1
|
Prathumwon C, Anuchapreeda S, Kiattisin K, Panyajai P, Wichayapreechar P, Surh YJ, Ampasavate C. Curcumin and EGCG combined formulation in nanostructured lipid carriers for anti-aging applications. Int J Pharm X 2025; 9:100323. [PMID: 40115962 PMCID: PMC11923819 DOI: 10.1016/j.ijpx.2025.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
Curcumin (Cur) and epigallocatechin gallate (EGCG), the primary active compounds in turmeric and green tea, respectively, have been investigated for their anti-aging potential. The Cur and EGCG combination was encapsulated in sustained-release nanostructured lipid carriers (NLCs) to enhance their bioactivities and pharmaceutical properties. A significant enhancement in the antioxidant activities of the Cur and EGCG combination was observed at an optimal ratio, as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (118.83 ± 3.78 %), ferric ion reducing antioxidant power assay (217.25 ± 13.45 %), and lipid peroxidation inhibition assay (106.08 ± 12.93 %), compared to Cur alone without compromising the antioxidant activities and total phenolic content of EGCG. This is due to the enhancement of total phenolic content of the combination of 218.83 ± 10.57 %. For anti-aging activities, the combination exhibited stimulation of SIRT1 protein and inhibition of collagenase and elastase of 27.53 ± 0.73 %, 43.70 ± 1.05 % and 51.76 ± 6.52 % compared with that achieved with Cur alone, respectively. The incorporation of the Cur and EGCG combination into NLCs resulted in high entrapment efficiencies of 98.60 ± 0.05 % for Cur and 98.40 ± 0.08 % for EGCG, with corresponding loading capacities of 0.789 ± 0.001 % and 3.935 ± 0.003 %, respectively. When formulated NLCs into an emulgel base, the system demonstrated sustained release profiles over 48 h, with 12.82 ± 0.99 % release of Cur and 63.77 ± 5.76 % release of EGCG. Significant skin retention was also observed after 24 h, with 23.88 ± 1.71 % Cur and 22.79 ± 4.65 % EGCG retained in the skin. Therefore, Cur: EGCG-loaded NLCs in emulgel can deliver the active compounds into the dermis, enhancing skin penetration, sustained delivery, and anti-aging activity superior to each conventional single active compound in topical formulations.
Collapse
Affiliation(s)
- Chidchanok Prathumwon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pawaret Panyajai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panikchar Wichayapreechar
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 151-741, South Korea
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Surur AK, de Santana RL, Palhares AL, de Oliveira AB, De Annunzio SR, de Souza de Santana WMO, Brighenti FL, Bagnato VS, Fontana CR. Exploring catalase inhibition as an adjuvant to antimicrobial photodynamic therapy against Staphylococcus aureus. Photochem Photobiol Sci 2025:10.1007/s43630-025-00735-6. [PMID: 40410636 DOI: 10.1007/s43630-025-00735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
An alternative approach to addressing the irrational use of antimicrobials is antimicrobial photodynamic therapy (aPDT). This modern and non-invasive form of therapy has its mechanism of action based on the activation of a photosensitizer (PS) by irradiation in the presence of oxygen and under specific light fluences at the appropriate wavelength. As a protective mechanism, certain bacterial species exhibit an enzymatic antioxidant system to protect against the harmful effects of reactive species, with catalase being an important enzyme within this system. This study aimed to evaluate whether there is a synergistic effect between catalase inhibition and methylene blue (MB) and curcumin (CUR)-mediated aPDT on methicillin-sensitive S. aureus ATCC 25923 in suspension and in 24 h biofilm, in this article called combined terapy (CT). In suspension, MB-mediated CT achieved total bacterial reduction with 30 min of catalase inhibition, whereas CUR-mediated CT achieved total reduction with 10 min of enzymatic inhibition. In biofilms, CUR-mediated CT did not show significant bacterial reduction in any of the inhibition times evaluated. In contrast, MB-mediated CT with 30 min of catalase inhibition damaged extracellular matrix proteins. Therefore, it can be concluded that the synergistic action between catalase inhibition and MB-mediated aPDT has been proven, and the treatment has great potential for future clinical applications involving S. aureus infections.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- School of Pharmaceutical Sciences - Department of Clinical Analysis, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Renata Laurintino de Santana
- School of Pharmaceutical Sciences - Department of Clinical Analysis, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Amanda Leal Palhares
- School of Pharmaceutical Sciences - Department of Clinical Analysis, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Analú Barros de Oliveira
- School of Dentistry - Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Sarah Raquel De Annunzio
- School of Pharmaceutical Sciences - Department of Clinical Analysis, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | - Fernanda Lourenção Brighenti
- School of Dentistry - Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, CEPOF, University of São Paulo, São Carlos, SP, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Carla Raquel Fontana
- School of Pharmaceutical Sciences - Department of Clinical Analysis, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Shen CL, Hassan T, Presto P, Payberah D, Devega R, Wakefield S, Dunn DM, Neugebauer V. Novel Insights into Dietary Bioactive Compounds and Major Depressive Disorders: Evidence from Animal Studies and Future Perspectives. J Nutr 2025:S0022-3166(25)00190-7. [PMID: 40274236 DOI: 10.1016/j.tjnut.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical depression, including major depressive disorder (MDD), is a chronic mental illness characterized by persistent sadness and indifference. Depression is associated with neuroinflammation, oxidative stress, and neuronal apoptosis in the brain, resulting in microglial overactivation, decreased neuronal and glial proliferation, monoamine depletion, structural abnormalities, and aberrant biochemical activity via the hypothalamic-pituitary-adrenal axis. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of MDD progression. Here, in this narrative review, we reported the effects of commonly consumed bioactive compounds (curcumin, saffron, garlic, resveratrol, omega-3 fatty acids, ginger, blueberry, tea, and creatine) on MDD and MDD-related neuroinflammation and oxidative stress. The evidence reviewed here is almost exclusively from animal studies and strongly suggests that these commonly consumed bioactive compounds have anti-MDD effects as shown in antidepression-like behaviors, such as increased immobility, sucrose preference, and social interaction. On the basis of the literature/studies reviewed, the proposed molecular mechanisms include 1) the reduction of neuroinflammation activation and oxidative stress, 2) the enhancement of anti-inflammatory and antioxidant properties, 3) the reduction of monoamine oxidase-A production, and 4) the elevation of brain-derived neurotropic factor and neurogenesis. In the future, dietary bioactive compounds on clinical randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in individuals with MDD.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - Taha Hassan
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Payberah
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rodan Devega
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sarah Wakefield
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
4
|
Faal M, Faal M, Ahmadi T, Dehgan F. Fabrication and evaluation of polylactic acid-curcumin containing carbon nanotubes (CNTs) wound dressing using electrospinning method with experimental and computational approaches. Sci Rep 2025; 15:13398. [PMID: 40251413 PMCID: PMC12008188 DOI: 10.1038/s41598-025-98393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
The development of advanced wound dressings has seen a significant leap with the integration of biodegradable nanofibers. This study introduces an innovative approach by designing polylactic acid (PLA)-curcumin nanofiber wound dressings enhanced with carbon nanotubes (CNTs). Using the electrospinning method, various formulations were crafted, incorporating diverse weight percentages of curcumin and CNTs. Comprehensive analyses, including FT-IR and SEM, confirmed the structural and physical integrity of the nanofibers, while tensile testing revealed a notable enhancement in mechanical strength with the addition of CNTs. Drug release evaluations highlighted a controlled and predictable release pattern of curcumin across all samples. Water absorption tests demonstrated the ability of PLA nanofibers to absorb up to 364%, with PLA-Cur-0.03%CNT samples absorbing 163%, showcasing their adaptability to wound exudates. Importantly, cytotoxicity assessments confirmed the biocompatibility of all samples, with high cell viability observed after 3 and 7 days. Antibacterial tests underscored the efficacy of CNT-incorporated samples, with PLA-Cur-0.05%CNT achieving the highest antibacterial activity at 78.95%. Additionally, using Density Functional Theory (DFT) calculations, the transition state, HOMO-LUMO energy, and equilibrium constant were explored, revealing higher equilibrium constants for keto-enol transformations compared to enol-keto in various solvents. Tautomeric conversion is easier in polar solvents due to the stability of charged species. HOMO-LUMO energy analysis revealed the stability and chemical activity of curcumin in solvents. This comprehensive research not only highlighted the mechanical, antibacterial, and drug delivery capabilities of the wound dressing but also provided an innovative approach for designing and optimizing pharmaceutical compounds under challenging chemical environments through advanced modeling and computational techniques.
Collapse
Affiliation(s)
- Mahmood Faal
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Faal
- Medicinal Plants Research Center, Shahed University, Tehran, Iran.
