due to the different MF types and polymers, an unambiguous conclusion on MF sources cannot be made. MFs could be shed from the filters used in the milk processing factories and the protective clothing for workers. Therefore, the MF contamination should be properly investigated along the entire supply chain, identifying the sources of contamination and implementing control strategies and mitigation measures.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Pozzuoli (NA).
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II.
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Pozzuoli (NA).
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso.
| |
Collapse
|
10
|
Zhang K, Yu L, Qu L, Hui N, Chen L, Wang J, Yan H. Identifying and analyzing the microplastics in human aqueous humor by pyrolysis-gas chromatography/mass spectrometry. iScience 2025; 28:112078. [PMID: 40124479 PMCID: PMC11927748 DOI: 10.1016/j.isci.2025.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Microplastics (MPs), an emerging global pollutant, pose potential risks to human health and have garnered increasing attention. Previous research has identified MPs in various human tissues and organs, but not in the aqueous humor of the eyes. This study used pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to explore MPs in aqueous humor. Five types of MPs-polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polyamide 66 (PA66), and polystyrene (PS)-were found, with PE and PVC being most common. PP was more prevalent in children, while PA66 was more common in adults. MPs abundance generally followed the trend: adults > children > elders among age groups, and females > males between gender groups. Notably, this study is the first to confirm MPs in human aqueous humor, providing a foundation for future research on their impact on intraocular health and enhancing our understanding of the MPs' body distribution.
Collapse
Affiliation(s)
- Kaiyun Zhang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Lei Yu
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Laiqiang Qu
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Na Hui
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Li Chen
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Jiameng Wang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, No. 21 Jiefang Road, Xi’an, Shaanxi Province 710004, China
| |
Collapse
|
11
|
Tain YL, Lin YJ, Hou CY, Chang-Chien GP, Lin SF, Hsu CN. Postbiotic Sodium Butyrate Mitigates Hypertension and Kidney Dysfunction in Juvenile Rats Exposed to Microplastics. Antioxidants (Basel) 2025; 14:276. [PMID: 40227237 PMCID: PMC11939145 DOI: 10.3390/antiox14030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Plastic production has led to widespread microplastic (MP) pollution, with children more vulnerable to MPs than adults. However, the mechanisms linking MP exposure to hypertension and kidney disease in children remain unclear. This study explored whether sodium butyrate, a short-chain fatty acid (SCFA) with antioxidant and anti-inflammatory properties, could mitigate MP-induced hypertension and kidney damage in juvenile rats. METHODS Male Sprague-Dawley rats (3 weeks old) were randomly assigned to four groups (n = 8/group): control, low-dose MP (1 mg/L), high-dose MP (10 mg/L), and high-dose MP with sodium butyrate (400 mg/kg/day). Rats were euthanized at 12 weeks. RESULTS High-dose MP exposure impaired kidney function and increased blood pressure, which were alleviated by sodium butyrate through reduced oxidative stress, modulation of gut microbiota, increased plasma butyric acid levels, and enhanced renal SCFA-sensing G protein-coupled receptor 43 expression. CONCLUSIONS Sodium butyrate holds potential for mitigating MP-induced hypertension by reducing oxidative stress, modulating the gut microbiota, and elevating butyric acid levels.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Shu-Fen Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Dileepan AGB, Jeyaram S, Arumugam N, Almansour AI, Santhamoorthy M. Identification and occurrence of microplastics in drinking water bottles and milk packaging consumed by humans daily. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:261. [PMID: 39930057 DOI: 10.1007/s10661-025-13721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 03/11/2025]
Abstract
Microplastic (MP) pollution has become a growing concern due to its potential environmental and health impacts. The present study aimed to investigate the presence of MPs in specific brands of drinking water bottle and milk packets. To identify the MPs, researchers employed microscopic techniques, FTIR spectroscopy, and FESEM with EDS. The types of polymers were determined by comparing the obtained values with reference standards. The study also assessed the potential daily microplastic exposure from drinking water and milk consumption. MPs were detected in the samples in three different shapes: filaments, fibers, and fragments. Four types of polymers were identified: polypropylene (PP), polyamide (PA), polysulfone (PSU), and polyethersulfone (PES). The colors observed included violet, blue, green, red, and black. In the analyzed drinking water samples, a total of 13 MPs sized 1-3 mm and 7 MPs sized 3-6 mm were found. In the milk samples, there were 2 MPs sized 4-5 mm and 4 MPs sized 2-3 mm. The results of the study indicate that MPs are present in the examined drinking water and milk, which are directly consumed by humans. This suggests that microplastic pollution may occur during the manufacturing or packaging processes of these products. The study recommends implementing measures to reduce microplastic contamination at the beginning of the production process for drinking water and milk.
Collapse
Affiliation(s)
- A G Bharathi Dileepan
- Department of Chemistry, School of Arts and Science, Takshashila University, Tamil Nadu, Villupuram, 604 305, India.
| | - S Jeyaram
- Department of Physics, School of Arts and Science, Takshashila University, Villupuram, 604305, Tamil Nadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Kim DY, Park MK, Yang HW, Woo SY, Jung HH, Son DS, Choi BY, Suh SW. Effects of Microplastic Accumulation on Neuronal Death After Global Cerebral Ischemia. Cells 2025; 14:241. [PMID: 39996714 PMCID: PMC11853503 DOI: 10.3390/cells14040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Brain ischemia, a condition in which the brain is deprived of blood flow, can lead to a stroke due to blocked or unstable blood vessels. Global cerebral ischemia (GCI), characterized by an interruption in blood flow, deprives the brain of oxygen and nutrients, producing reactive oxygen species (ROS) that trigger cell death, which kills nerve cells. Microplastics (MPs), tiny environmental pollutants, can enter the human body through contaminated food, water, disposable items, cosmetics, and more. Once in the brain, MPs can increase neuroinflammation by overstimulating inflammatory factors such as microglia. MPs can also damage neurons by scratching myelin and microtubules, slowing signal transduction, causing cognitive impairment, and leading to neuronal death. Furthermore, microtubule damage may result in the release of phosphorylated tau proteins, potentially linked to Alzheimer's disease. We hypothesized that MPs could exacerbate neuroinflammation and microtubule destruction after GCI, leading to increased neuronal death. To test this hypothesis, we administered MPs (0.5 µm) orally at a dose of 50 mg/kg before and after inducing GCI. Staining techniques such as Fluoro-Jade B (FJB), ionized calcium-binding adaptor molecule 1 (Iba-1), cluster of differentiation 68 (CD68), myelin basic protein (MBP), and microtubule-associated protein 2 (MAP2) were used, along with Western blot analysis for interleukin-6 (IL-6), TNF-α, tau-5, and phospho-tau (S396) to evaluate the effects of MPs on neuronal cell death, neuroinflammation, and microtubule destruction. The results showed that MP accumulation significantly increased neuroinflammation, microtubule disruption, and neuronal cell death in the GCI-MP group compared to the GCI-vehicle group. Therefore, this study suggests that MP accumulation in daily life may contribute to the exacerbation of the disease, potentially leading to severe neuronal cell death after GCI.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Hyun Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Seo Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Hyun Ho Jung
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| | - Dae-Soon Son
- Division of Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Bo Young Choi
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea;
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (D.Y.K.); (M.K.P.); (H.W.Y.); (S.Y.W.); (H.H.J.)
