1
|
Ferrer RA, Chen BY, Garcia JPT, Rejano CJF, Tsai PW, Hsueh CC, Tayo LL. Deciphering the Regulatory Potential of Antioxidant and Electron-Shuttling Bioactive Compounds in Oolong Tea. BIOLOGY 2025; 14:487. [PMID: 40427676 PMCID: PMC12109060 DOI: 10.3390/biology14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025]
Abstract
OT has gained attention for its high polyphenol content and therapeutic potential. To elucidate this further, this study investigated the electron-shuttling bioactive compounds of OT and evaluated their effect on dysregulated breast cancer (BC) genes. OT extracts were obtained via solvent extraction (SE) and supercritical fluid extraction (SFE), followed by in vitro assays. Phytochemical analysis revealed that ethanol-extracted OT (OTL-E) had the highest polyphenol, flavonoid, and tannin contents, correlating with strong antioxidant activity, while water-extracted OT (OTL-W) exhibited greater bioelectricity-stimulating properties in microbial fuel cells (MFC), confirmed by cyclic voltammetry (CV). Based on phytochemical analyses, SE displayed a better extraction technique for isolating OT bioactive compounds compared to SFE. In silico approaches through network pharmacology, molecular docking and dynamics simulations revealed that polyphenols with ortho- or para-dihydroxyl groups targeted dysregulated BC proteins involved in kinase signaling, apoptosis, and hormone receptor pathways. Luteolin exhibited the highest binding affinities to MAPK1 and PIK3CA with free energy (ΔG) of -9.1 and -8.4 kcal/mol, respectively. Trajectory-based analyses confirmed enthalpy-favored ligand-induced conformational changes to these oncoproteins, altering their function in BC development. These findings suggest the potential of OT as a bioelectricity-stimulating and chemopreventive agent, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Regineil A. Ferrer
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-lan University, I-lan 260, Taiwan; (B.-Y.C.); (C.-C.H.)
| | - Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Christine Joyce F. Rejano
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-lan University, I-lan 260, Taiwan; (B.-Y.C.); (C.-C.H.)
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
2
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
3
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
4
|
Akça KT, Demirel MA, Süntar I. The Role of Aromatase Enzyme in Hormone Related Diseases and Plant-Based Aromatase Inhibitors as Therapeutic Regimens. Curr Top Med Chem 2021; 22:229-246. [PMID: 34844542 DOI: 10.2174/1568026621666211129141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/17/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022]
Abstract
Medicinal plants have a long history of use as food and remedy in traditional and modern societies, as well as have been used as herbal drugs and sources of novel bioactive compounds. They provide a wide array of chemical compounds, many of which can not be synthesized via current synthesis methods. Natural products may provide aromatase inhibitory activity through various pathways and may act clinically effective for treating pathologies associated with excessive aromatase secretion including breast, ovarian and endometrial cancers, endometriosis, uterine fibroid, benign prostatic hyperplasia (BPH), prostate cancer, infertility, and gynecomastia. Recent studies have shown that natural products with aromatase inhibitory activity, could also be good options against secondary recurrence of breast cancer by exhibiting chemopreventive effects. Therefore, screening for new plant-based aromatase inhibitors may provide novel leads for drug discovery and development, particularly with increased clinical efficacy and decreased side effects.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara. Turkey
| | - Murside Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Laboratory Animals Breeding and Experimental Research Center, Gazi University, Faculty of Pharmacy, 06330, Etiler, Ankara. Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara. Turkey
| |
Collapse
|
5
|
O’Neill EJ, Termini D, Albano A, Tsiani E. Anti-Cancer Properties of Theaflavins. Molecules 2021; 26:molecules26040987. [PMID: 33668434 PMCID: PMC7917939 DOI: 10.3390/molecules26040987] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease characterized by aberrant proliferative and apoptotic signaling pathways, leading to uncontrolled proliferation of cancer cells combined with enhanced survival and evasion of cell death. Current treatment strategies are sometimes ineffective in eradicating more aggressive, metastatic forms of cancer, indicating the need to develop novel therapeutics targeting signaling pathways which are essential for cancer progression. Historically, plant-derived compounds have been utilized in the production of pharmaceuticals and chemotherapeutic compounds for the treatment of cancer, including paclitaxel and docetaxel. Theaflavins, phenolic components present in black tea, have demonstrated anti-cancer potential in cell cultures in vitro and in animal studies in vivo. Theaflavins have been shown to inhibit proliferation, survival, and migration of many cancer cellswhile promoting apoptosis. Treatment with theaflavins has been associated with increased levels of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspases-3, -7, -8, and -9, all markers of apoptosis, and increased expression of the proapoptotic marker Bcl-2-associated X protein (Bax) and concomitant reduction in the antiapoptotic marker B-cell lymphoma 2 (Bcl-2). Additionally, theaflavin treatment reduced phosphorylated Akt, phosphorylated mechanistic target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and c-Myc levels with increased expression of the tumour suppressor p53. This review summarizes the current in vitro and in vivo evidence available investigating the anti-cancer effects of theaflavins across various cancer cell lines and animal models.