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Dehgan
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Almeida PSD, Barão K, Forones NM. SARCOPENIA AND GASTROINTESTINAL CANCER: NUTRITIONAL APPROACH FOCUSING ON CURCUMIN SUPPLEMENTATION. ARQUIVOS DE GASTROENTEROLOGIA 2025; 62:e24068. [PMID: 40197883 PMCID: PMC12043197 DOI: 10.1590/s0004-2803.24612024-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/15/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. When associated with cancer, it correlates with poorer clinical outcomes. Cancers of the gastrointestinal tract, prevalent globally and in Brazil, are associated with a greater nutritional risk. Early detection and intervention for nutritional risks are critical in this population. Recent studies on turmeric/curcumin have demonstrated beneficial effects in cancer patients. Specifically, curcumin have shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. This review aims to elucidate sarcopenia and sarcopenia secondary to cancer, emphasizing nutritional management and the role of curcumin supplementation. Effective cancer management, whether with or without sarcopenia, demands comprehensive public health strategies and multimodal interventions within healthcare institutions. Nutrition is pivotal across the cancer care journey, encompassing screening, guidance, and provision of nutrients that support maintaining or recovering body composition. Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management. Nevertheless, further clinical studies are warranted to substantiate these findings. BACKGROUND • Sarcopenia is a syndrome characterized by decreased strength, quantity and/or quality of skeletal muscle mass. BACKGROUND • Sarcopenia when associated with cancer, it correlates with poorer clinical outcomes. BACKGROUND • Curcumin has shown promise in reducing muscle depletion, oxidative stress, and improving strength and fatigue, factors related to sarcopenia. BACKGROUND • Curcumin supplementation emerges as a potential adjuvant to the standard cancer treatment and sarcopenia management.
Collapse
Affiliation(s)
- Pamela S de Almeida
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Katia Barão
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| | - Nora M Forones
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Gastroenterologia, São Paulo, SP, Brasil
| |
Collapse
|
6
|
Mu X, Roghzai H, Zeng L, Sun X, Zhao X. Curcumin-loaded zein and shellac composite nanoparticles for ulcerative colitis treatment. Eur J Pharm Biopharm 2025; 209:114658. [PMID: 39914574 DOI: 10.1016/j.ejpb.2025.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/08/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
This study highlights the efficacy of microfluidic technology in creating curcumin (Cur) loaded zein + shellac (Z + S) hybrid nanoparticles (NPs), presenting a promising avenue for enhancing Cur's availability in the food industry, especially in beverages, and positioning it as a potent antioxidant strategy for applications such as the treatment of enteritis. The study revealed that an increase in the proportion of shellac led to a gradual increase in the particle size of Z + S NPs, while the polydispersity index (PDI) initially decreasing and then increasing. When Cur is encapsulated, an increase in the proportion of shellac resulted in a gradual decrease in particle size and PDI, accompanied by an increase in encapsulation efficiency (EE). When the ratio of zein and shellac remained constant, elevating the Cur concentration led to a gradual decrease in EE and a gradual increase in drug loading. The consistently low Zeta potential (below -20 mV) confirmed the colloidal stability of the NPs, making them suitable for prolonged storage. The NPs exhibited excellent biocompatibility with normal cells and demonstrated effective free radical scavenging capabilities. Mixing of shellac and zein regulated the release profile of Cur from the NPs, mapping the food fate in human body, enhancing the treatment efficacy of ulcerative colitis. In vivo experiment demonstrated that the NPs are able to effectively relieve the dextran sulphate sodium induced enteritis, providing a promising approach for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyan Mu
- School of Pharmacy, Changzhou University, Changzhou 213164 China; School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Hemin Roghzai
- School of Pharmacy, Changzhou University, Changzhou 213164 China; College of Science, University of Sulaimani, Kurdistan 46001 Iraq
| | - Lingwen Zeng
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiaoqiang Sun
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164 China.
| |
Collapse
|
7
|
Kumar R, Pandey A, Vibhuti A, Ali M, Chang CM, Pandey RP. Unlocking Mysteries: Exploring the Dynamic Interplay among Sleep, the Immune System, and Curcumin in Contemporary Research. Sleep Sci 2025. [DOI: 10.1055/s-0045-1802321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
AbstractThe scientific disciplines encompassing sleep, the immune system, and curcumin have garnered considerable interest due to their interconnectedness and potential implications for human health. Sleep is a crucial factor in maintaining optimal immune function, as it facilitates the release of cytokines, which are signaling molecules responsible for regulating immune responses. On the contrary, sleep deprivation has the potential of inhibiting immune function, thereby heightening the susceptibility to infection and disease. Curcumin, a naturally occurring polyphenol derived from the turmeric plant, has been observed to possess immunomodulatory characteristics through its ability to modulate the equilibrium between pro- and anti-inflammatory cytokines. It is worth noting that there is evidence suggesting that curcumin supplementation could enhance the quality of sleep. Scientific studies have indicated that curcumin supplementation has been associated with an increase in the duration of sleep and a decrease in wakefulness among individuals who are in good health. Additionally, curcumin supplementation has been found to enhance sleep quality and alleviate symptoms of depression in individuals diagnosed with major depressive disorder. The intricate interplay among sleep, the immune system, and curcumin is multifaceted, and scientific investigations indicate that curcumin may serve as a beneficial dietary adjunct to enhance immune function and optimize sleep quality. Nevertheless, additional investigation is required to fully comprehend the mechanisms through which curcumin alters the immune system and enhances sleep, as well as to ascertain the most effective dose and timing of curcumin supplementation.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Arpana Vibhuti
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Manzoor Ali
- Genomics and Genome Biology Unit, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Chung-Ming Chang
- Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Laboratory Animal Center, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Hong Q, Lyu W, Zhang C, Yao W, Han Y, Chen N. Research trajectory and future trends in curcumin related to immunity: a bibliometric analysis of publications from last two decades. Front Immunol 2025; 16:1559670. [PMID: 40196111 PMCID: PMC11973075 DOI: 10.3389/fimmu.2025.1559670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Curcumin has a clear immunopharmacological effect and plays an important role as an immune agent in various immune diseases and tumor immunotherapy. To comprehensively and scientifically clarify and reflect the development process, current status, and research trends of curcumin in the field of immune regulation, and to provide reliable insights for discipline development strategies and future research expansion, this study systematically analyzes 3939 valid articles related to curcumin and immunity published between 2004 and 2024 from the Web of Science database. Using Citespace and R-bibliometrix software for bibliometric analysis, we create visual knowledge maps from multiple dimensions including overall publication output, influential research entities, highly cited papers, research topics and hotspots. The results indicate that the overall number of publications and citations is currently in a rapid development phase. China occupies a core position in this research field but has low collaboration intensity. The Egyptian Knowledge Bank (EKB) is the institution with the highest publication volume. Moreover, cluster analysis reveals that research hotspots are gradually shifting from fundamental pathology to topics involving broad social and environmental influences. The top five keywords with the most explosive citations-curcumin, inflammation, apoptosis, oxidative stress, and cancer-represent the most focused and influential research topics. Currently, curcumin immunology has developed a diversified research perspective, accumulating significant research in the areas of active substance basis, pharmacological activity, anti-inflammatory, and anti-cancer studies. The thematic evolution trends and keywords related to curcumin's immunological mechanisms summarized in this article provide insights and guidance for future research directions.
Collapse
Affiliation(s)
- Qing Hong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lyu
- School of Economics and Management, Anhui Polytechnic University, Wuhu, China
| | - Chaowei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxuan Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Martin-Martin J, Abad M, Lopez de Pariza X, Ezquerra TA, Nogales A, Sardon H, Sebastián V, Oriol L, Piñol M. Degradable Ureido-Polycarbonate Block Copolymers with a Complex UCST Thermoresponse. Macromol Rapid Commun 2025:e2500029. [PMID: 40119569 DOI: 10.1002/marc.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Indexed: 03/24/2025]
Abstract
In this work, amphiphilic block copolymers (BCs) consisting of a hydrophilic poly(ethylene glycol) methyl ether (PEG) and a degradable polycarbonate block derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) with pendant ureido units, along with corresponding homopolycarbonates are described. Polymers are synthesized by combining ring opening polymerization (ROP) and thiol-ene/yne functionalization to incorporate UCST-promoting ureido groups. For homopolycarbonates, increasing the ureido groups density along the polymer chain facilitates the upper critical solution temperature (UCST)-type thermoresponse in water. Because of their amphiphilic character, BCs form stable self-assemblies either by direct dispersion in water, co-solvent method or microfluidics. Upon heating, these self-assemblies swell, and collapse due to extensive hydration of the polycarbonate block, rather than becoming solubilized. Thermoresponsiveness is analyzed in terms of the number of ureido groups in the polycarbonate for a given polycarbonate block length as well as the length of polycarbonate block. As a proof of concept, the potential of these self-assemblies as thermoresponsive drug nanocarriers is evaluated, using curcumin as a hydrophobic model drug.