| |
Collapse
|
14
|
Ahmad M, Ahmad J, Usama M, Al-Swadi HA, Mousa MA, Rafique MI, Al-Wabel MI, Al-Farraj ASF. Microplastic contamination in commercial food and drink products and associated risk of potential human intake in Riyadh, Saudi Arabia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:246. [PMID: 39909955 DOI: 10.1007/s10661-025-13680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Extensive production and utilization of plastics have resulted in the subsequent accumulation of microplastics (MPs) in the environment, which has become a serious threat to human health globally. Therefore, in this study, 112 drinks and food products were purchased from local markets in Riyadh, Saudi Arabia, and the abundance of MPs was investigated. The dominant size of MPs was 101-250 μm for tuna fish, noodles, bottled water, and disposable containers, 251-500 μm for honey, tea bags, and sugar, and 501-1000 μm for salt, juice, and soft drink samples. FTIR analysis indicated polypropylene, polyethylene, polycarbonate, and polyvinylchloride as the major polymer contents. The average total number of MPs was highest in tea bags (615.71 particles teabag-1), followed by sugar (281.01 particles kg-1), honey (197.67 particles kg-1), and salt (147.30 particles kg-1). Consumption of tea bags exhibited the highest risks of daily and annual MPs intake (15.06 particles kg-1 day-1 and 5496.45 particles kg-1 year-1, respectively), followed by bottled water (4.77 particles kg-1 day-1 and 1741.32 particles kg-1 year-1, respectively). Overall, this study provides vital baseline data about MPs contamination in Saudi Arabia. These findings could be used to develop strategies to minimize MPs contamination in food and beverages. Therefore, monitoring MPs in commonly consumed dietary products to avoid adverse impacts of MPs on human health is critically important.
Collapse
Affiliation(s)
- Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Usama
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Hamed Ahmed Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Soil, Water and Environment, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen
| | - Mohammed Awad Mousa
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Imran Rafique
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdullah S F Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Chia RW, Atem NV, Lee JY, Cha J. Microplastic and human health with focus on pediatric well-being: a comprehensive review and call for future studies. Clin Exp Pediatr 2025; 68:1-15. [PMID: 39533740 PMCID: PMC11725616 DOI: 10.3345/cep.2023.01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 11/16/2024] Open
Abstract
Although humans are highly dependent on plastics from infancy to adolescence, these materials can degrade into ubiquitous microplastics (MPs) that affect individuals at every stage of life. However, information on the sources, mechanisms, detection techniques, and detrimental effects of MPs on children's health from infancy to adolescence is limited. Hence, here we identified and reviewed original research papers published in 2017-2023 across 11 database categories in PubMed, Google Scholar, Scopus, and Web of Science to improve our understanding of MPs with a focus on pediatric well-being. These studies found that milk and infant formulas are common sources of MP exposure in infants. Infant formula is the dominant source of MPs in babies, while plastic toys are a common source of MPs in toddlers. Adolescents are frequently exposed to MPs through the consumption of food contaminated with MPs and the use of plastics in food packaging. Water and air are sources of MP exposure in children from infancy through adolescence. This study thoroughly summarized how MP exposure in children of all ages causes cell damage and leads to adverse health effects such as cancer. With appropriate authorization from the relevant authorities, small amounts of human biological samples (10 g of feces) were collected from volunteers to assess the amounts of MPs in children with the aim of promoting pediatric well-being. The samples were then treated with Fenton's reagent, stored in glass jars, and filtered through nonplastic filters. Finally, MPs in children were quantified using stereomicroscopy and characterized using micro-Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, Korea
| | | | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon, Korea
- School of Science and Engineering, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
16
|
Nilsson F, Elf P, Capezza A, Wei X, Tsegaye B, Polisetti V, Svagan AJ, Hedenqvist M. Environmental concerns on water-soluble and biodegradable plastics and their applications - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177926. [PMID: 39693661 DOI: 10.1016/j.scitotenv.2024.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Water-soluble polymers are materials rapidly growing in volume and in number of materials and applications. Examples include synthetic plastics such as polyacrylamide, polyacrylic acid, polyethylene glycol, polyethylene oxide and polyvinyl alcohol, with applications ranging from cosmetics and paints to water purification, pharmaceutics and food packaging. Despite their abundance, their environmental concerns (e.g., bioaccumulation, toxicity, and persistence) are still not sufficiently assessed, especially since water soluble plastics are often not biodegradable, due to their chemical structure. This review aims to overview the most important water-soluble and biodegradable polymers, their applications, and their environmental impact. Degradation products from water-insoluble polymers designed for biodegradation can also be water soluble. Most water-soluble plastics are not immediately harmful for humans and the environment, but the degradation products are sometimes more hazardous, e.g. for polyacrylamide. An increased use of water-soluble plastics could also introduce unanticipated environmental hazards. Therefore, excessive use of water-soluble plastics in applications where they can enter the environment should be discouraged. Often the plastics can be omitted or replaced by natural polymers with lower risks. It is recommended to include non-biodegradable water-soluble plastics in regulations for microplastics, to make risk assessments for different water-soluble plastics and to develop labels for flushable materials.