Collapse
Affiliation(s)
- Eric J. O’Neill
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (E.J.O.); (D.T.); (A.A.)
| | - Deborah Termini
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (E.J.O.); (D.T.); (A.A.)
| | - Alexandria Albano
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (E.J.O.); (D.T.); (A.A.)
| | - Evangelia Tsiani
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (E.J.O.); (D.T.); (A.A.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
6
|
Samanta S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J Am Coll Nutr 2020; 41:65-93. [DOI: 10.1080/07315724.2020.1827082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| |
Collapse
|
7
|
Balam FH, Ahmadi ZS, Ghorbani A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon 2020; 6:e03557. [PMID: 32181408 PMCID: PMC7063143 DOI: 10.1016/j.heliyon.2020.e03557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 enzyme functions as the rate-limiting enzyme in changing androgens to estrogens. Inhibition of aromatase is one of the significant objectives of treatment of hormone-dependent diseases such as breast cancer, especially in post-menopausal women. Natural compounds like chrysin, as a flavor that has a high concentration in honey and propolis, are rich sources of them can be useful in inhibiting aromatase for chemoprevention following treatment or in women at risk of acquiring breast cancer. This study intended to summarize the existing evidence on the effect of chrysin on aromatase activity. We systematically searched Science Direct, PubMed and Google Scholar and hand searched the reference lists of identified relevant articles, up to 5 February, 2019. Articles with English abstracts that reported the effect of chrysin on aromatase inhibition and without publication date restriction were investigated. Twenty relevant articles were chosen from a total of 1721 articles. Only one study was performed on humans and two studies were assayed on rats, while other studies were evaluated in vitro. All the studies except one showed that chrysin had the potency of aromatase inhibition; however, only one study performed on endometrial stromal cells showed that chrysin and naringenin did not indicate aromatase inhibitory properties. Various assay methods and experimental conditions were the important aspects leading to different results between the studies. Chrysin has potency in inhibition of the aromatase enzyme and thus can be useful in preventing and treating the hormone-dependent breast cancer and as an adjuvant therapy for estrogen-dependent diseases.
Collapse
Affiliation(s)
- Farinaz Hosseini Balam
- Student Research Committee, Department of Cellular and Molecular Nutrition, School of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Sadat Ahmadi
- Student Research Committee, Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Faculty of Nutrition Science and Food Technology, Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| |
Collapse
|
8
|
Lamas CA, Kido LA, Montico F, Collares-Buzato CB, Maróstica MR, Cagnon VHA. A jaboticaba extract prevents prostatic damage associated with aging and high-fat diet intake. Food Funct 2020; 11:1547-1559. [DOI: 10.1039/c9fo02621e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Jaboticaba extract prevented the prostatic lesion development in aging and/or overweight mice, mainly interfering in cell proliferation, hormonal and angiogenesis pathways.
Collapse
Affiliation(s)
- C. A. Lamas
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - L. A. Kido
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - F. Montico
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - C. B. Collares-Buzato
- Department of Biochemistry and Tissue Biology
- Biology Institute
- University of Campinas
- São Paulo
- Brazil
| | - M. R. Maróstica
- Department of Food and Nutrition
- School of Food Engineering
- University of Campinas
- São Paulo
- Brazil
| | - V. H. A. Cagnon
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| |
Collapse
|
9
|
Estrogenic biological activity and underlying molecular mechanisms of green tea constituents. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Giudice A, Barbieri A, Bimonte S, Cascella M, Cuomo A, Crispo A, D'Arena G, Galdiero M, Della Pepa ME, Botti G, Caraglia M, Capunzo M, Arra C, Montella M. Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms. Onco Targets Ther 2019; 12:4937-4953. [PMID: 31388303 PMCID: PMC6607693 DOI: 10.2147/ott.s183192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Various studies indicate that prolonged exposure to elevated levels of estrogens is associated with development of breast cancer. Both estrogen receptor-dependent and independent mechanisms can contribute to the carcinogenic effects of estrogens. Among them, the oxidative metabolism of estrogens plays a key role in the initiation of estradiol-induced breast cancer by generation of reactive estrogen quinones as well as the associated formation of oxygen free radicals. These genotoxic metabolites can react with DNA to form unstable DNA adducts which generate mutations leading to the initiation of breast cancer. A variety of endogenous and exogenous factors can alter estrogen homeostasis and generate genotoxic metabolites. The use of specific phytochemicals and dietary supplements can inhibit the risk of breast cancer not only by the modulation of several estrogen-activating enzymes (CYP19, CYP1B1) but also through the induction of various cytoprotective enzymes (eg, SOD3, NQO1, glutathione S-transferases, OGG-1, catechol-O-methyltransferases, CYP1B1A, etc.) that reestablish the homeostatic balance of estrogen metabolism via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Aldo Giudice
- Epidemiology Unit, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Antonio Barbieri
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Anna Crispo