Collapse
Affiliation(s)
- Javier Martin-Martin
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Miriam Abad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Luis Oriol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Milagros Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| |
Collapse
|
10
|
Juma H, Zhao C, Wang Q, Guo Y, Fan X, Fan W, Zhao L, Sun J, Wang D, Wang Y. Enhanced Antioxidant and Antibacterial Properties of Polybutylene Adipate-Terephthalate/Curcumin Composite Films Using Surface-Modified Cellulose Nanocrystals. Polymers (Basel) 2025; 17:830. [PMID: 40219221 PMCID: PMC11990951 DOI: 10.3390/polym17070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Polybutylene adipate-terephthalate (PBAT) offers a convincing ecological alternative to the traditional fossil-based plastics due to its biodegradability and robust mechanical properties. The objective of this study is to develop PBAT-based bio-composite films through incorporating functionalized cellulose nanocrystals (CNC) and curcumin (CUR). In order to improve the interfacial compatibility with the PBAT matrix and co-doping with CUR, CNC was modified using dodecyl succinic anhydride (DxCNC). In this ternary bio-composite system, CUR functioned as a bio-based antioxidant and antimicrobial agent. The presence of CUR also provides excellent UV-shielding properties, whereas the DxCNC effectively enhances the controlled release of CUR. The synergistic effect between DxCNC and CUR in boosting antimicrobial properties, with the inhibition values for E. coli and S. aureus reached 1.82 log CFU/cm2 and 2.12 log CFU/cm2, respectively. These findings indicate DxCNC/CUR/PBAT ternary composite films as a promising material for eco-friendly packaging products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yonggui Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, China; (H.J.); (C.Z.); (Q.W.); (Y.G.); (X.F.); (W.F.); (L.Z.); (J.S.); (D.W.)
| |
Collapse
|
11
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
12
|
Guerrini A, Salaroli R, Zannoni A, Avallone G, Leone F, Serra V, Quaglia G, Del Zozzo F, Chabrillat T, Carlu C, Lupini C, Tedesco DEA. Immunomodulatory and anti-inflammatory potential of botanicals bioactive product (PHYTO AX'CELL™) for an improvement of the well-being of laying hens at the peak of production. Poult Sci 2025; 104:104882. [PMID: 39919558 PMCID: PMC11851228 DOI: 10.1016/j.psj.2025.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
This study was designed to assess the effectiveness of an authorized commercial standardized mixture of Artepillin-C, methyl-salicylates, flavonoids and curcuminoids (PHYTO AX'CELL™) provided intermittently during 8 weeks (wk) of trial to laying hens raised in enriched cages during the peak of the production, in the reduction of inflammation status, improving the immune response, and egg quality. In this study, 764 Lohmann LSL-White hens on the first day (d) of the 26th wk of age (T0), were randomly assigned to 2 replicated experimental groups, control and treated (n=382 each). The treatment was supplied in drinking water, as follows: 26th to 27th wk (T1, 14 d) first treatment administration at a dose of 1 mL/L (0.5 mL/L only the first d of the treatment); 28th to the 31st wk (T2, 4 wk of withdrawal period); 32nd to 33rd wk (T3, 14 d) second treatment at a dose of 1 mL/L, until the end of the trial (T4). At T0, mid-T3 and T4, 13 hens per group were sampled for serum biochemical analyses (metabolic profile, H/L ratio) and weighed, and 60 eggs per group were analyzed for quality parameters. At T4, 13 hens per group were sacrificed for histological investigations and gut IgA quantification. The treatment reduced the mortality rate in the treated group (0.00%) compared to the control (2.61%). An improvement in intestinal IgA production and immune reactivity in the treated hens was observed with a significant fluctuating trend of the heterophil, lymphocyte and their ratio (P < 0.05). The egg quality was improved by the treatment, with positive effects in the Haugh unit, shell weight and thickness (P < 0.05). A T4, significant reduction in duodenal and rectal pH was observed in the treated group (P < 0.05), without intestinal inflammation score changes, body weight, serum biochemistry, interleukin levels, and infectious bronchitis virus titers (P > 0.05). From the results, PHYTO AX'CELL™ improved the well-being and physical condition of laying hens raised in cages, modulating the immune system with a positive production of intestinal IgA, and egg quality parameters important for commercial purposes.
Collapse
Affiliation(s)
- Alessandro Guerrini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133, Milan (MI), Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Francesca Leone
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133, Milan (MI), Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell' Università 6, 26900, Lodi, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Francesca Del Zozzo
- Chemifarma S.p.a, Via Don Eugenio Servadei, 16, 47122, Forlì-Cesena (FC), Italy
| | | | - Claire Carlu
- Phytosynthese, Avenue Jean Jaurès, 57, 63200, Mozac, France
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | | |
Collapse
|
13
|
Saleem HM, Al-Hetty HRAK, Ahmed AT, Awad MM, Al-Ani MQ, Al-Darraji MN, Salman DA, Ali LH. Effect of curcumin on lipid mediators, glycemic index, and oxidative stress and inflammation biomarkers in polycystic ovary syndrome: Future directions and current knowledge - A systematic review. Prostaglandins Other Lipid Mediat 2025; 177:106947. [PMID: 39814167 DOI: 10.1016/j.prostaglandins.2024.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and important polygenic endocrine disorders among women of reproductive-aged. Current treatments are mostly used only to control the signs and symptoms of the disease, while not being able to completely prevent complications. Curcumin is one of the active compounds in turmeric, which is commonly used for a wide range of metabolic and inflammatory diseases. Therefore, this systematic review was performed to evaluate the effect of curcumin supplementation on PCOS. The current systematic review was performed according to the guidelines of the 2015 PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statements. We searched ProQuest, PubMed, Google Scholar electronic, Scopus, and Cochrane, Embase, and Science Direct databases and on articles published up until November 2024. All of the animal studies (seven studies) and clinical trials (five studies) included in this systematic review that assessed the effect of curcumin on, reproductive hormones and metabolic risk markers in PCOS were published in English-language journals. Most studies supported the beneficial effects of curcumin on folliculogenesis, ovarian histomorphology, and luteinization processes. The effects of curcumin on decreasing the levels of luteinizing insulin resistance luteinizing hormone (LH), Follicle-stimulating hormone (FSH)and testosterone, were also reported. Curcumin also improved dyslipidemia, but no significant effect on weight loss has been reported. It is suggested that the effect of curcumin in PCOS is more related to the antioxidant and anti-inflammatory properties of curcumin than to the effects of weight loss. Therefore, this study provides evidence that curcumin can be considered an effective factor in reducing the complications of PCOS. However, due to the low number of human studies in this field, further clinical trials are warranted to verify these outcomes.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq.
| | | | | | - Muthanna M Awad
- Department of Biology, College of Education For Pure Sciences, University of Anbar, Ramadi, Anbar 31001, Iraq
| | | | | | - Dina Akeel Salman
- Department of Obstetrics and Gynecology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Loay H Ali
- Department of Biology, College of Education For Pure Sciences, University of Anbar, Ramadi, Anbar 31001, Iraq
| |
Collapse
|
14
|
Hirasawa T, Miyake K, Shinozuka K, Yonehara Y, Tsuda H. Curcumin pretreatment prevents butyrate-induced cell death and release of damage-associated molecular patterns on gingival epithelial Ca9-22 cells. J Oral Biosci 2025; 67:100613. [PMID: 39824384 DOI: 10.1016/j.job.2025.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release. METHODS Ca9-22 cells were pretreated with curcumin before butyrate exposure. Cell death was quantified using SYTOX green dye, and histone H3 acetylation was analyzed by Western blot. Conditioned media were collected to detect DAMPs by Western blot. We also assessed the effects of the histone acetyltransferase (HAT) inhibitor C646, instead of curcumin, on butyrate-induced cell death, DAMP release, and histone H3 acetylation, and examined the effects of curcumin pretreatment on cell death, DAMP release, and histone H3 acetylation induced by the histone deacetylase (HDAC) inhibitors, valproate and suberoylanilide hydroxamic acid (SAHA). RESULTS Curcumin pretreatment attenuated butyrate-induced Ca9-22 cell death, histone H3 acetylation, and release of the DAMPs. The C646 also attenuated butyrate-induced cell death, DAMP release, and histone H3 acetylation. Curcumin also suppressed cell death, DAMP release, and histone H3 acetylation triggered by the HDAC inhibitors (valproate and SAHA). CONCLUSIONS Curcumin pretreatment ameliorated butyrate-induced histone H3 acetylation, cell death, and DAMP release. As elevated histone acetylation by HDAC inhibitors correlates with increased cell death, while reduced acetylation by a HAT inhibitor is associated with their attenuation, protective effects of curcumin against butyrate-induced Ca9-22 cell death and subsequent DAMP release may occur via suppression of histone acetylation.