Collapse
Affiliation(s)
- Fritjof Nilsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FSCN Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden.
| | - Patric Elf
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonio Capezza
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bahiru Tsegaye
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Veerababu Polisetti
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
17
|
Panneerselvan L, Raghuraman Rengarajan HJ, Kandaiah R, Bhagwat-Russell G, Palanisami T. Fibrous foes: First report on insidious microplastic contamination in dietary fiber supplements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125248. [PMID: 39510303 DOI: 10.1016/j.envpol.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Regular consumption of health supplements to balance dietary intake has gained popularity worldwide. One such supplement that has gained popularity among consumers is dietary fibers. Microplastic (MPs) contamination in various food products is being reported worldwide. However, there is a paucity of understanding of the occurrence of MPs in dietary supplements. This study addresses this gap by investigating the degree of MPs contamination in dietary fiber supplements. Nine commonly consumed (powder and gummy-based) over-the-counter dietary fiber supplements in Australia were tested in this study. Microscopic examination revealed the presence of MPs fibers and fragments in all the tested products. Further categorization showed that MPs particles were of various colours, including black, blue, red, green, and white. The order of polymer abundance was Polyamide > Polydiallyl Phthalate > polyethylene polypropylene diene > Polyurethane = Polyethylene terephthalate > Polyethylene = Ethylene acrylic acid copolymer. Among the supplements, powder-based samples had higher MPs (at the adult dosage suggested by the manufacturer) than gummy-based product. The average predicted ingestion of microplastics from these supplements (all nine samples) was 5.89 ± 2.89 particles day-1. The dietary exposure for children and adults ranged from 0.1-0.48 and 0.18-4.08 particles day-1, respectively. Based on the microplastic contamination factor (MCF), among the nine samples tested, 69.81% exhibited a moderate level, while 20.76% showed a significant level of microplastic contamination. The polymer risk index (pRi) indicates products with very high and high-risk categories. The possible sources of MPs contamination in the products were studied. To our knowledge, this is the first study to record and quantify the presence of MPs in dietary fiber supplements, which is a direct source of MPs exposure to humans via., ingestion.
Collapse
Affiliation(s)
- Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Haryni Jayaradhika Raghuraman Rengarajan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
18
|
Bhavsar PS, Solanki MB, Shimada Y, Kamble SB, Patole SP, Kolekar GB, Gore AH. Microplastic contamination in Indian rice: A comprehensive characterization and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136208. [PMID: 39522154 DOI: 10.1016/j.jhazmat.2024.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigate, for the first time, the abundance, distribution, chemical composition, and exposure of microplastics (MPs) in Indian rice and their impact on human health. The physical and chemical characteristics of MPs were measured using a stereomicroscope, μ-Fourier transform infrared spectroscopy, and μ-Raman spectroscopy. MPs were identified in all samples, with an average abundance of 30.3 ± 8.61 particles/100 g. The abundance of MPs was higher in RS-4 and lower in RS-3. Notably, the size of MPs found is between <0.05 to 1.00 mm. The results showed that four types of MPs were identified: polyethylene and polyethylene terephthalate were dominant, followed by polypropylene and polyamide. MPs were ubiquitous in all rice sample, indicating ingestion as a potential pathway for the entry of plastics into the human body. According to the pollution load index values, which ranged from 1.00 to 1.528, the contamination of MPs in the rice samples was minimal. The highest estimated daily intake values of MPs from rice consumption by Indian males, females, and children were 1.292, 1.527, and 1.313 particles kg-1 day-1, respectively. Our study sheds light on MP exposure and provides fundamental data for evaluating the potential health risks associated with MPs.
Collapse
Affiliation(s)
- Pinal S Bhavsar
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India
| | - Mandeep B Solanki
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India
| | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Sumit B Kamble
- Department of Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badekha Marg, Waghavadi Road, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, AbuDhabi, 127788, United Arab Emirates
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi, 394350 Surat, Gujarat, India.
| |
Collapse
|
19
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
20
|
Visentin E, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Preliminary characterization of microplastics in beef hamburgers. Meat Sci 2024; 217:109626. [PMID: 39137452 DOI: 10.1016/j.meatsci.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The diffusion of microplastics in meat products is an emerging topic, as their impact on animal and human health is still largely unknown. The present study aimed to preliminarily determine the number and the quality of microplastics diffusion in beef hamburgers (n = 10) through Fourier-transformed infrared micro-spectroscopy in attenuated total reflectance mode analysis. Microplastics were detected in all analyzed samples. The abundance of microplastics ranged from 200.00 to 30,300.00 MP/kg. Microplastics observed in the analyzed samples were mainly characterized by irregular shapes (95.99%), grey color (70.16%), and dimensions comprised between 51 and 100 μm (57.46%). Eighteen different polymers were detected, with polycarbonate (30,300.00 MP/kg), polyethylene (1580.00 MP/kg) and polypropylene (750.00 MP/kg) being the most abundant classes. Results demonstrate an extensive diffusion of microplastics in the analyzed samples, which may be originated from various sources, including animal body, industrial processing, and packaging. Findings from this study will aid in pinpointing the source of microplastics contamination, enabling the creation of targeted guidelines to mitigate microplastics spread in processed meat food.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
21
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
22
|
de Vos ES, Mulders AGMGJ, Koning AHJ, Smit HS, Rossem LV, Steegers-Theunissen RPM. Periconceptional maternal intake of ultra-processed foods, energy and macronutrients the impact on imaging markers of early utero-placental vascular development: The rotterdam periconception cohort. Clin Nutr 2024; 43:46-53. [PMID: 39321745 DOI: 10.1016/j.clnu.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS The quantity and quality of maternal nutrition in the periconception period is an important determinant for embryonic and foetal development and subsequent pregnancy course and outcome. The intake of ultra-processed foods (UPF) has increased worldwide and adverse health outcomes have been reported. However, the impact of UPF intake on the placenta, essential for prenatal nourishment, is unknown. Therefore, we aim to investigate associations between the periconceptional maternal intake of UPF, energy and related macronutrients, and first-trimester utero-placental vascular development. METHODS We included 214 ongoing pregnancies in the Virtual Placenta study, a subcohort of the Rotterdam periconception cohort. At enrollment, participants filled out a food frequency questionnaire from which we calculated the average daily energy from UPF, total energy intake and macronutrient intake from UPF. At 7-9-11 weeks of gestation, we performed sequential three-dimensional power Doppler ultrasounds of the first-trimester utero-placental vasculature. Virtual Organ Computer-aided AnaLysis (VOCAL) software, Virtual Reality segmentation and a skeletonization algorithm were applied to measure placental volume (PV), utero-placental vascular volume (uPVV) and generate the utero-placental vascular skeleton (uPVS). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (end-, bifurcation-, crossing- or vessel point) and used to calculate density of vascular branching. Linear mixed models adjusted for confounders were used to investigate associations between maternal intake of UPF, total energy and macronutrients from UPF and PV, uPVV and uPVS characteristics. RESULTS Energy intake from UPF and total energy intake were not consistently associated with imaging markers of utero-placental vascular development. Higher carbohydrate intake of 10 g/day from UPF was associated with increased uPVS trajectories (end points (β = 0.34, 95%CI = 0.07; 0.61), bifurcation points (β = 0.38, 95%CI = 0.05; 0.70), vessel points (β = 0.957, 95%CI = 0.21; 1.71). No associations were observed with PV. CONCLUSIONS Against our hypothesis, periconceptional maternal intake of UPF and total energy were not convincingly associated with impaired first-trimester utero-placental vascular development. Remarkably, the increased intake of carbohydrates from UPF, which is often considered 'unhealthy', is positively associated with first-trimester utero-placental vascular development. Given the complexity of diet, further research should elucidate what underlies these findings to be able to interpret how nutrition may impact utero-placental vascular development in early pregnancy. CLINICAL TRIAL NUMBER This study is registered at the Dutch Trial Register (NTR6854).