- Epidemiology Unit, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Giovanni D'Arena
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80134Naples, Italy
| | - Maria Elena Della Pepa
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80134Naples, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-IRCCS “Fondazione G. Pascale”, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081Salerno, Italy
| | - Claudio Arra
- S.S.D Sperimentazione Animale, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
| |
Collapse
|
11
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients 2019; 11:E267. [PMID: 30691017 PMCID: PMC6412204 DOI: 10.3390/nu11020267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid is found in medicinal and spice plants such as rosemary, lemon balm, and mint. The aim of the study was to investigate the effect of rosmarinic acid on parameters of glucose and lipid metabolism and parameters of oxidative stress in rats in the early phase of estrogen deficiency. The study was carried out on mature female Wistar rats divided into the following groups: sham-operated control rats, ovariectomized control rats, and ovariectomized rats treated orally with rosmarinic acid at a dose of 10 mg/kg or 50 mg/kg daily for 28 days. The concentration of sex hormones, parameters related to glucose and lipid metabolism as well as parameters of antioxidant abilities and oxidative damage were determined in the blood serum. In the ovariectomized control rats, the homeostasis model assessment of insulin resistance (HOMA-IR) index and cholesterol concentration increased, the superoxide dismutase activity increased, and the reduced glutathione concentration decreased. Administration of rosmarinic acid at both doses induced decreases in the fructosamine concentration and HOMA-IR, an increase in the concentration of reduced glutathione, and a decrease in the concentration of advanced oxidation protein products in ovariectomized rats. Moreover, rosmarinic acid at a dose of 50 mg/kg induced a decrease in the total cholesterol and triglyceride concentrations. The results indicate that rosmarinic acid may be useful in the prevention of metabolic disorders associated with estrogen deficiency, however further studies are necessary.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| |
Collapse
|
12
|
Nielsen AJ, McNulty J. Polyphenolic natural products and natural product–inspired steroidal mimics as aromatase inhibitors. Med Res Rev 2018; 39:1274-1293. [DOI: 10.1002/med.21536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Alexander J. Nielsen
- Department of Chemistry & Chemical BiologyMcMaster UniversityHamilton Ontario Canada
| | - James McNulty
- Department of Chemistry & Chemical BiologyMcMaster UniversityHamilton Ontario Canada
| |
Collapse
|
13
|
Dalipi R, Borgese L, Tsuji K, Bontempi E, Depero LE. Elemental analysis of teas, herbs and their infusions by means of total reflection X-ray fluorescence. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Chemical characterization and bioactive properties of decoctions and hydroethanolic extracts of Thymus carnosus Boiss. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E. Polyphenols as Promising Drugs against Main Breast Cancer Signatures. Antioxidants (Basel) 2017; 6:E88. [PMID: 29112149 PMCID: PMC5745498 DOI: 10.3390/antiox6040088] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.
Collapse
Affiliation(s)
- María Losada-Echeberría
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Palma de Mallorca 07122, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| |
Collapse
|
16
|
Ronco AL, De Stefani E, Lasalvia-Galante E, Mendoza B, Vazquez A, Sanchez G. Hot infusions and risk of colorectal cancer in Uruguay: a case-control study. Eur J Clin Nutr 2017; 71:ejcn2017130. [PMID: 28832574 DOI: 10.1038/ejcn.2017.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/05/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES The evidence of possible roles for the most common hot infusions intake (tea and coffee) in the risk of colorectal cancer (CRC) needs additional data. Regarding 'mate' intake (infusion of Ilex paraguariensis herb), a previous multi-site study reported lack of association for its highest intake on CRC risk. The present study was conducted to better understand the associations between the intake of this and other infusions and CRC risk. SUBJECTS/METHODS Patients (611 CRC incident cases and 2394 controls, all belonging to public hospitals) were interviewed through a questionnaire, including socio-demographic, reproductive and lifestyle variables, and a food-frequency questionnaire of 64 items, analyzing tea, 'mate' and coffee intake (consumer status, daily intake, age at start and at quit). Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated through unconditional logistic regression, adjusting for relevant potential confounders. RESULTS Tea and coffee intake displayed significant and inverse associations with CRC risk, mainly among men (OR=0.54, 95% CI 0.38-0.76 for tea and OR=0.59, 95% CI 0.41-0.85 for coffee). Mate intake showed a significant inverse association among women (OR=0.50, 95% CI 0.33-0.77), with a marginal heterogeneity between sexes (P=0.07). Concerning age strata, tea intake displayed inverse associations in all ages, whereas 'mate' and coffee intake showed stronger inverse associations for age ⩾70, suggesting a gradient along time. CONCLUSIONS We found evidence of different significant inverse associations for tea, 'mate' and coffee intake and CRC risk. To our knowledge, this is the first epidemiologic study reporting inverse results on 'mate' intake and CRC, which are explained by a stronger association among women.European Journal of Clinical Nutrition advance online publication, 23 August 2017; doi:10.1038/ejcn.2017.130.