Collapse
Affiliation(s)
- Takayuki Hirasawa
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kiwa Miyake
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo, Japan
| | - Keiji Shinozuka
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
15
|
Madhan K, Kalimuthu R, Antony D, Chidambaram P, Sekar A, Solomon RV, Yadav R, Kasivelu G, Ramakrishna S. Eco-friendly nano colloids for enhanced black gram (Vigna mungo) seed viability: experimental and computational analysis. BMC PLANT BIOLOGY 2025; 25:204. [PMID: 39955488 PMCID: PMC11829403 DOI: 10.1186/s12870-024-05888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 02/17/2025]
Abstract
An experiment was designed to fabricate Polyvinylpyrrolidone-coated zein-zipped herbal molecules infused nano colloids (PZCA-NCs) for extending Vigna mungo seeds storability. PZCA-NCs was synthesized and characterized in Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction (XRD), Particle size analyser, Zeta Potential, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDAX). The bio-efficacy of PZCA-NCs on seed storability was tested under accelerated ageing. The sphere-shaped PZCA-NCs possess a 151 nm size with 44.5mV zeta potential at an encapsulation of 73.44% curcumin and 69.0% azadirachtin. The spectra of FTIR, UV -Vis, XRD, and TGA confirmed the functionality, composition, and stability of PZCA-NCs. The dialysis diffusion method was utilised to study the maximum cumulative release of biomolecules 6.1ppm (88.4%) azadirachtin and 64.57ppm (88.2%) curcumin at pH 7.4. Density functional theory (DFT) was used to determine the binding mode of molecules and examine ligand interactions in PZCA-NCs. PZCA-NCs treated seeds at 25 mL/kg enumerated higher germination, vigour index, α-amylase, dehydrogenase, and catalase and peroxidase activity under ageing. Seeds storage pathogen infection was reduced with an increase in the concentration of PZCA-NCs coating. The bioassay results on insect activity evidenced that PZCA-NCs at 15.76 mL/kg killed 50% and 40 mL/kg killed 100% of the storage insect Callosobruchus maculatus. Toxicity study on Macrophomina phaseolina showed that PZCA-NCs at 35 mL resulted in 0.8 cm mycelia growth with 91.11% inhibition zone, while at 45 mL had zero growth of fungal mycelia with 100% inhibition. The study concludes that PZCA-NCs act as an efficient seed invigoration material to extend the vitality of Vigna mungo seeds during ageing.
Collapse
Affiliation(s)
- K Madhan
- Centre for Agricultural Nanotechnology, TNAU, Coimbatore, 641 003, India
| | - Raja Kalimuthu
- Centre for Agricultural Nanotechnology, TNAU, Coimbatore, 641 003, India.
| | - Dhivya Antony
- Department of Chemistry, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| | - Prabu Chidambaram
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| | - Abirami Sekar
- Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - Rakhi Yadav
- Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India.
| | - Govindaraju Kasivelu
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, India
| |
Collapse
|
16
|
Sabir DK. Targeting the Hippo and Rap1 signaling pathways: the anti-proliferative effects of curcumin in colorectal cancer cell lines. Med Oncol 2025; 42:41. [PMID: 39779534 DOI: 10.1007/s12032-024-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
CRC has the third-highest cancer incidence and death. Many human cancers, including colorectal cancer, are connected to abnormal signaling pathway gene expression. Many human malignancies include Hippo and Rap1 signaling. This research examined curcumin's therapeutic effects on colorectal cancer cell lines' Hippo and Rap1 signaling pathway genes. The role of the above signaling pathways is considered in colorectal cancer development. No research has examined curcumin's influence on key genes in these pathways; thus, this work is meant to uncover its more precise mechanism. First, the gene expression omnibus database is queried to discover GSE8671, a dataset that contains differentially expressed genes associated in CRC formation. DAVID was used to discover the corporation of these genes and signaling pathways (Hippo and Rap1), and the cancer genome atlas (TCGA) database was utilized to select genes and assess their expression and biomarker potential. MTT, apoptosis, and quantitative PCR were used to assess whether curcumin is therapeutic for colorectal cancer cell lines. An in-silico analysis identified the dysregulation of several critical genes AXIN2, MYC, TEAD4, MET, LPAR1, and ADCY9 in colorectal cancer, highlighting their involvement in the Hippo and Rap1 signaling pathways. Experimental assessments, including MTT assays, apoptosis assays, and quantitative PCR (qPCR) analysis, demonstrated that the targeted modulation of these genes effectively inhibits cancer cell proliferation. Specifically, treatment with curcumin resulted in a significant reduction in cell viability in HT-29 and HCT-116 colorectal cancer cell lines, thereby facilitating apoptotic cell death. Furthermore, curcumin administration was associated with the upregulation of LPAR1 and ADCY9 gene expression, while concurrently downregulating AXIN2, MYC, TEAD4, and MET in both cell lines. This study reveals compelling evidence of curcumin's potent anticancer properties, highlighting its transformative influence on the Hippo and Rap1 signaling pathways within colorectal cancer cells. These findings not only underscore curcumin's potential as a therapeutic agent but also pave the way for innovative strategies in the fight against colorectal cancer.
Collapse
Affiliation(s)
- Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Jahanban-Esfahlan A, Amarowicz R. Optical sensing of albumin in human serum and urine-A historical review of the transition from classical dye-binding assays to advanced technologies. Int J Biol Macromol 2025; 287:138593. [PMID: 39662564 DOI: 10.1016/j.ijbiomac.2024.138593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Human serum albumin (HSA) is the most abundant protein in human plasma playing essential roles in transporting various biomolecules, metal ions, therapeutic agents, and metabolites. Additionally, it is crucial for maintaining oncotic pressure, scavenging free radicals, and preventing protein aggregation. Accurate quantification of HSA is vital for diagnosing various conditions, including hypertension, diabetes mellitus (DM), liver disorders, and renal diseases. While prevalent in clinical laboratories, traditional dye-binding methods have notable limitations: they can be time-consuming, lack sensitivity, and may suffer from interference from other serum components. These methods often require complex sample preparation and do not readily lend themselves to rapid or point-of-care testing (POCT). Consequently, there is a pressing need for innovative techniques that are rapid, cost-effective, and user-friendly. This review explores various dyes utilized for HSA determination, categorized into groups such as sulfonphthaleins, phenolphthaleins, azo dyes, etc., and provides a historical overview of the limitations of these methods. We critically assess the pros and cons of traditional dye-binding assays and emphasize the potential of emerging technologies, including microfluidic systems, smartphone-based detection, and nanopaper sensors, to address these gaps and enhance the efficiency and accessibility of HSA quantification in clinical settings.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
18
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
19
|
Warias P, Plewa P, Poniewierska-Baran A. Resveratrol, Piceatannol, Curcumin, and Quercetin as Therapeutic Targets in Gastric Cancer-Mechanisms and Clinical Implications for Natural Products. Molecules 2024; 30:3. [PMID: 39795061 PMCID: PMC11721033 DOI: 10.3390/molecules30010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, driving the need for innovative therapeutic approaches. Natural polyphenolic compounds such as resveratrol, piceatannol, curcumin, and quercetin currently show promising results in the prevention and treatment of various cancers, due to their diverse biological activities. This review presents the effects of natural compounds on important processes related to cancer, such as apoptosis, proliferation, migration, invasion, angiogenesis, and autophagy. Resveratrol, naturally found in red grapes, has been shown to induce apoptosis and inhibit the proliferation, migration, and invasion of gastric cancer cells. Piceatannol, a metabolite of resveratrol, shares similar anticancer properties, particularly in modulating autophagy. Curcumin, derived from turmeric, is known for its anti-inflammatory and antioxidant properties, and its ability to inhibit tumor growth and metastasis. Quercetin, a flavonoid found in various fruits and vegetables, induces cell cycle arrest and apoptosis while enhancing the efficacy of conventional therapies. Despite their potential, challenges such as low bioavailability limit their clinical application, necessitating further research into novel delivery systems. Collectively, these compounds represent a promising avenue for enhancing gastric cancer treatment and improving patient outcomes through their multifaceted biological effects.
Collapse
Affiliation(s)
- Paulina Warias
- Doctoral School, University of Szczecin, Mickiewicza 18, 70-384 Szczecin, Poland;
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
20
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
21
|
Feng L, Wei R, Wu J, Chen X, Wen Y, Chen J. Cyclodextrin Drugs in Liposomes: Preparation and Application of Anticancer Drug Carriers. AAPS PharmSciTech 2024; 26:3. [PMID: 39638889 DOI: 10.1208/s12249-024-02999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Cyclodextrin complexes have been widely used in pharmaceutical applications, but disadvantages such as the rapid clearance of cyclodextrins from the blood stream after in vivo administration or their replacement by other molecules in the biological medium with higher luminal affinity for cyclodextrins limit the application of cyclodextrins as drug carriers. Liposome-encapsulated hydrophobic drugs have low and unstable drug loading rates. Drug-in-CD-in-liposome (DCL), which encapsulate cyclodextrin inclusion complexes into liposomes, combine the advantages of both delivery systems, can effectively avoid the leakage and rapid release of lipophilic drugs in the lipid bilayer, and help to maintain the integrity of liposomes. This paper focuses on the preparation method, characterization and application of DCL, with a view to providing methods and references for the research and application of DCL technology.
Collapse
Affiliation(s)
- Lanni Feng
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | - Ruting Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | - Jiali Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | | | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Shanghai WeiEr Lab, Shanghai, 201707, China.
| |
Collapse
|
22
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Manral K, Singh A, Singh Y. Nanotechnology as a potential treatment for diabetes and its complications: A review. Diabetes Metab Syndr 2024; 18:103159. [PMID: 39612615 DOI: 10.1016/j.dsx.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic metabolic disorder that causes multiple complications in various organs, such as the kidney, liver and cardiovascular system. These complications are the main causes of morbidity and mortality in patients with diabetes. Nanotechnology offers new opportunities for the therapy of diabetes and its multiple complications through site-specific and precise drug delivery. This review summarizes the various studies demonstrating the potential applications of different nanoparticles in diabetes-associated complications. METHOD A literature search was conducted using PubMed, Google Scholar and Scopus databases, focusing on the role of nanoparticles in the improved delivery of various hypoglycemic agents for the treatment of microvascular and macrovascular diabetic complications. RESULTS Numerous studies have shown that nanoparticles, such as nanoliposomes, polymeric micelles, dendrimers and metallic nanoparticles, improve the delivery of various hypoglycemic agents. Moreover, nanoparticles have been found to be safer, with improved pharmacokinetic and pharmacodynamic profiles. CONCLUSION This review outlines the significant role of nanotechnology in diabetes and related complications and its superiority over conventional drug delivery.