Collapse
Affiliation(s)
- Eline S de Vos
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Hilco S Smit
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Banica AL, Radulescu C, Dulama ID, Bucurica IA, Stirbescu RM, Stanescu SG. Microplastics, Polycyclic Aromatic Hydrocarbons, and Heavy Metals in Milk: Analyses and Induced Health Risk Assessment. Foods 2024; 13:3069. [PMID: 39410105 PMCID: PMC11476328 DOI: 10.3390/foods13193069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The current study aims to develop isolation protocols for several contaminants of emerging concern (i.e., microplastics (MPs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs)) from different commercial brands and raw milk samples and also to quantify and characterize the risks of these contaminants pose to human health. The quantification, shape, color, and chemical composition of MPs were achieved using optical microscopy, micro-Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy-dispersive spectroscopy. Based on the MP dimensions highlighted by the aforementioned techniques, it can be stated that their length ranges between tens of micrometers and a few centimeters; plus, the thickness in some cases reaches more than 15 µm, and the structure of the MPs can be mostly described as a fibriform with a glossy/matte aspect. The polymeric structures identified were polyamides, poly(methyl methacrylate), polyurethane, polyester, and polyethylene. Chemical investigations (PAHs and HMs concentrations) were performed by high-performance liquid chromatography with fluorescence detection and inductively coupled plasma mass spectrometry, respectively. The pollution load index (1.091-7.676) and daily intake of MPs for adults (0.021-1.061 n·kg-1·d-1) and children (0.089-4.420 n·kg-1·d-1) were calculated. It can be concluded that the presence of MPs in milk supports the hypothesis that microplastics can act as carriers for other contaminants (HMs and PAHs), thus increasing the threat to health.
Collapse
Affiliation(s)
- Andreea Laura Banica
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (A.L.B.); (I.D.D.); (I.A.B.); (R.M.S.); (S.G.S.)
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Cristiana Radulescu
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Ioana Daniela Dulama
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (A.L.B.); (I.D.D.); (I.A.B.); (R.M.S.); (S.G.S.)
| | - Ioan Alin Bucurica
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (A.L.B.); (I.D.D.); (I.A.B.); (R.M.S.); (S.G.S.)
| | - Raluca Maria Stirbescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (A.L.B.); (I.D.D.); (I.A.B.); (R.M.S.); (S.G.S.)
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (A.L.B.); (I.D.D.); (I.A.B.); (R.M.S.); (S.G.S.)
| |
Collapse
|
24
|
Chakraborty TK, Hasan MJ, Netema BN, Rayhan MA, Asif SMH, Biswas A, Sarker S, Ahmmed M, Nice MS, Islam KR, Debnath PC, Chowdhury P, Rahman MS, Zaman S, Ghosh GC, Hasibuzzaman M. Microplastics in the commercially available branded milk in Bangladesh: An emerging threat for human health. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135374. [PMID: 39084010 DOI: 10.1016/j.jhazmat.2024.135374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics (MPs) are polymer-based particles commonly found in diverse foods that pose serious human health impacts throughout the food chain. Assessment of MPs in different food products is a prime measure to combat MP-related food contamination. Therefore, this study first investigated the identification, characterization, and potential risks of MPs in the commercially available milk brands (19 dry powders and 06 liquid brands) in Bangladesh. The presence of MPs in milk samples was 279.47 ± 134.26 particles/kg and 182.27 ± 55.13 particles/L for powder and liquid milk, respectively, with a significant variety. Study findings displayed miscellaneous colors, fiber shapes (powder=78 %; liquid=81 %), > 0.1 mm sizes (powder=69 %; liquid=65 %), and polyethylene (powder=48 %; liquid=44 %) dominating MPs categories. The pollution load index indicated significant pollution due to the high abundance of MPs. Further, other risk-evaluating indices including contamination factor and Nemerow pollution index represent moderate to high MP-induced pollution for both milk samples. Low to moderate polymeric risks are exhibited by powder and liquid milk samples. Children could be exposed to 3.43 times higher MPs than adults through daily oral ingestion, which has significant health effects. This study found that powder milk was the most severely MPs induced risk than liquid milk. Consequently, this study finding established a reference point for MP contamination in milk, so special attention must be taken during production, storage, and packaging stages to reduce MP contamination.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Md Jahid Hasan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Baytune Nahar Netema
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Abu Rayhan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sk Mahmudul Hasan Asif
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Aditi Biswas
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sarajit Sarker
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mahfuz Ahmmed
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Khandakar Rashedul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Partha Chandra Debnath
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Pragga Chowdhury
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sozibur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hasibuzzaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
25
|
Bai Y, Chen Y, Song Y, Bai R, He W, Zhao M, Zhang J, Zhang W, Zhang Y, Dong S, Bai W. Screening of optimal cleaning methods to reduce microplastic residues on strawberry surfaces: Characterization of microplastics in strawberry wash water. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135310. [PMID: 39067298 DOI: 10.1016/j.jhazmat.2024.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microplastics are widespread in facility strawberry greenhouses and can be deposited on the surface of strawberries through air currents. Investigating effective cleaning methods represents a viable strategy to reduce human ingestion of MPs. Therefore, different cleaning methods were compared: ultrasonic cleaning for 30 min, deionized water rinsing once, deionized water immersion for 30 min, and fruit immersion in washing salt for 30 min. The MPs in strawberry washing water were analyzed and compared using laser direct infrared imaging to investigate their characteristics and the optimal reduction of MPs on the surface of strawberries. The quality of the cleaning results was in the following order: water immersion > washing salt immersion > water rinsing > ultrasound. Water immersion was 1.3-2 times more effective in removing microplastics than other treatments. Furthermore, 21 polymer types were detected in the samples. Most MPs were less than 50 µm in size. The main polymers in this size range were polyamide, chlorinated polyethylene, and polyethylene terephthalate, and they mainly existed as fragments, fibers, and beads. This study provides a valuable reference for reducing human intake of microplastics through fresh fruits and vegetables.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Weidong Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Yukun Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Nalbone L, Giarratana F, Genovese M, Panebianco A. Occurrence of microplastics in store-bought fresh and processed clams in Italy. MARINE POLLUTION BULLETIN 2024; 206:116739. [PMID: 39029150 DOI: 10.1016/j.marpolbul.2024.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Compared to the large amount of data on wild samples, only a few studies reported microplastic occurrence in store-bought bivalves in which the production chain can be the main contamination route. Microplastic occurrence was herein investigated in 100 samples of store-bought clams sold as fresh or processed (vacuum-frozen or in brine) in Italy. A 10 % KOH was used for soft tissue digestion and FT-IR spectroscopy for polymer identification. A total of 135 potential microplastics ranging in size between 20 μm and 5000 μm were enumerated estimating an annual dietary intake via clam consumption of 59.472 microplastics/person. No significant difference in the average abundance between the two commercial conditions was observed, while a prevalence of smaller particles was detected in processed samples suggesting a detrimental effect of cooking during production. Polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) were identified posing an overall low risk (class II). Microplastic occurrence in store-bought seafood requires additional and specific attention and future studies should investigate microplastic contribution linked to the production chain.