Collapse
Affiliation(s)
- A L Ronco
- Unit of Oncology and Radiotherapy, Pereira Rossell Women's Hospital, Montevideo, Uruguay
- IUCLAEH School of Medicine, Maldonado, Uruguay
- Biomedical Sciences Center, University of Montevideo, Montevideo, Uruguay
| | - E De Stefani
- Department of Pathology, Clinical Hospital, UDELAR State University, Montevideo, Uruguay
| | | | - B Mendoza
- Biomedical Sciences Center, University of Montevideo, Montevideo, Uruguay
- Department of Endocrinology and Metabolism, Clinical Hospital, UDELAR State University, Montevideo, Uruguay
| | - A Vazquez
- Biomedical Sciences Center, University of Montevideo, Montevideo, Uruguay
| | - G Sanchez
- Department of Endocrinology and Metabolism, Clinical Hospital, UDELAR State University, Montevideo, Uruguay
| |
Collapse
|
17
|
Butt MS, Ahmad RS, Sultan MT, Qayyum MMN, Naz A. Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 2016; 55:792-805. [PMID: 24915354 DOI: 10.1080/10408398.2012.680205] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- a National Institute of Food Science and Technology , University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | |
Collapse
|
18
|
Mocanu MM, Nagy P, Szöllősi J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015; 20:22578-620. [PMID: 26694341 PMCID: PMC6332464 DOI: 10.3390/molecules201219864] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
19
|
Nash LA, Ward WE. Tea and bone health: Findings from human studies, potential mechanisms, and identification of knowledge gaps. Crit Rev Food Sci Nutr 2015; 57:1603-1617. [DOI: 10.1080/10408398.2014.1001019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
|
21
|
Pan MH, Chiou YS, Chen LH, Ho CT. Breast cancer chemoprevention by dietary natural phenolic compounds: Specific epigenetic related molecular targets. Mol Nutr Food Res 2014; 59:21-35. [DOI: 10.1002/mnfr.201400515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
| | - Yi-Siou Chiou
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Li-Hua Chen
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University; New Brunswick; NJ USA
| |
Collapse
|
22
|
Levitsky DO, Dembitsky VM. Anti-breast Cancer Agents Derived from Plants. NATURAL PRODUCTS AND BIOPROSPECTING 2014; 5:1-16. [PMID: 25466288 PMCID: PMC4327996 DOI: 10.1007/s13659-014-0048-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/11/2014] [Indexed: 05/28/2023]
Abstract
Upon emergence of modern anticancer therapy, medical community is divided into two opposite camps, one of them claiming absolute necessity of using isolated or synthesized chemical compounds for efficient patient treatment and another one advocating alternative cancer therapies, in particular those based on natural sources, including extracts from plants. It seems, in reality, that the two camps are reconcilable: while natural sources, plant extracts or juices play both curative and protective role, drugs represent the ultimate possibility to inhibit or reverse tumor development. In this paper we tried to analyze anti-breast cancer potencies of quite a few extracts from different plant sources and to compare their anti-proliferative efficiency of crude extracts with actions of their purified ingredients.
Collapse
Affiliation(s)
- Dmitri O. Levitsky
- Unité Fonctionalité et Ingénierie des Protéines (UFIP), Faculté des Sciences et des Techniques, Université de Nantes/CNRS, 44322 Nantes Cedex 03, France
| | | |
Collapse
|
23
|
Yiannakopoulou EC. Interaction of green tea catechins with breast cancer endocrine treatment: a systematic review. Pharmacology 2014; 94:245-8. [PMID: 25471334 DOI: 10.1159/000369170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
Recent data have shown strong chemopreventive and possibly cancer chemotherapeutic effects of green tea polyphenols and EGCG against breast cancer. This systematic review aims to synthesize data on the possible interaction of green tea catechins with breast cancer endocrine treatment. Electronic databases were searched with the appropriate search terms. Experimental trials suggest a synergistic interaction of green tea catechins with tamoxifen or raloxifene in the treatment of estrogen receptor-positive and estrogen receptor-negative breast cancer through estrogen receptor-dependent and -independent mechanisms. No evidence of an interaction of green tea catechins with aromatase inhibitors or fulvestrant has been reported. As green tea catechins are natural compounds with a rather favorable safety profile, the strategy of co-administrating green tea catechins with tamoxifen seems to be a rational approach in chemoprevention, adjuvant and metastatic breast cancer treatment that needs further investigation.
Collapse
Affiliation(s)
- Eugenia C Yiannakopoulou
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Athens, Greece
| |
Collapse
|
24
|
Takeda J, Park HY, Kunitake Y, Yoshiura K, Matsui T. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1. Food Chem 2013; 138:2140-5. [DOI: 10.1016/j.foodchem.2012.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
|
25
|
Kim MJ, Park YJ, Chung KH, Oh SM. The Inhibitory Effects of the Standardized Extracts of Ginkgo biloba
on Aromatase Activity in JEG-3 Human Choriocarcinoma Cells. Phytother Res 2013; 27:1756-62. [DOI: 10.1002/ptr.4927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Jie Kim
- School of Pharmacy; Sungkyunkwan University; 300 Cheoncheon dong Jangan-gu, Suwon Kyeonggi-do 440-746 South Korea
| | - Yong Joo Park
- School of Pharmacy; Sungkyunkwan University; 300 Cheoncheon dong Jangan-gu, Suwon Kyeonggi-do 440-746 South Korea
| | - Kyu Hyuck Chung
- School of Pharmacy; Sungkyunkwan University; 300 Cheoncheon dong Jangan-gu, Suwon Kyeonggi-do 440-746 South Korea
| | - Seung Min Oh
- Hoseo Fusion Technology Laboratory; Hoseo University; 165 Sechul-ri, Asan ChungcheongNam-do 336-795 South Korea
| |
Collapse
|
26
|
Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct 2012; 3:170-7. [DOI: 10.1039/c1fo10157a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Ostadalova M, Pazout V, Straka I, Tauferova A, Bartl P, Pokorna J. Monitoring Tea Pigments Theaflavins and Thearubigins in Dependence on the Method and Duration of Storage. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jftech.2011.50.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Salahinejad M, Aflaki F. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran. Biol Trace Elem Res 2010; 134:109-17. [PMID: 19609493 DOI: 10.1007/s12011-009-8449-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
Abstract
The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.