Collapse
Affiliation(s)
- Kanika Manral
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Anita Singh
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Yuvraj Singh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, India.
| |
Collapse
|
25
|
Cardoza JV, Ali Z, Simon S, Thakkar D, George SS, Isaac SP. The Role of Nanoparticles in Accelerating Tissue Recovery and Inflammation Control in Physiotherapy Practices. Cureus 2024; 16:e73540. [PMID: 39669817 PMCID: PMC11636964 DOI: 10.7759/cureus.73540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Physiotherapy has significantly evolved since its inception in the late 19th century, expanding into various specializations such as sports, neurology, and wound care. Its primary goal is to restore or enhance bodily functions through therapeutic interventions, aiding in conditions ranging from injuries to chronic pain. Tissue recovery, which involves repair and regeneration, is a critical aspect of physiotherapy. This natural process is influenced by factors like inflammation and injury severity. Nanotechnology, a relatively recent advancement, has transformed medicine, including wound care, through innovations in drug delivery, diagnostics, and anti-inflammatory treatments. Nanoparticles, owing to their small size and enhanced bioavailability, play a crucial role in improving drug delivery, increasing the efficacy of treatments, and promoting faster recovery. In the context of tissue healing, nanoparticles aid in cell proliferation, inflammation control, and scar reduction, among other therapeutic benefits. They are increasingly used in physiotherapy applications, to support tissue regeneration and inflammation management. This review examines the role of nanoparticles in physiotherapy, with a focus on their application in wound healing, muscle recovery, and inflammation control. It discusses various in-vitro and in-vivo studies that have explored the therapeutic potential of nanoparticles in these domains, providing insights into their mechanisms of action and effectiveness in promoting tissue regeneration and managing inflammation in physiotherapy settings.
Collapse
Affiliation(s)
| | - Zeeshan Ali
- Physiology, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Simi Simon
- Biochemistry, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | - Darshni Thakkar
- Physiotherapy, Krupanidhi college of physiotherapy, Bengaluru, IND
| | - Sudhan S George
- Physiotherapy, Krupanidhi College of Physiotherapy, Bengaluru, IND
| | | |
Collapse
|
26
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
27
|
Alnasraui AHF, Joe IH, Al-Musawi S. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomater Sci Eng 2024; 10:6299-6313. [PMID: 39221994 DOI: 10.1021/acsbiomaterials.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic nanoparticles used for targeted drug administration present a promising approach in cancer treatment owing to its notable advantages, such as targeted and enhanced encapsulation ability and improved bio protection compared with conventional drug delivery methods. Au shell-iron core nanoparticles (Fe3O4@Au) were manufactured by a chemical process, coated with dextran to encapsulate curcumin, and functionalized for precision drug delivery using folic acid to combat liver cancer. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, vibrational spectroscopy, and magnetometry were applied to assess the synthesis of the Fe3O4@Au-DEX-CU-FA compound. The mean size, zeta potential, and polydispersity of Fe3O4@Au-DEX-CU-FA were 63.3 ± 2.33 nm, -68.3 ± 1.78 mV, and 0.041 ± 0.008, respectively. Molecular docking models were created to examine the relationship between Fe3O4@Au-CU and BCL-XL, BAK, and to identify potential binding sites. The loading efficiency and release profile tests examined the medication delivery system's ability. MTT assay was subsequently utilized to determine the optimal dosage and therapeutic efficacy of Fe3O4@Au-DEX-CU-FA on cancer SNU-449 and healthy THLE-2 cell lines. Flow cytometry demonstrated that Fe3O4@Au-DEX-CU-FA effectively induced cancer cell death. Fe3O4@Au-DEX-FA showed a regulated release profile of free curcumin at 37 °C and pH values of 7.4 and 5.4. Real-time PCR revealed increased BAK expression and decreased BCL-XL expression. Nude tumor-bearing mice were used for in vivo experiments. Fe3O4@Au-DEX-CU-FA treatment dramatically reduced the swelling size compared with free CU and control treatments. It also resulted in a longer lifespan, expanded splenocyte proliferation, increased IFN-γ levels, and decreased IL-4 levels. The regular cells showed no cytotoxic effect compared with the cancer type, confirming that Fe3O4@Au-DEX-CU-FA maintained its potent anticancer actions. The data suggests that Fe3O4@Au-DEX-CU-FA possesses a promising potential as a therapeutic agent for combating tumors.
Collapse
Affiliation(s)
- Ali Hussein F Alnasraui
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695015, India
- College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
| | - I Hubert Joe
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695015, India
| | | |
Collapse
|
28
|
Mad Azli AA, Salamt N, Aminuddin A, Roos NAC, Mokhtar MH, Kumar J, Hamid AA, Ugusman A. The Role of Curcumin in Modulating Vascular Function and Structure during Menopause: A Systematic Review. Biomedicines 2024; 12:2281. [PMID: 39457594 PMCID: PMC11504472 DOI: 10.3390/biomedicines12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The risk of developing cardiovascular disease (CVD) escalates in women during menopause, which is associated with increased vascular endothelial dysfunction, arterial stiffness, and vascular remodeling. Meanwhile, curcumin has been demonstrated to enhance vascular function and structure in various studies. Therefore, this study systematically reviewed the recent literature regarding the potential role of curcumin in modulating vascular function and structure during menopause. The Ovid MEDLINE, PubMed, Scopus, and Web of Science electronic databases were searched to identify relevant articles. Clinical and preclinical studies involving menopausal women and postmenopausal animal models with outcomes related to vascular function or structure were included. After thorough screening, seven articles were selected for data extraction, comprising three animal studies and four clinical trials. The findings from this review suggested that curcumin has beneficial effects on vascular function and structure during menopause by addressing endothelial function, arterial compliance, hemodynamic parameters, and the formation of atherosclerotic lesions. Therefore, curcumin has the potential to be utilized as a supplement to enhance vascular health in menopausal women. However, larger-scale clinical trials employing gold-standard techniques to evaluate vascular health in menopausal women are necessary to validate the preliminary results obtained from small-scale randomized clinical trials involving curcumin supplementation (INPLASY, INPLASY202430043).
Collapse
Affiliation(s)
- Amanina Athirah Mad Azli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.M.A.); (N.S.); (A.A.); (M.H.M.); (J.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
29
|
Farzaneh S, Salehipour M, Tafvizi F, Naseh V. The Effect of Curcumin on the Activity of MMP-17 and MMP-24 in Hepatocytes of Mice Exposed to Thioacetamide. Rep Biochem Mol Biol 2024; 13:329-340. [PMID: 40330566 PMCID: PMC12050055 DOI: 10.61186/rbmb.13.3.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/09/2025] [Indexed: 05/08/2025]
Abstract
Background Hepatocellular carcinoma is the most primitive form of liver cancer, which is related to chemo carcinogens such as thioacetamide (TAA) and tissue remodeling molecules such as Matrix metalloproteinases (MMPs). Antioxidants, like curcumin (Cur), can inhibit these factors. In this research, the effect of curcumin on the expression and activity of two MMP enzymes, MMP-14 and MMP-17, which are involved in the carcinogenesis of mice after chronic exposure to thioacetamide, is investigated. Methods In this study, 30 mice were divided into six groups and studied for 4 months. The first group, control; the second group, curcumin; the third group, TAA; the fourth group, TAA and curcumin simultaneously; the fifth group, first treated with TAA for 2 months and then curcumin; and finally, the sixth group, first treated with curcumin for 2 months and then TAA. Afterward, the mice were euthanized, and their liver tissues were transferred to the laboratory for analysis of gene and protein expression. Results The averages of gene expression were calculated using SigmaPlot software and showed that the expression of MMP-17 and MMP-24 genes and the levels of their proteins were significantly increased by thioacetamide (****p < 0001) compared to the control group. Pathological observations indicated necrosis and dysplastic foci in the TAA group. Conclusions Considering the crucial roles of MMPs in various diseases, including hepatocellular carcinoma, the regulation of their gene expression and enzymatic activity is significant in preventing tumor progression. Compounds such as thioacetamide and polyphenols like curcumin can modulate the activity of MMP-17 and MMP-24.