Collapse
Affiliation(s)
- Luca Nalbone
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; Riconnexia srls, Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Martina Genovese
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| | - Antonio Panebianco
- Department of Veterinary Science, University of Messina, Polo Universitario dell 'Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy.
| |
Collapse
|
28
|
Basaran B, Aytan Ü, Şentürk Y. First occurrence and risk assessment of microplastics in enteral nutrition formulas. Food Chem Toxicol 2024; 191:114879. [PMID: 39047973 DOI: 10.1016/j.fct.2024.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Occurrence and characteristics of microplastics were evaluated in enteral nutrition formulas, for the first time. A total of 30 samples belonging to 9 brands were analysed. Physical and chemical characteristics of microplastics were identified by stereomicroscopy and micro-raman spectroscopy, respectively. The mean number of microplastics was 45 ± 63 MP/L. Two different shapes of microplastics were detected with fibres (62%) being the most common microplastics followed by fragments (38%). The most common color of microplastics was black (37%) followed by blue (26%), orange (15%), green (7%), red (7%), grey (4%) and multicolor (4%). The length of microplastics ranged from 10 to 2086 μm with an average of 548 ± 526 μm. Estimated mean daily microplastic intake for four different scenarios varied between 24 to 61 and 30 to 76 MPs/day for women and men, respectively. The mean polymer hazard index and microplastic load index levels were calculated as 380 and 1.30, respectively. The results of this study showed that microplastics are prevalent in enteral nutrition products. The presence of polymers with high hazard risk scores in enteral nutrition formulas may pose a risk to the health of patients with special nutritional needs.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Ülgen Aytan
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Yasemen Şentürk
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| |
Collapse
|
29
|
Xiao X, Liu S, Li L, Li R, Zhao X, Yin N, She X, Peijnenburg W, Cui X, Luo Y. Seaweeds as a major source of dietary microplastics exposure in East Asia. Food Chem 2024; 450:139317. [PMID: 38636378 DOI: 10.1016/j.foodchem.2024.139317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) occurrence in marine ecosystems is well known, but their accumulation in seaweeds and subsequent human exposure remain understudied. This research quantifies MPs presence in two commonly consumed seaweeds, kelp (Saccharina japonica) and nori (Pyropia yezoensis), in East Asia, revealing widespread contamination dominated by microfibers (<500 μm). Based on dietary patterns, human uptake through seaweed consumption was estimated and quantified. Notably, Chinese people consume an estimated 17,034 MPs/person/year through seaweed consumption, representing 13.1% of their total annual MPs intake. This seaweeds-derived exposure surpasses all other dietary sources, contributing up to 45.5% of overall MPs intake. The highest intake was in South Korea, followed by North Korea, China, and Japan. This research identifies seaweeds as a major, previously overlooked route of dietary MPs exposure. These findings are crucial for comprehensive risk assessments of seaweed consumption and the development of mitigation strategies, particularly for populations in East Asian countries.
Collapse
Affiliation(s)
- Xiangyang Xiao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyu Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Na Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Xiumin Cui
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
30
|
Pirsaheb M, Nouri M, Massahi T, Makhdoumi P, Baban NA, Hossini H. Microplastics contamination in the most popular brands of Iranian sausages and evaluation of its human exposure. Heliyon 2024; 10:e34363. [PMID: 39100492 PMCID: PMC11295858 DOI: 10.1016/j.heliyon.2024.e34363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Microplastics (MPs) pollution represents a nascent environmental contaminant that has recently infiltrated human life and the food chain. The primary objective of this study was to investigate the presence of MPs in different brands of Iranian sausages. Qualitative and quantitative analyses of MPs particles were conducted using stereo- and fluorescent microscopy, FT-IR (Fourier-transform infrared spectroscopy), and SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy) techniques. Samples were collected from the most commonly consumed sausage brands in Iranian markets. The findings showed that the various sausage brands contained an average abundance of 25.7 ± 21.68 (range 10-70) and 55.45 ± 45.5 (range 10-175) particles/kg based on optical and fluorescent microscopy analyses, respectively. Predominantly, MPs were identified in fiber form (77-89 %), with a smaller proportion present in fragmented form (11-23 %). Polymer analysis using FT-IR identified polyethylene (PE) and polystyrene (PS) as the primary constituents. Furthermore, the estimated annual intake (EAI) of MPs was calculated at 804 and 3517 particles/kg bw/year for adults and children, respectively, based on optical microscopy observations. In comparison, fluorescent microscopy indicated an intake of 1734 and 7589 particles/kg bw/year for the respective age groups. These results emphasize the potential of MPs contamination to penetrate into different food products including sausages through processing routes, which can threaten human health.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monireh Nouri
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Azadi Baban
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Basaran B, Aytan Ü, Şentürk Y, Özçifçi Z, Akçay HT. Microplastic contamination in some beverages marketed in türkiye: Characteristics, dietary exposure and risk assessment. Food Chem Toxicol 2024; 189:114730. [PMID: 38740239 DOI: 10.1016/j.fct.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
In this study, microplastic contamination in water, natural mineral water and mineral water, sparkling soft drinks, cold tea and some traditional beverages marketed in Türkiye were assessed. Microplastics physically and chemically characterized by microscope and ATR/FT-IR, respectively. Microplastics were detected in 9 out of 47 beverage samples. A total of 250 microplastics with 5 different polymers, 2 different shapes, and 7 different colours were detected in 47 beverage samples. The average microplastic concentration was 2.24 ± 9.86 particles/L for all beverages analysed. The highest average microplastic concentration was found in mineral waters in glass bottles (average 11.3 particles/L). No microplastics were found in cold tea and other drinks. The total annual microplastic exposure from beverage consumption in male and female individuals aged >15 years was 2029 and 1786 particles/mL/year, respectively. The microplastic load index category of all beverage samples was determined as "moderate". The average pRi level of all beverages was 117 ± 260 and the risk level was determined as "low". The study provides evidence that microplastics are common in beverages and that microplastics are directly ingested by humans.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye.