Collapse
Affiliation(s)
- Maryam Salahinejad
- Environmental Laboratory, Nuclear Science Research School, Nuclear Science & Technology Research Institute, Atomic Energy Organization of Iran (AEOI), P. O. Box 11365-3486, Tehran, Iran.
| | | |
Collapse
|
29
|
Li Y, Shibahara A, Matsuo Y, Tanaka T, Kouno I. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. JOURNAL OF NATURAL PRODUCTS 2010; 73:33-39. [PMID: 20014758 DOI: 10.1021/np900618v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Degradation of the black tea pigment theaflavin was examined in detail. Enzymatic oxidation of a mixture of epigallocatechin and epicatechin initially produced theaflavin, while prolonged reaction decreased the product. Addition of ethanol to the reaction mixture at the point when theaflavin began to decrease afforded four new products, together with theanaphthoquinone, a known oxidation product of theaflavin. The structures of the new products were determined by spectroscopic methods. One of the products was an ethanol adduct of a theanaphthoquinone precursor, and this reacted with theaflavin to give two further products. A product generated by coupling of theaflavin with epicatechin quinone was also obtained. The structures of the products indicate that oxidation and coupling with quinones are key reactions in the degradation of theaflavins. The degradation of theaflavin probably contributes to production of thearubigins.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-Machi 1-14, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
30
|
Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 2009; 11:14-40. [PMID: 20161999 PMCID: PMC2820987 DOI: 10.3390/ijms11010014] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/19/2009] [Accepted: 12/24/2009] [Indexed: 01/25/2023] Open
Abstract
This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone-phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing.
Collapse
|
31
|
Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DMS, Banerjee S, Das K, Sa G, Das T. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 2009; 31:259-68. [DOI: 10.1093/carcin/bgp240] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathi S, Mekapothula S, Kannan R, Katti KV. Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for Production of Biocompatible Gold Nanoparticles. JOURNAL OF MATERIALS CHEMISTRY 2009; 19:2912-2920. [PMID: 20161162 PMCID: PMC2737515 DOI: 10.1039/b822015h] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No 'man made' chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.
Collapse
Affiliation(s)
- Satish K. Nune
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Nripen Chanda
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Ravi Shukla
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Kavita Katti
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Rajesh R. Kulkarni
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Subramanian Thilakavathi
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Swapna Mekapothula
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Raghuraman Kannan
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| | - Kattesh V. Katti
- Departments of Radiology, Physics, Bio-medical Sciences and Nuclear Science and Engineering Institute University of Missouri – Columbia, Columbia, MO 65212. Fax: (+1) 573-884-5679
| |
Collapse
|
33
|
Abstract
The current practice of introducing phytochemicals to support the immune system or fight against diseases is based on centuries old traditions. Nutritional support is a recent advancement in the domain of diet-based therapies; green tea and its constituents are one of the important components of these strategies to prevent and cure various malignancies. The anti-carcinogenic and anti-mutagenic activities of green tea were highlighted some years ago suggesting that it could reduce the prevalence of cancer and even provide protection. The pharmacological actions of green tea are mainly attributed to polyphenols that includes epigallocatechin-3-gallate (EGCG), epicatechin, epicatechin-3-gallate, epigallocatechin. Green tea and its components effectively mitigate cellular damage arising due to oxidative stress. Green tea is supposed to enhance humoral and cell-mediated immunity, decreasing the risk of certain cancers, and may have certain advantage in treating inflammatory disorders. Much of the cancer chemopreventive properties of green tea are mediated by EGCG that induces apoptosis and promotes cell growth arrest, by altering the expression of cell cycle regulatory proteins, activating killer caspases, and suppressing nuclear factor kappa-B activation. Besides, it regulates and promotes IL-23 dependent DNA repair and stimulates cytotoxic T cells activities in a tumor microenvironment. It also blocks carcinogenesis by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation and metastasis. The review is intended to highlight the chemistry of green tea, its antioxidant potential, its immunopotentiating properties and mode of action against various cancer cell lines that showed its potential as a chemopreventive agent against colon, skin, lung, prostate, and breast cancer.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad.
| | | |
Collapse
|
34
|
McCann SE, Yeh M, Rodabaugh K, Moysich KB. Higher regular coffee and tea consumption is associated with reduced endometrial cancer risk. Int J Cancer 2009; 124:1650-3. [PMID: 19107932 DOI: 10.1002/ijc.24125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies have investigated the associations between diet and endometrial cancer, but few have focused specifically on coffee and tea. In a hospital-based case-control study, we examined the associations between endometrial cancer risk and usual consumption of coffee, decaffeinated coffee, and black tea among 541 women with endometrial cancer and 541 women with an intact uterus but without a cancer diagnosis seen at Roswell Park Cancer Institute (Buffalo, New York) between 1982 and 1998. Daily frequency of consumption of coffee, decaffeinated coffee, and black tea in the few years prior to diagnosis in cases and questionnaire completion in controls was assessed with a self-administered epidemiologic questionnaire and categorized as none, 0.5 cups/d, 1-2 cups/d and >2 cups/d. Odds ratios (OR) and 95% confidence intervals (CI) for each category referent to nondrinkers were estimated with unconditional logistic regression adjusting for age, endometrial cancer risk factors and each beverage mutually adjusted for other beverages. Compared to nondrinkers, we observed a nonsignificant negative association with endometrial cancer risk among women who reported >2 cups/d regular coffee (OR 0.71, 95% CI 0.49-1.03), a significant inverse association with >2 cups/d black tea (OR 0.56, 95% CI 0.35-0.90) and a significant inverse association with >4 cups/d combined coffee and tea consumption (OR 0.47, 95% CI 0.28-0.80). These findings suggest coffee and tea may be important in reducing endometrial cancer risk.