Collapse
Affiliation(s)
- Sahar Farzaneh
- Department of Biology, Islamic Azad university of Parand Branch, Parand, Iran.
| | - Masoud Salehipour
- Department of Biology, Islamic Azad university of Parand Branch, Parand, Iran.
| | - Farzaneh Tafvizi
- Department of Biology, Islamic Azad university of Parand Branch, Parand, Iran.
| | - Vahid Naseh
- Department of Biology, Islamic Azad university of Parand Branch, Parand, Iran.
| |
Collapse
|
30
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
31
|
Chueahongthong F, Chiampanichayakul S, Viriyaadhammaa N, Dejkriengkraikul P, Okonogi S, Berkland C, Anuchapreeda S. Cytotoxicity of Doxorubicin-Curcumin Nanoparticles Conjugated with Two Different Peptides (CKR and EVQ) against FLT3 Protein in Leukemic Stem Cells. Polymers (Basel) 2024; 16:2498. [PMID: 39274131 PMCID: PMC11397985 DOI: 10.3390/polym16172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
A targeted micellar formation of doxorubicin (Dox) and curcumin (Cur) was evaluated to enhance the efficacy and reduce the toxicity of these drugs in KG1a leukemic stem cells (LSCs) compared to EoL-1 leukemic cells. Dox-Cur-micelle (DCM) was developed to improve the cell uptake of both compounds in LSCs. Cur-micelle (CM) was produced to compare with DCM. DCM and CM were conjugated with two FLT3 (FMS-like tyrosine kinase)-specific peptides (CKR; C and EVQ; E) to increase drug delivery to KG1a via the FLT3 receptor (AML marker). They were formulated using a film-hydration technique together with a pH-induced self-assembly method. The optimal drug-to-polymer weight ratios for the DCM and CM formulations were 1:40. The weight ratio of Dox and Cur in DCM was 1:9. DCM and CM exhibited a particle size of 20-25 nm with neutral charge and a high %EE. Each micelle exhibited colloidal stability and prolonged drug release. Poloxamer 407 (P407) was modified with terminal azides and conjugated to FLT3-targeting peptides with terminal alkynes. DCM and CM coupled with peptides C, E, and C + E exhibited a higher particle size. Moreover, DCM-C + E and CM-C + E showed the highest toxicity in KG-1a and EoL-1 cells. Using two peptides likely improves the probability of micelles binding to the FLT3 receptor and induces cytotoxicity in leukemic stem cells.
Collapse
Affiliation(s)
- Fah Chueahongthong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natsima Viriyaadhammaa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Cory Berkland
- Department of Biomedical Engineering and Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63105, USA
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
33
|
Nosratabadi R, Ranjkesh M, Safari M, Ramezani M, Zainodini N, Mahmoodi M. In Vitro Effects of Curcumin in Free and Phytosomal Forms on the Expression of T Helper1 and Regulatory T Cells' Transcription Factors in Collagen-Induced Arthritis. Adv Biomed Res 2024; 13:69. [PMID: 39434949 PMCID: PMC11493216 DOI: 10.4103/abr.abr_291_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 10/23/2024] Open
Abstract
Background Curcumin as a polyphenolic compound has a potential capacity to reduce autoimmune reactions by skewing the balance of Thelper1 (Th1)/regulatory T cells (Treg) toward Treg cells. However, the low absorption and bioavailability of this agent have prompted researchers to use various drug delivery systems such as phytosomes to reduce these drawbacks. To date, few studies have evaluated the effects of phytosomal curcumin (nano-curcumin) on immune responses. Hence, we compared the modulatory effects of curcumin in free and phytosomal form on the expression of Th1 and Treg transcription factors, T-bet (T-box-containing protein) and Foxp3 (forkhead box p3), respectively, in a collagen-induced arthritis model (CIA). Materials and Methods Following the induction of CIA, splenocytes were isolated and re-stimulated with collagen in the absence or presence of two different doses of curcumin in free and phytosomal form. Then, expression of T-bet and Foxp3 was assessed by real-time PCR. Results The expression of T-bet was reduced in curcumin and phytosomal curcumin groups rather than in the untreated group. The level of T-bet was not significantly different between free and phytosomal groups. Moreover, mRNA expression of Foxp3 enhanced after treatment with curcumin, while phytosomal curcumin groups showed no difference in comparison with the untreated group. Conclusions curcumin in nano/free form showed a modulatory effect on the expression of T-bet. However, only free-form enhanced Foxp3 expression, which could be owing to the low amount of curcumin in the phytosomal complex rather than free-form at the same dose or due to leakage of curcumin from the complex.
Collapse
Affiliation(s)
- Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjkesh
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Safari
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Sun X, Kou B. Biocompatibility and potential anticancer activity of gadolinium oxide (Gd 2O 3) nanoparticles against nasal squamous cell carcinoma. BMC Biotechnol 2024; 24:53. [PMID: 39107760 PMCID: PMC11304937 DOI: 10.1186/s12896-024-00877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (Gd2O3@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated. It was found that the fabricated Gd2O3@BSA containing CUR (Gd2O3@BSA-CUR) had spherical morphology with hydrodynamic size of nearly 26 nm, zeta-potential of -36 mV and high drug (CUR) loading capacity. Drug release profile disclosed that the release of CUR from the prepared Gd2O3@BSA-CUR nanoparticles occurred in a sustained- and pH-dependent manner. Also, in vitro cytotoxicity analysis revealed that the fabricated Gd2O3@BSA nanoparticles possessed excellent biosafety toward HFF2 normal cells, while Gd2O3@BSA-CUR appeared to display the greatest anticancer potential against RPMI 2650 and CNE-1 cancer cell lines. The results also show that the Gd2O3@BSA nanoparticles were compatible with the blood cells with minor hemolytic effect (< 3%). The manufactured NPs were found to be completely safe for biological applications in an in vivo subacute toxicity study. Taken together, these finding substantiate the potential anticancer activity of Gd2O3@BSA-CUR nanoparticles against nasal squamous cell carcinoma, but the results obtained demand further studies to assess their full potential.
Collapse
Affiliation(s)
- Xiaopeng Sun
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Otorhinolaryngology head and neck surgery, The Second Affiliated Hospital of Xi 'an Medical University, Xi'an, 710000, Shaanxi, China
| | - Bo Kou
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
35
|
Ghoushi E, Poudineh M, Parsamanesh N, Jamialahmadi T, Sahebkar A. Curcumin as a regulator of Th17 cells: Unveiling the mechanisms. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100198. [PMID: 38525269 PMCID: PMC10959653 DOI: 10.1016/j.fochms.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Curcumin, a polyphenol natural product derived from turmeric, possesses diverse pharmacological effects due to its interactions with various cells and molecules. Recent studies have highlighted its immunomodulatory properties, including its impact on immune cells and mediators involved in immune responses. Th17 cells play a crucial role in promoting immune responses against extracellular pathogens by recruiting neutrophils and inducing inflammation. These cells produce inflammatory cytokines such as TNF-α, IL-21, IL-17A, IL-23, IL-17F, IL-22, and IL-26. Curcumin has been shown to significantly inhibit the proliferation of Th17 cells and reduce the production of inflammatory cytokines, including TNF-α, IL-22, and IL-17. This review aims to assess the effectiveness of curcumin and its underlying mechanisms in modulating Th17 cells.
Collapse
Affiliation(s)
- Ehsan Ghoushi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Bedoya-Agudelo JP, López-Carvajal JE, Quiguanás-Guarín ES, Cardona N, Padilla-Sanabria L, Castaño-Osorio JC. Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules 2024; 14:851. [PMID: 39062565 PMCID: PMC11275147 DOI: 10.3390/biom14070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Introduction: Curcumin and Lippia origanoides essential oils have a broad spectrum of biological activities; however, their physicochemical instability, low solubility, and high volatility limit their therapeutic use. Encapsulation in liposomes has been reported as a feasible approach to increase the physicochemical stability of active substances, protect them from interactions with the environment, modulate their release, reduce their volatility, improve their bioactivity, and reduce their toxicity. To date, there are no reports on the co-encapsulation of curcumin and Lippia origanoides essential oils in liposomes. Therefore, the objective of this work is to prepare and physiochemical characterize liposomes loaded with the mixture of these compounds and to evaluate different in vitro biological activities. (2) Methods: Liposomes were produced using the thin-layer method and physiochemical characteristics were calculated. The antimicrobial and cytotoxic activities of both encapsulated and non-encapsulated compounds were evaluated. (3) Results: Empty and loaded nanometric-sized liposomes were obtained that are monodisperse and have a negative zeta potential. They inhibited the growth of Staphylococcus aureus and did not exhibit cytotoxic activity against mammalian cells. (4) Conclusions: Encapsulation in liposomes was demonstrated to be a promising strategy for natural compounds possessing antimicrobial activity.