| | - Ülgen Aytan
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Yasemen Şentürk
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Zehra Özçifçi
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Hakkı Türker Akçay
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| |
Collapse
|
32
|
Cole M, Gomiero A, Jaén-Gil A, Haave M, Lusher A. Microplastic and PTFE contamination of food from cookware. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172577. [PMID: 38641111 DOI: 10.1016/j.scitotenv.2024.172577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microplastics are a prolific environmental contaminant that have been evidenced in human tissues. Human uptake of microplastic occurs via inhalation of airborne fibres and ingestion of microplastic-contaminated foods and beverages. Plastic and PTFE-coated cookware and food contact materials may release micro- and nanoplastics into food during food preparation. In this study, the extent to which non-plastic, new plastic and old plastic cookware releases microplastics into prepared food is investigated. Jelly is used as a food simulant, undergoing a series of processing steps including heating, cooling, mixing, slicing and storage to replicate food preparation steps undertaken in home kitchens. Using non-plastic cookware did not introduce microplastics to the food simulant. Conversely, using new and old plastic cookware resulted in significant increases in microplastic contamination. Microplastics comprised PTFE, polyethylene and polypropylene particulates and fibrous particles, ranging 13-318 μm. Assuming a meal was prepared daily per the prescribed methodology, new and old plastic cookware may be contributing 2409-4964 microplastics per annum into homecooked food. The health implications of ingesting microplastics remains unclear.
Collapse
Affiliation(s)
- Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK.
| | - Alessio Gomiero
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Adrián Jaén-Gil
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Marte Haave
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway; SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301 Svolvær, Norway
| | - Amy Lusher
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
33
|
Zhu M, Li P, Xu T, Zhang G, Xu Z, Wang X, Zhao L, Yang H. Combined exposure to lead and microplastics increased risk of glucose metabolism in mice via the Nrf2/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2502-2511. [PMID: 38180308 DOI: 10.1002/tox.24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
The purpose of this study was to explore the effects of combined lead (Pb) and two types of microplastic (MP) (polyvinyl chloride [PVC] and polyethylene [PE]) exposure on glucose metabolism and investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway in mediating these effects in mice. Adult C57BL/6J mice were randomly divided into four groups: control, Pb (100 mg/L), MPs (containing 10 mg/L PE and PVC), and Pb + MPs, each of which was treated with drinking water. Treatments were conducted for 6 weeks. Co-exposure to Pb + MPs exhibited increase glycosylated serum protein levels, insulin resistance, and damaged glucose tolerance compared with the control mice. Additionally, treatment with Pb + MPs caused more severe damage to hepatocytes than when exposed to them alone concomitantly, exposed to Pb + MPs exhibited improved the levels of interleukin-6, tumor necrosis factor-alpha, and malondialdehyde, but reduced superoxide dismutase, glutathione peroxidase, and catalase assay in livers. Furthermore, they increase the Kelch-like ECH-associated protein 1 (Keap1) and phosphorylated p-NF-κB protein levels but reduced the protein levels of heme oxygenase-1 and Nrf2, as well as increased Keap1 mRNA and Nrf2 mRNA. Co-exposure to Pb + MP impacts glucose metabolism via the Nrf2 /NF-κB pathway.
Collapse
Affiliation(s)
- Mengqiang Zhu
- Linyi Hedong District Maternal and Child Health Care Hospital, Linyi, China
| | - Peng Li
- Linyi Hedong District Maternal and Child Health Care Hospital, Linyi, China
| | | | - Guoyun Zhang
- Linyi Hedong District Maternal and Child Health Care Hospital, Linyi, China
| | - Zhuo Xu
- Linyi People's Hospital, Linyi, China
| | - Xiangrong Wang
- Linyi Hedong District Maternal and Child Health Care Hospital, Linyi, China
| | - Lulu Zhao
- Linyi Hedong District Maternal and Child Health Care Hospital, Linyi, China
| | | |
Collapse
|
34
|
Ling X, Cheng J, Yao W, Qian H, Ding D, Yu Z, Xie Y, Yang F. Identification and Visualization of Polystyrene Microplastics/Nanoplastics in Flavored Yogurt by Raman Imaging. TOXICS 2024; 12:330. [PMID: 38787108 PMCID: PMC11125995 DOI: 10.3390/toxics12050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The contamination of food by microplastics has garnered widespread attention, particularly concerning the health risks associated with small-sized microplastics. However, detecting these smaller microplastics in food poses challenges attributed to the complexity of food matrices and instrumental and method limitations. Here, we employed Raman imaging for visualization and identification of polystyrene particles synthesized in polymerization reactions, ranging from 400 to 2600 nm. We successfully developed a quantitative model of particle size and concentration for polystyrene, exhibiting excellent fit (R2 of 0.9946). We established procedures for spiked flavored yogurt using synthesized polystyrene, providing fresh insights into microplastic extraction efficiency. Recovery rates calculated from models validated the method's feasibility. In practical applications, the assessment of the size, type, shape, and quantity of microplastics in unspiked flavored yogurt was conducted. The most common polymers found were polystyrene, polypropylene, and polyethylene, with the smallest polystyrene sizes ranging from 1 to 10 μm. Additionally, we conducted exposure assessments of microplastics in branded flavored yogurt. This study established a foundation for developing a universal method to quantify microplastics in food, covering synthesis of standards, method development, validation, and application.