Collapse
Affiliation(s)
- Susan E McCann
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | |
Collapse
|
35
|
Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis 2008; 13:771-81. [DOI: 10.1007/s10495-008-0213-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Kusano R, Tanaka T, Matsuo Y, Kouno I. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation. Chem Pharm Bull (Tokyo) 2008; 55:1768-72. [PMID: 18057757 DOI: 10.1248/cpb.55.1768] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During black tea production, catechins and their galloyl esters are enzymatically oxidized to generate a complex mixture of black tea polyphenols. The role of galloyl ester groups in this process has yet to be determined. Enzymatic oxidation of epicatechin 3-O-gallate (1) yielded two new oxidation products, theaflavate C and bistheaflavate A, along with theaflavate A (2), a known dimer of 1 generated by coupling of the B-ring with the galloyl group. Theaflavate C is a trimer of 1 and possesses two benzotropolone moieties generated by the oxidative coupling of the galloyl groups with the catechol B-rings. Bistheaflavate A was found to be a tetramer produced by intermolecular coupling of two benzotropolone moieties of 2. From the structures of the products, it was deduced that oxidative coupling of galloyl groups resulted in extension of the molecular size of the products in catechin oxidation.
Collapse
Affiliation(s)
- Rie Kusano
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi. Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
37
|
Kusano R, Andou H, Fujieda M, Tanaka T, Matsuo Y, Kouno I. Polymer-Like Polyphenols of Black Tea and Their Lipase and Amylase Inhibitory Activities. Chem Pharm Bull (Tokyo) 2008; 56:266-72. [DOI: 10.1248/cpb.56.266] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rie Kusano
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Hisashi Andou
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Miho Fujieda
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Isao Kouno
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
38
|
Xu WH, Dai Q, Xiang YB, Long JR, Ruan ZX, Cheng JR, Zheng W, Shu XO. Interaction of soy food and tea consumption with CYP19A1 genetic polymorphisms in the development of endometrial cancer. Am J Epidemiol 2007; 166:1420-30. [PMID: 17827443 PMCID: PMC2150998 DOI: 10.1093/aje/kwm242] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Certain polyphenols inhibit the activity of aromatase, a critical enzyme in estrogen synthesis that is coded by the CYP19A1 gene. Consumption of polyphenol-rich foods and beverages, thus, may interact with CYP19A1 genetic polymorphisms in the development of endometrial cancer. The authors tested this hypothesis in the Shanghai Endometrial Cancer Study (1997-2003), a population-based case-control study of 1,204 endometrial cancer cases and 1,212 controls. Dietary information was obtained by use of a validated food frequency questionnaire. Genotypes of CYP19A1 at rs28566535, rs1065779, rs752760, rs700519, and rs1870050 were available for 1,042 cases and 1,035 controls. Unconditional logistic regression models were used to calculate odds ratios and their 95% confidence intervals after adjustment for potential confounding factors. Higher intake of soy foods and tea consumption were both inversely associated with the risk of endometrial cancer, with odds ratios of 0.8 (95% confidence interval: 0.6, 1.0) for the highest versus the lowest tertiles of intake of soy and 0.8 (95% confidence interval: 06, 0.9) for ever tea consumption. The association of single nucleotide polymorphisms rs1065779, rs752760, and rs1870050 with endometrial cancer was modified by tea consumption (p(interaction) < 0.05) but not by soy isoflavone intake. The authors' findings suggest that tea polyphenols may modify the effect of CYP19A1 genetic polymorphisms on the development of endometrial cancer.