Collapse
Affiliation(s)
- Juan Pablo Bedoya-Agudelo
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Esteban López-Carvajal
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Edwin Stiven Quiguanás-Guarín
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Nestor Cardona
- Group of Investigation in Oral Health, Faculty of Dentistry, Antonio Nariño University, Armenia 630001, Colombia;
| | - Leonardo Padilla-Sanabria
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| |
Collapse
|
37
|
Bokharaeian M, Toghdory A, Ghoorchi T. Effects of dietary curcumin nano-micelles on performance, biological responses, and thermal stress resilience in heat-stressed fattening lambs across varying temperature-humidity index conditions: Implications for climate change. J Therm Biol 2024; 123:103905. [PMID: 38941825 DOI: 10.1016/j.jtherbio.2024.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Heat stress poses a significant challenge to sheep farming in arid and semi-arid regions, impacting growth performance, health, and physiological responses. While sheep have innate mechanisms to manage heat stress, prolonged exposure impairs their performance and health. This study evaluated the influence of varying doses of Curcumin Nano-Micelle (CNM) on heat-stressed fattening lambs in northeastern Iran over three months, examining the relationship between CNM doses and growth performance, feeding behavior, physiological responses, immune function, and antioxidant status. Thirty-two crossbred male lambs were included in a completely randomized design with four treatments and eight replications. The experimental treatments were as follows: 1) CTRL: No dietary inclusion of CNM, (control group); 2) T20: Dietary inclusion of 20 mg of CNM per head per day; 3) T40: Dietary inclusion of 40 mg of CNM per head per day; and 4) T80: Dietary inclusion of 80 mg of CNM per head per day. The results revealed that dietary supplementation with 20 and 40 mg of CNM significantly improved live body weight, weight gain, average daily gain (ADG), and feed conversion ratio (FCR) compared to the control treatment. Regression analysis demonstrated quadratic models between growth performance parameters and the Temperature-Humidity Index (THI), indicating a correlation between CNM doses and the animals' responses to heat stress. Regarding eating behavior, CNM doses of 40 and 80 mg/day significantly reduced eating time while increasing ruminating time. Blood analysis indicated significant reductions in glucose levels across all treatments, with T40 significantly reducing both cholesterol and triglyceride (TG) levels. Additionally, CNM supplementation decreased serum malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, indicating enhanced antioxidant status. Physiological responses were influenced by CNM, notably reducing rectal temperature (RT), skin temperature (ST), respiration rate (RR), while pulse rate (PR) increased across various time intervals, particularly in the T80 group. This study demonstrates that CNM supplementation can enhance performance, physiological responses, and antioxidant status in heat-stressed fattening lambs, highlighting its potential to mitigate heat stress effects in sheep farming.
Collapse
Affiliation(s)
- Mostafa Bokharaeian
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
38
|
Fahmy HM, Aboalasaad FA, Mohamed AS, Elhusseiny FA, Khadrawy YA, Elmekawy A. Evaluation of the Therapeutic Effect of Curcumin-Conjugated Zinc Oxide Nanoparticles on Reserpine-Induced Depression in Wistar Rats. Biol Trace Elem Res 2024; 202:2630-2644. [PMID: 37713054 PMCID: PMC11052778 DOI: 10.1007/s12011-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Depression, a devastating brain illness, necessitates the exploration of novel antidepressant treatments. We evaluated the antidepressant effects of free curcumin, zinc oxide nanoparticles (ZnO NPs), and curcumin-conjugated zinc oxide nanoparticles (Zn(cur)O NPs). The nanoformulations were extensively characterized using advanced techniques. An acute toxicity study ensured the safety of Zn(cur)O NPs. Rats were assigned to one of five groups: control, reserpine-induced depression model, treatment with ZnO NPs, free curcumin, or Zn(cur)O NPs. Behavioral assessments (forced swimming test [FST] and open-field test [OFT]) and neurochemical analyses were conducted. Zn(cur)O NPs exhibited superior efficacy in ameliorating reserpine-induced behavioral and neurochemical effects compared to free curcumin and ZnO NPs. The reserpine-induced model displayed reduced motor activity, swimming time, and increased immobility time in the FST and OFT. Treatment with Zn(cur)O NPs 45 mg/kg significantly improved motor activity and reduced immobility time. Furthermore, Zn(cur)O NPs decreased malondialdehyde (MDA) levels while increasing reduced glutathione (GSH) and catalase (CAT) levels. Additionally, concentrations of serotonin (5-HT) and norepinephrine (NE) increased. In conclusion, curcumin-conjugated zinc oxide nanoparticles demonstrate potent antidepressant effects, alleviating depressive-like behavior in rats. These findings support Zn(cur)O NPs as a promising therapeutic strategy for depression management, warranting further investigation and clinical validation.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ayman S Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
39
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
40
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
41
|
Ye X, Zhang M, Gong Z, Jiao W, Li L, Dong M, Xiang T, Feng N, Wu Q. Inhibition of polyphenols on Maillard reaction products and their induction of related diseases: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155589. [PMID: 38608487 DOI: 10.1016/j.phymed.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Food products undergo a pronounced Maillard reaction (MR) during the cooking process, leading to the generation of substantial quantities of Maillard reaction products (MRPs). Within this category, advanced glycation end products (AGEs), acrylamide (AA), and heterocyclic amines (HAs) have been implicated as potential risk factors associated with the development of diseases. PURPOSE To explore the effects of polyphenols, a class of bioactive compounds found in plants, on the inhibition of MRPs and related diseases. Previous research has mainly focused on their interactions with proteins and their effects on the gastrointestinal tract and other diseases, while fewer studies have examined their inhibitory effects on MRPs. The aim is to offer a scientific reference for future research investigating the inhibitory role of polyphenols in the MR. METHODS The databases PubMed, Embase, Web of Science and The Cochrane Library were searched for appropriate research. RESULTS Polyphenols have the potential to inhibit the formation of harmful MRPs and prevent related diseases. The inhibition of MRPs by polyphenols primarily occurs through the following mechanisms: trapping α-dicarbonyl compounds, scavenging free radicals, chelating metal ions, and preserving protein structure. Simultaneously, polyphenols exhibit the ability to impede the onset and progression of related diseases such as diabetes, atherosclerosis, cancer, and Alzheimer's disease through diverse pathways. CONCLUSION This review presents that inhibition of polyphenols on Maillard reaction products and their induction of related diseases. Further research is imperative to enhance our comprehension of additional pathways affected by polyphenols and to fully uncover their potential application value in inhibiting MRPs.
Collapse
Affiliation(s)
- Xurui Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Mengyun Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zihao Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Weiting Jiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| | - Liangchao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Mingyu Dong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Tianyu Xiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
42
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Ferenc K, Filip R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and thus Affect the Process of Liver Fibrosis? Int J Mol Sci 2024; 25:5238. [PMID: 38791276 PMCID: PMC11120776 DOI: 10.3390/ijms25105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are considered to be the main causes of fibrosis. In turn, fibrosis may lead to the development of hepatocellular carcinoma or advanced cirrhosis, i.e., potentially life-threatening conditions. It is likely that therapy aimed at reducing the risk of developing hepatic steatosis and inflammation could be helpful in minimizing the threat/probability of organ fibrosis. In recent years, increasing attention has been paid to the influence of nutraceuticals in the prevention and treatment of liver diseases. Therefore, the aim of this review was to describe the precise role of selected ingredients such as vitamin C, beta-carotene, omega-3 fatty acids, and curcumin. It is likely that the use of these ingredients in the treatment of patients with MASLD/MASH, along with behavioral and pharmacological therapy, may have a beneficial effect on combating inflammation, reducing oxidative stress, and thereby preventing liver damage.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Katarzyna Ferenc
- Institute of Medicine, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College, Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
43
|
Gogoi NG, Rahman A, Dutta P, Saikia J, Baruah A, Handique JG. Design, Synthesis, Biological Evaluation and in Silico Studies of Curcumin Pyrrole Conjugates. Chem Biodivers 2024; 21:e202301605. [PMID: 38488861 DOI: 10.1002/cbdv.202301605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.
Collapse
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Manohari Devi Kanoi Girls College, Dibrugarh, 786001, Assam, India
| | - Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Pankaj Dutta
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | | |
Collapse
|
44
|
de Souza V, Polaquini CR, de Moraes GR, Oliveira Braga AR, da Silva PV, da Silva DR, Ribeiro Lima FR, Regasini LO, de Cássia Orlandi Sardi J. Diacetylcurcumin: a novel strategy against Enterococcus faecalis biofilm in root canal disinfection. Future Microbiol 2024; 19:647-654. [PMID: 38661711 PMCID: PMC11259074 DOI: 10.2217/fmb-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: We evaluated Diacetylcurcumin (DAC), a derivative of curcumin, for its antibacterial and antibiofilm properties against Enterococcus faecalis. Methods: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined, along with antibiofilm potential and toxicity in Galleria mellonella. Additionally, in silico computational analysis was performed to understand its mechanisms of action. Results & conclusion: DAC demonstrated significant antibacterial effects, with MIC and MBC values of 15.6 and 31.25 μg/ml, respectively, and reduced biofilm formation. A synergistic effect, reducing biofilm by 77%, was observed when combined with calcium hydroxide. G. mellonella toxicity tests confirmed DAC's safety at tested concentrations, suggesting its potential for use in root canal disinfection products.