Collapse
Affiliation(s)
- Xin Ling
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dazhi Ding
- School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214026, China; (X.L.); (J.C.); (W.Y.); (H.Q.); (Z.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
35
|
Liu S, Li Y, Wang F, Gu X, Li Y, Liu Q, Li L, Bai F. Temporal and spatial variation of microplastics in the urban rivers of Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168373. [PMID: 37951265 DOI: 10.1016/j.scitotenv.2023.168373] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
This study was to investigate temporal and spatial variation of microplastics in surface water and sediment in the urban rivers of Harbin during dry and wet season. Water samples (n = 25) in Xinyi River (n = 13) and Ashe River (n = 12) were collected from the selected sampling points. Microplastics in urban rivers in Harbin included polyethylene (PE), polypropylene (PP), polystyrene (PS), polyamide (PA), polyvinyl chloride (PVC) and polyethylene terephthalate (PET). The results show that urban rivers in Harbin had relatively mild microplastic abundance with most fragments in shape and colorless in color. PP and PE were the major polymers in surface water samples, while PVC and PET were the major polymers in sediment, which were dominated by large-size and granulate shape microplastics. Source apportionment demonstrate that the main sources of microplastics in Xinyi River and Ashe River during dry season were domestic wastewater and effluent from rainfall, while the main sources of microplastics in Xinyi River and Ashe River during wet season were wastewater, atmospheric sedimentation, and agricultural source. The morphology of microplastics in surface water and sediment in urban rivers of Harbin was negatively correlated with water velocity and positively correlated with the concentration of suspended matter, dissolved oxygen, and conductivity. Riparian vegetation on the sides of Xinyi and Ashe River decreased migration process of microplastics by vegetal purification and then resulted in low abundance of microplastics. In conclusion, this study highlighted the occurrence characteristics, source apportionment and environmental influencing factors of microplastics in urban rivers of Harbin, which may develop new insights into the reduction of abundance of microplastics in the urban rivers.
Collapse
Affiliation(s)
- Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Yundong Li
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Feiyu Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xueqian Gu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Yuxiang Li
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Qi Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Lipin Li
- State Key Laboratory of Urban Water and Environment, Harbin Institute of Technology, Harbin 150096, China.
| | - Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
36
|
Tutaroğlu S, Uslu L, Gündoğdu S. Microplastic contamination of packaged spirulina products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1114-1126. [PMID: 38036911 DOI: 10.1007/s11356-023-31130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Microplastic (MP) contamination in commercially sold spirulina products has not been previously investigated. In this study, 29 spirulina samples in various packaging types were purchased from different brands and origins to assess the presence of MPs. Microplastic analysis was conducted using microscopic and μ-Raman techniques. To ascertain whether the content is indeed spirulina and make a comparison with the MP level, C-Phycocyanin levels were also analyzed. A total of 251 MP-like particles were observed. Out of the 29 examined packaged spirulina brands, 26 showed potential MPs upon visual inspection, with 35 particles confirmed as MPs (73% of the analyzed particles). The mean abundance of MPs was estimated at 13.77 ± 2.45 MPs/100 g dw. Powdered spirulina had a higher but not statistically significant MP abundance (17.34 ± 4.22 MPs/100 g dw) compared to capsule/tablet forms (10.43 ± 2.45 MPs/100 g dw). Fragments accounted for 38.3% while fibers constituted 61.7% of the identified MPs, with sizes ranging from 0.07 to 2.15 mm for fragments and 0.19 to 5.691 mm for fibers. The color distribution of MPs in spirulina samples was predominantly blue (52.8%), followed by black (25.4%), white (10.9%), and others (10.9%). Ten synthetic polymers and cellulose were identified through μ-Raman analysis, with polypropylene (31.6%) and polystyrene (8.3%) being the most prevalent. The correlation between C-Phycocyanin and MPs concentrations, was not found statistically significant. The abundance and composition of MPs were found to be influenced by packaging and processing stages. Identifying potential sources of MPs in spirulina products and evaluating their risks to human health is crucial.
Collapse
Affiliation(s)
- Serkan Tutaroğlu
- Department of Biotechnology, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
| | - Leyla Uslu
- Department of Biotechnology, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
- Faculty of Fisheries, Department of Basic Science, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye
| | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Science, Cukurova University, Balcalı, Saricam, 01330, Adana, Türkiye.
| |
Collapse
|
37
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
38
|
Siddique MAM, Uddin A, Hossain MS, Rahman SMA, Rahman MS, Kibria G, Malafaia G. "Microplastic seasoning": A study on microplastic contamination of sea salts in Bangladesh. MARINE POLLUTION BULLETIN 2024; 198:115863. [PMID: 38039574 DOI: 10.1016/j.marpolbul.2023.115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 μm size class was significantly higher than the 1500-3000 μm and 3000-5000 μm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Azad Uddin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Soliman Hossain
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shahriar Md Arifur Rahman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Department of Natural Resource and Society, University of Idaho, Moscow, ID 83844, USA
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka 1000, Bangladesh
| | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, G.O., Brazil.
| |
Collapse
|
39
|
Kashfi FS, Mohammadi A, Rostami F, Savari A, De-la-Torre GE, Spitz J, Saeedi R, Kalantarhormozi M, Farhadi A, Dobaradaran S. Microplastics and phthalate esters release from teabags into tea drink: occurrence, human exposure, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104209-104222. [PMID: 37697202 DOI: 10.1007/s11356-023-29726-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Tea, the most common infusion worldwide, is usually sold in teabags due to the ease of usage. The increase in the use of plastic materials in the food packaging industry has led to an increase in released contaminants, such as microplastics (MPs) and phthalates (PAEs), in various food products including teabags. In this research, the abundance and features of MPs as well as PAEs concentration were investigated in 45 teabag samples of different Persian and German brands. The abundance of MPs in the Persian and German teabag samples was averagely 412.32 and 147.28 items/single teabag, respectively. Also, average PAEs levels in the Persian and German teabag samples were 2.87 and 2.37 mg/g, respectively. The predominant size category of MPs was related to 100-250 μm. Fibers and transparent were the dominant shape and color of detected MPs in teabags, respectively. Polyethylene (PE) and nylon were the most common MP polymer types. The most prominent PAEs congeners in teabag samples were diethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP). Furthermore, MP exposure hazard through tea ingestion was analyzed for children and adults. DEHP showed the cancer risk (CR) for children and adults. The findings of this research indicated that high MPs and PAEs levels are released from teabags into tea drinks. Considering a daily drinking of a volume of 150 and 250 mL tea by children and adults, 486 and 810 MPs may enter their bodies, respectively. Thus, tea prepared with teabag-packed herbs may pose a significant health risk for consumers.