Collapse
Affiliation(s)
- Wang Hong Xu
- Department of Epidemiology, Shanghai Cancer Institute, Cancer Institute of Shanghai Jiao Tong University, 2200/25 Xie Tu Road, Shanghai, 200032, People’s Republic of China
| | - Qi Dai
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and Vanderbilt Institute of Medicine & Public Health, Department of Medicine,Vanderbilt University Medical Center, Sixth Floor, Suite 600, 2525 West End Avenue, Nashville, TN 37203-1738, U.S.A
| | - Yong Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Cancer Institute of Shanghai Jiao Tong University, 2200/25 Xie Tu Road, Shanghai, 200032, People’s Republic of China
| | - Ji Rong Long
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and Vanderbilt Institute of Medicine & Public Health, Department of Medicine,Vanderbilt University Medical Center, Sixth Floor, Suite 600, 2525 West End Avenue, Nashville, TN 37203-1738, U.S.A
| | - Zhi Xian Ruan
- Department of Epidemiology, Shanghai Cancer Institute, Cancer Institute of Shanghai Jiao Tong University, 2200/25 Xie Tu Road, Shanghai, 200032, People’s Republic of China
| | - Jia Rong Cheng
- Department of Epidemiology, Shanghai Cancer Institute, Cancer Institute of Shanghai Jiao Tong University, 2200/25 Xie Tu Road, Shanghai, 200032, People’s Republic of China
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and Vanderbilt Institute of Medicine & Public Health, Department of Medicine,Vanderbilt University Medical Center, Sixth Floor, Suite 600, 2525 West End Avenue, Nashville, TN 37203-1738, U.S.A
| | - Xiao Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center and Vanderbilt Institute of Medicine & Public Health, Department of Medicine,Vanderbilt University Medical Center, Sixth Floor, Suite 600, 2525 West End Avenue, Nashville, TN 37203-1738, U.S.A
| |
Collapse
|
39
|
Kumaraguruparan R, Seshagiri PB, Hara Y, Nagini S. Chemoprevention of rat mammary carcinogenesis by black tea polyphenols: modulation of xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation, apoptosis, and angiogenesis. Mol Carcinog 2007; 46:797-806. [PMID: 17415784 DOI: 10.1002/mc.20309] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chemoprevention of dietary constituents has emerged as a cost-effective approach to control the incidence of breast cancer. The present study was therefore designed to evaluate the chemopreventive efficacy of black tea polyphenols (Polyphenon-B) during the preinitiation phase of 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis using xenobiotic-metabolizing enzymes, cellular redox status, cell proliferation, apoptosis, and angiogenesis as biomarkers of chemoprevention. Intragastric administration of DMBA induced adenocarcinomas that showed enhanced activities of phase I carcinogen activation and phase II detoxification enzymes with increased lipid and protein oxidation and decrease in antioxidant status. This was associated with increased cell proliferation, angiogenesis, and evasion of apoptosis as revealed by upregulation of proliferating cell nuclear antigen (PCNA), Bcl-2, and vascular endothelial growth factor (VEGF), and downregulation of Bax, caspase 3, and poly(ADP-ribose) polymerase (PARP). Dietary administration of Polyphenon-B effectively suppressed the incidence of mammary tumors as evidenced by modulation of xenobiotic-metabolizing enzymes and oxidant-antioxidant status, inhibition of cell proliferation and angiogenesis, and induction of apoptosis. The present study provides evidence that Polyphenon-B exerts multifunctional inhibitory effects on DMBA-induced mammary carcinogenesis and suggests that it can be developed as a potential chemopreventive agent.
Collapse
Affiliation(s)
- R Kumaraguruparan
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | | | |
Collapse
|
40
|
Weng MS, Ho CT, Ho YS, Lin JK. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling. Toxicol Appl Pharmacol 2007; 218:107-18. [PMID: 17182072 DOI: 10.1016/j.taap.2006.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 09/28/2006] [Accepted: 10/24/2006] [Indexed: 11/30/2022]
Abstract
Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1 was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.
Collapse
Affiliation(s)
- Meng-Shih Weng
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 10018, Taiwan
| | | | | | | |
Collapse
|
41
|
Abstract
Polyphenols constitute an important group of phytochemicals that gained increased research attention since it was found that they could affect cancer cell growth. Initial evidence came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers. In the present work we briefly review the effects of polyphenols on cancer cell fate, leading towards growth, differentiation and apoptosis. Their action can be attributed not only to their ability to act as antioxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery--from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components--and provide insights into their beneficial health effects. In addition, the actions justify the scientific interest in this class of compounds, and provide clues about their possible pharmaceutical exploitation in the field of oncology.
Collapse
Affiliation(s)
- M Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
42
|
Sun CL, Yuan JM, Koh WP, Yu MC. Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 2006; 27:1310-5. [PMID: 16311246 DOI: 10.1093/carcin/bgi276] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental studies have shown that tea and tea polyphenols have anti-carcinogenic properties against breast cancer. A number of epidemiologic studies, both case-control and cohort in design, have examined the possible association between tea intake and breast cancer development in humans. This meta-analysis included 13 papers which examined populations in eight countries and provided data on consumption of either green tea or black tea, or both in relation to breast cancer risk. Summary odds ratios (ORs) for highest versus non/lowest tea consumption level were calculated based on fixed and random effects models. Heterogeneity between studies was examined via the Q statistics. For green tea, the combined results from the four studies indicated a reduced risk of breast cancer for highest versus non/lowest intake (OR = 0.78, 95% CI = 0.61-0.98). For black tea, conflicting results were observed in case-control versus cohort studies. The combined results from the eight case-control studies showed a minor inverse association between black tea consumption and risk of breast cancer (OR = 0.91, 95% CI = 0.84-0.98). This inverse association was stronger in hospital-based (OR = 0.77, 95% CI = 0.50-1.19) than population-based case-control studies (OR = 0.94, 95% CI = 0.81-1.09). Five cohort studies demonstrated a modest increase in risk associated with black tea intake (OR = 1.15, 95% CI = 1.02-1.31). The results of this meta-analysis indicate a lower risk for breast cancer with green tea consumption. Available data suggest a possible late-stage, promotional effect of black tea on breast carcinogenesis.