Collapse
Affiliation(s)
- Vanessa de Souza
- Program on Integrated Dental Sciences, Cuiabá University, Cuiabá, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry & Environmental Sciences, Júlio de Mesquita Filho University, São Jose do Rio Preto, Brazil
| | - Graciele Ribeiro de Moraes
- Department of Chemistry & Environmental Sciences, Júlio de Mesquita Filho University, São Jose do Rio Preto, Brazil
| | | | | | | | | | - Luís Octávio Regasini
- Department of Chemistry & Environmental Sciences, Júlio de Mesquita Filho University, São Jose do Rio Preto, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Program on Integrated Dental Sciences, Cuiabá University, Cuiabá, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
45
|
Mousaabadi KZ, Ensafi AA, Hadadzadeh H, Shirani MP. Impact of temperature on the binding interaction between dsDNA and curcumin: An electrochemical study. Bioelectrochemistry 2024; 156:108621. [PMID: 38042068 DOI: 10.1016/j.bioelechem.2023.108621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
In this study, we investigated the binding mode between double-stranded deoxyribonucleic acid (dsDNA) and curcumin (CU) using differential pulse voltammetry (DPV), UV-Vis spectroscopy, and molecular docking. By employing these techniques, we predicted the binding within the minor groove region of dsDNA and CU. Significantly, we employed electrochemistry, specifically cyclic voltammetry (CV), to explore the temperature effect on the dsDNA and CU binding. To the best of our knowledge, this is the first study to utilize electrochemical methods for investigating the temperature-dependent behavior of this binding interaction. Our findings revealed temperature-dependent variations in the binding constants: 2.42 × 103 M-1 at 25 °C, 4.26 × 103 M-1 at 30 °C, 5.44 × 103 M-1 at 35 °C, 6.29 × 103 M-1 at 40 °C, and 7.52 × 103 M-1 at 45 °C. Notably, the binding constant exhibited an increasing trend with elevated temperatures, indicating a temperature-dependent enhancement of the binding interaction.
Collapse
Affiliation(s)
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | |
Collapse
|
46
|
Tang Q, Ojiro R, Ozawa S, Zou X, Nakahara J, Nakao T, Koyanagi M, Jin M, Yoshida T, Shibutani M. DNA methylation-altered genes in the rat hippocampal neurogenic niche after continuous exposure to amorphous curcumin. J Chem Neuroanat 2024; 137:102414. [PMID: 38490283 DOI: 10.1016/j.jchemneu.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Rat offspring who are exposed to an amorphous formula of curcumin (CUR) from the embryonic stage have anti-anxiety-like behaviors, enhanced fear extinction learning, and increased synaptic plasticity in the hippocampal dentate gyrus (DG). In the present study, we investigated the links between genes with altered methylation status in the neurogenic niche and enhanced neural functions after CUR exposure. We conducted methylation and RNA sequencing analyses of the DG of CUR-exposed rat offspring on day 77 after delivery. Methylation status and transcript levels of candidate genes were validated using methylation-sensitive high-resolution melting and real-time reverse-transcription PCR, respectively. In the CUR group, we confirmed the hypermethylation and downregulation of Gpr150, Mmp23, Rprml, and Pcdh8 as well as the hypomethylation and upregulation of Ppm1j, Fam222a, and Opn3. Immunohistochemically, reprimo-like+ hilar cells and protocadherin-8+ granule cells were decreased and opsin-3+ hilar cells were increased by CUR exposure. Both reprimo-like and opsin-3 were partially expressed on subpopulations of glutamic acid decarboxylase 67+ γ-aminobutyric acid-ergic interneurons. Furthermore, the transcript levels of genes involved in protocadherin-8-mediated N-cadherin endocytosis were altered with CUR exposure; this was accompanied by Ctnnb1 and Syp upregulation and Mapk14, Map2k3, and Grip1 downregulation, suggesting that CUR-induced enhanced synaptic plasticity is associated with cell adhesion. Together, our results indicate that functionally different genes have altered methylation and expression in different neuronal populations of the hippocampal neurogenic niche, thus enhancing synaptic plasticity after CUR exposure.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tomohiro Nakao
- Emulsion Laboratory, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
47
|
Mu X, Fan J, Shuai W, Tomeh MA, Zeng L, Sun X, Zhao X. Microfluidic formulation of food additives-loaded nanoparticles for antioxidation. Colloids Surf B Biointerfaces 2024; 234:113739. [PMID: 38219640 DOI: 10.1016/j.colsurfb.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Browning has many important implications with nutrition and the shelf life of foods. Mitigating browning is of particular interest in food chemistry. The addition of antioxidants has been a common strategy to extend shelf life of drug and food products. In this work, we report a microfluidic technology for encapsulation of three common food additives (potassium metathionite (PMS), curcumin (CCM), and β-carotene (β-Car)) into nano-formulations using low-cost and readily available materials such as shellac. The food additives encapsulated nanoparticles provide a microenvironment that can prevent oxidation during daily storage. The results showed that the produced nanoparticles had a narrow size distribution with an average size of around 100 nm, were stable at conventional storage conditions (4 ºC) for 18 weeks, and had sustained release ability at 37 ºC, pH= 7.8, 160 rpm. In addition, further experiments showed that the formulation of hydrophobic additives, such as CCM and β-Car did not only improve their bioavailability but also allowed for the encapsulation of a combination of ingredients. In addition, the antioxidants loaded nanoparticles demonstrated good biocompatibility, low toxicity to human cells. The longer release time of encapsulated food additives increases shelf life of foods and enhances consumer purchase preferences, which not only saves costs but also reduces waste. In summary, this study shows that such antioxidant-loaded nanoparticles provide a promising strategy in extending the shelf life of food products.
Collapse
Affiliation(s)
- Xiaoyan Mu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiabao Fan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Weiming Shuai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lingwen Zeng
- School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiang Sun
- School of Chemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
48
|
Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230019. [PMID: 38854493 PMCID: PMC10867402 DOI: 10.1002/exp.20230019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 06/11/2024]
Abstract
Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Agency for Science, Technology, and Research (A*STAR)Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
49
|
Lazar AN, Perret F, Perez-Lloret M, Michaud M, Coleman AW. Promises of anionic calix[n]arenes in life science: State of the art in 2023. Eur J Med Chem 2024; 264:115994. [PMID: 38070431 DOI: 10.1016/j.ejmech.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Because they hold together molecules by means of non-covalent interactions - relatively weak and thus, potentially reversible - the anionic calixarenes have become an interesting tool for efficiently binding a large range of ligands - from gases to large organic molecules. Being highly water soluble and conveniently biocompatible, they showed growing interest for many interdisciplinary fields, particularly in biology and medicine. Thanks to their intrinsic conical shape, they provide suitable platforms, from vesicles to bilayers. This is a valuable characteristic, as so they mimic the biologically functional architectures. The anionic calixarenes propose efficient alternatives for overcoming the limitations linked to drug delivery and bioavailability, as well as drug resistance along with limiting the undesirable side effects. Moreover, the dynamic non-covalent binding with the drugs enables predictable and on demand drug release, controlled by the stimuli present in the targeted environment. This particular feature instigated the use of these versatile, stimuli-responsive compounds for sensing biomarkers of diverse pathologies. The present review describes the recent achievements of the anionic calixarenes in the field of life science, from drug carriers to biomedical engineering, with a particular outlook on their applications for the diagnosis and treatment of different pathologies.
Collapse
Affiliation(s)
- Adina-N Lazar
- Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France.
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, Univ. Lyon - CNRS - Univ. Claude Bernard Lyon 1 - CPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne, 69622, Cedex, France.
| | - Marta Perez-Lloret
- School of Biological and Chemical Sciences, University of Galway, Ireland Galway, Ireland
| | - Mickael Michaud
- CIRI, Univ. Lyon1, Inserm, U1111, CNRS, UMR5308, ENS, Lyon, France
| | | |
Collapse
|
50
|
Hooda P, Malik R, Bhatia S, Al-Harrasi A, Najmi A, Zoghebi K, Halawi MA, Makeen HA, Mohan S. Phytoimmunomodulators: A review of natural modulators for complex immune system. Heliyon 2024; 10:e23790. [PMID: 38205318 PMCID: PMC10777011 DOI: 10.1016/j.heliyon.2023.e23790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In the past few decades, the medicinal properties of plants and their effects on the human immune system are being studied extensively. Plants are an incredible source of traditional medicines that help cure various diseases, including altered immune mechanisms and are economical and benign compared to allopathic medicines. Reported data in written documents such as Traditional Chinese medicine, Indian Ayurvedic medicine support the supplementation of botanicals for immune defense reactions in the body and can lead to safe and effective immunity responses. Additionally, some botanicals are well-identified as magical herbal remedies because they act upon the pathogen directly and help boost the immunity of the host. Chemical compounds, also known as phytochemicals, obtained from these botanicals looked promising due to their effects on the human immune system by modulating the lymphocytes which subsequently reduce the chances of getting infected. This paper summarises most documented phytochemicals and how they act on the immune system, their properties and possible mechanisms, screening conventions, formulation guidelines, comparison with synthetic immunity-enhancers, marketed immunity-boosting products, and immune-booster role in the ongoing ghastly corona virus wave. However, it focuses mainly on plant metabolites as immunomodulators. In addition, it also sheds light on the current advancements and future possibilities in this field. From this thorough study, it can be stated that the plant-based secondary metabolites contribute significantly to immunity building and could prove to be valuable medicaments for the design and development of novel immunomodulators even for a pandemic like COVID-19.
Collapse
Affiliation(s)
- Partibha Hooda
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Gurugram, India
- SRM Modi Nagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Clinical pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|