Collapse
Affiliation(s)
- Fatemeh Sadat Kashfi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Rostami
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezou Savari
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gabriel E De-la-Torre
- Biodiversity, Environment, and Society Research Group, San Ignacio de Loyola University, Lima, Peru
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kalantarhormozi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, 7514763448, Bushehr, Iran.
| |
Collapse
|
40
|
Aydın RB, Yozukmaz A, Şener İ, Temiz F, Giannetto D. Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life (Basel) 2023; 13:1686. [PMID: 37629543 PMCID: PMC10455475 DOI: 10.3390/life13081686] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Microplastics are transferred to humans through the food chain by consuming food contaminated with microplastics. However, the knowledge about the risks of dietary exposure for humans to these particles is very limited. Moreover, only a few studies on microplastic pollution in fruit and vegetables have been carried on. Thus, this study aims to investigate the presence of microplastics in some of the most consumed fruits and vegetables (pear (Pyrus communis), apple (Malus domestica), tomato (Solanum lycopersicum), onion (Allium cepa), potatoes (Solanum tuberosum), and cucumber (Cucumis sativus)) from Turkey and to evaluate the potential risk for consumers. Fruits and vegetable samples were purchased from different markets and fruiterer (two of each) in Muğla province, Southwest of Turkey. Microplastic extraction processes were carried out on the edible parts of the samples. According to the results obtained, a total of 210 particles (2.9 ± 1.6 particle g-1) were detected in all samples. Any significant difference occurred among the different markets. The maximum average amount of microplastic was determined in tomato samples (3.63 ± 1.39 particle g-1). The highest microplastic intake was with tomato (398,520 particles individual-1 year-1 for Estimated Annual Intake (EAI) and Estimated Daily Intake (EDI) for children 68.24 particles kg-1 day-1). The occurrence of microplastics of big size, that are not allowed to pass by plant xylem transport, suggests that fresh vegetables and fruits can be contaminated with plastic, especially during the production phase, during agricultural activities and during the marketing process (transport to the market and purchasing process).
Collapse
Affiliation(s)
- Rana Berfin Aydın
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Aykut Yozukmaz
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - İdris Şener
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - Funda Temiz
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Daniela Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| |
Collapse
|
41
|
Altunışık A. Prevalence of microplastics in commercially sold soft drinks and human risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117720. [PMID: 36907066 DOI: 10.1016/j.jenvman.2023.117720] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Due to the increasing global plastic production and use in recent years, the amount of microplastic (MP) accumulating in the environment has also increased. This microplastic pollution potential has been documented mostly in studies of the sea or seafood. The presence of microplastics in terrestrial foods has therefore attracted less attention, despite the potential for future major environmental risks. Some of these researches are related to bottled water, tap water, honey, table salt, milk, and soft drinks. However, the presence of microplastics in soft drinks has not yet been evaluated in the European continent, including Türkiye. Hence, the current study focused on the presence and distribution of microplastics in ten soft drink brands in Türkiye since the water utilized in the bottling process of soft drinks originates from different water supply sources. Using FTIR stereoscopy and stereomicroscope examination, MPs were detected in all of these brands. According to the microplastic contamination factor (MPCF) classification, 80% of the soft drink samples indicated a high level of contamination with microplastics. The study's findings showed that each liter of consumed soft drinks exposes people to about nine microplastic particles, which is a moderate dose when compared to exposure levels in earlier research. It has been determined that bottle-production processes and the substrates used for food production may be the main sources of these microplastics. The chemical components of these microplastic polymers were polyamide (PA), polyethylene terephthalate (PET) and polyethylene (PE), and fibers were the dominant shape. Compared to adults, children were subjected to higher microplastic loads. The study's preliminary data on MP contamination of soft drinks may be useful for further evaluating the risks exposure to microplastics poses to human health.
Collapse
Affiliation(s)
- Abdullah Altunışık
- University of Recep Tayyip Erdoğan, Faculty of Arts and Sciences, Department of Biology, 53100, Rize, Türkiye.
| |
Collapse
|
42
|
Zhang P, Yuan Y, Zhang J, Wen T, Wang H, Qu C, Tan W, Xi B, Hui K, Tang J. Specific response of soil properties to microplastics pollution: A review. ENVIRONMENTAL RESEARCH 2023; 232:116427. [PMID: 37327841 DOI: 10.1016/j.envres.2023.116427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The soil environment is a critical component of the global ecosystem and is essential for nutrient cycling and energy flow. Various physical, chemical, and biological processes occur in the soil and are affected by environmental factors. Soil is vulnerable to pollutants, especially emerging pollutants, such as microplastics (MPs). MPs pollution has become a significant environmental problem, and its harm to human health and the environment cannot be underestimated. However, most studies on MPs pollution have focused on marine ecosystems, estuaries, lakes, rivers, and other aquatic environments, whereas few considered the effects and hazards of MPs pollution of the soil, especially the responses of different environmental factors to MPs. In addition, when many MPs pollutants produced by agricultural activities (mulching film, organic fertilizer) and atmospheric sedimentation enter the soil environment, it will cause changes in soil pH, organic matter composition, microbial community, enzyme activity, animals and plants and other environmental factors. However, due to the complex and changeable soil environment, the heterogeneity is very strong. The changes of environmental factors may react on the migration, transformation and degradation of MPs, and there are synergistic or antagonistic interactions among different factors. Therefore, it is very important to analyze the specific effects of MPs pollution on soil properties to clarify the environmental behavior and effects of MPs. This review focuses on the source, formation, and influencing factors of MPs pollution in soil and summarizes its effect and influence degree on various soil environmental factors. The results provide research suggestions and theoretical support for preventing or controlling MPs soil pollution.
Collapse
Affiliation(s)
- Panting Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Taoyi Wen
- School of Civil Engineering, Chang'an University, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|