Collapse
Affiliation(s)
- Can-Lan Sun
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
43
|
Kapiszewska M, Miskiewicz M, Ellison PT, Thune I, Jasienska G. High tea consumption diminishes salivary 17beta-estradiol concentration in Polish women. Br J Nutr 2006; 95:989-95. [PMID: 16611391 DOI: 10.1079/bjn20061755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We hypothesized that among reproductive-age women consuming large quantities of tea, the production of estradiol would be suppressed. It has been shown that catechins and theaflavines, the major constituents of tea, inhibit aromatase, an enzyme which catalyses the conversion of androgens to oestrogens. Our study included Polish women living in urban (n 61) and rural (n 48) areas. Women collected daily saliva samples for one complete menstrual cycle and filled out dietary questionnaires. Saliva samples were analysed by RIA for concentration of 17beta-estradiol (E2). Women with high (above the median) average daily consumption of black tea had reduced levels of salivary E2 in comparison with women who drank less black tea (below the median). This effect was observed within the whole study group, as well as separately within urban (P=0.0006) and rural (P=0.013) groups. High intake of the sum of subclasses of tea catechins and epigallocatechin gallate, assessed using the United States Department of Agriculture database (http://www.nal.usda.gov), was also associated with lower concentrations of E2 within all women (P=0.01 and P=0.0001, respectively) and within the urban group (P=0.0001 and P=0.004, respectively). Similar relationships were observed between the sum of subclasses of theaflavines and thearubigines and E2 levels for the whole group (P=0.002) and for urban women (P=0.02). Women with high consumption of tea had lower levels of E2 concentration throughout the entire menstrual cycle. These results may have implications for reducing hormone-related cancer risk by a relatively easy dietary intervention.
Collapse
Affiliation(s)
- Maria Kapiszewska
- Department of General Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Tea is one of the most popular beverages consumed around the world, second only to water. There has been substantial interest in the potential role of tea in cancer prevention, particularly in respiratory and gastrointestinal tract cancers. Recent epidemiological data have linked tea intake to reduced risk of hormone-related cancers, including breast, ovarian and prostate cancers. Based on sparse data, there is suggestion that tea intake may influence circulating hormone levels, providing a plausible mechanism whereby tea intake may influence risk of hormone-related cancers. The major objectives of this paper are to review the epidemiological evidence on tea and risk of breast, ovarian, and prostate cancers as well as the human and non-human studies on tea and circulating hormone levels. We pay special attention to some of the limitations of the human studies and discuss future research needs.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9175, USA.
| | | |
Collapse
|
45
|
Baker JA, Beehler GP, Sawant AC, Jayaprakash V, McCann SE, Moysich KB. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr 2006; 136:166-71. [PMID: 16365077 DOI: 10.1093/jn/136.1.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caffeine has been suggested as a possible risk factor for breast cancer, potentially through its effect of facilitating the development of benign breast disease. However, coffee and tea also contain polyphenols, which exhibit anticarcinogenic properties. A hospital-based, case-control study was conducted to evaluate the role of coffee, decaffeinated coffee, and black tea in breast cancer etiology. Study participants included 1932 cases with primary, incident breast cancer and 1895 hospital controls with nonneoplastic conditions. All participants completed a comprehensive epidemiological questionnaire. Among premenopausal women, consumption of regular coffee was associated with linear declines in breast cancer risk (P for trend = 0.03); consumers of >or=4 cups/d experienced a 40% risk reduction (odds ratio = 0.62, 95% CI 0.39-0.98). No clear associations between intake of black tea or decaffeinated coffee and breast cancer risk were noted among premenopausal women, although black tea was associated with a protective effect unique to a subsample of cases with lobular histology. Among postmenopausal women, breast cancer risk was not associated with consumption of coffee, tea, or decaffeinated coffee. Results among postmenopausal women did not differ by histologic subtype. Our findings support a protective effect of coffee intake on premenopausal, but not postmenopausal breast cancer risk. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Julie A Baker
- Department of Epidemiology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
46
|
Siddiqui IA, Zaman N, Aziz MH, Reagan-Shaw SR, Sarfaraz S, Adhami VM, Ahmad N, Raisuddin S, Mukhtar H. Inhibition of CWR22Rnu1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis 2005; 27:833-9. [PMID: 16387739 DOI: 10.1093/carcin/bgi323] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer of the prostate gland (CaP), the most common invasive malignancy and a major cause of cancer related deaths in male population in the USA, is an ideal candidate disease for chemoprevention because it is typically detected in elderly population with a relatively slower rate of growth and progression. Many dietary phytochemicals are showing promising chemopreventive effects, at-least in pre-clinical models of CaP. Our published data in cell culture and animal studies, supported by the work from other laboratories, as well as epidemiological observations and case-control studies, suggest that polyphenols present in green tea possess CaP chemopreventive and possibly therapeutic effects. This present study was designed to compare CaP cancer chemopreventive effects of green tea polyphenols (GTP), water extract of black tea, and their major constituents epigallocatechin-3-gallate and theaflavins, respectively, in athymic nude mice implanted with androgen-sensitive human CaP CWR22Rnu1 cells. Our data demonstrated that the treatment with all the tea ingredients resulted in (i) significant inhibition in growth of implanted prostate tumors, (ii) reduction in the level of serum prostate specific antigen, (iii) induction of apoptosis accompanied with upregulation in Bax and decrease in Bcl-2 proteins, and (iv) decrease in the levels of VEGF protein. Furthermore, we also found that GTP (0.01 or 0.05% w/v; given after establishment of CWR22Rnu1 tumor) causes a significant regression of tumors suggesting therapeutic effects of GTP at human achievable concentrations.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|