1
|
Jin Y, Jung SN, Lim MA, Oh C, Piao Y, Kim HJ, Liu L, Kang YE, Chang JW, Won HR, Song K, Koo BS. Transcriptional Regulation of GDF15 by EGR1 Promotes Head and Neck Cancer Progression through a Positive Feedback Loop. Int J Mol Sci 2021; 22:ijms222011151. [PMID: 34681812 PMCID: PMC8538541 DOI: 10.3390/ijms222011151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β (TGF-β) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15–EGR1 signaling axis may be a good target in HNC patients.
Collapse
Affiliation(s)
- Yanli Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yudan Piao
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Lihua Liu
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Korea;
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Kunho Song
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
- Correspondence: ; Tel.: +82-42-280-7690
| |
Collapse
|
2
|
Li TT, Liu MR, Pei DS. Friend or foe, the role of EGR-1 in cancer. Med Oncol 2019; 37:7. [PMID: 31748910 DOI: 10.1007/s12032-019-1333-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Early growth response-1 (EGR-1), also termed NEFI-A and Krox-24, as a multi-domain protein is implicated in several vital physiological processes, including development, metabolism, cell growth and proliferation. Previous studies have implied that EGR-1 was producing in response to the tissue injury, immune response and fibrosis. Meanwhile, emerging studies stressed the pronounced correlation of EGR-1 and human cancers. Nevertheless, the intricate mechanisms of cancer-reduce EGR-1 alteration still poorly characterized. In the review, we evaluated the effects of EGR-1 in tumor cell proliferation, apoptosis, migration, invasion and tumor microenvironment, and then, we dwell on the intricate signaling pathways that EGR-1 involved in. The aberrantly expressed of EGR-1 in cancers are expected to provide a new cancer therapy strategy or a new marker for assessing treatment efficacy.
Collapse
Affiliation(s)
- Tong-Tong Li
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Man-Ru Liu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Wang P, Zhang L, Li H, Wang Y, Zhang S, Liu Z. Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. Int J Biol Macromol 2019; 142:384-394. [PMID: 31593737 DOI: 10.1016/j.ijbiomac.2019.09.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates, whose regulation of endocrine system remains ambiguous. Here we clearly demonstrated the existence of a functional GRP neuropeptide in amphioxus, which was able to interact with GRP receptor, activate both PKC and PKA pathways, increase gh, igf, and vegf expression. We also showed that the transcription level of amphioxus grp was affected by temperature and light, indicating the role of this gene in the regulation of energy balance and circadian rhythms. In addition, the expression of the amphioxus grp was detected in cerebral vesicle that has been proposed to be the homologous organ of vertebrate brain. These data collectively suggested that a functional GRP neuropeptide had already emerged in amphioxus, which provided insights into the evolutionary origin of GRP in chordate and the functional homology between the cerebral vesicle and vertebrate brain.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China.
| |
Collapse
|
4
|
Xiang D, Wang H, Sun S, Yao L, Li R, Zong X, Wang G, Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front Psychiatry 2019; 10:1020. [PMID: 32047449 PMCID: PMC6997338 DOI: 10.3389/fpsyt.2019.01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Accumulating evidences indicate that gastrin-releasing peptide receptor (GRPR) may contribute to the pathophysiology of depression. However, the mechanism of the involvement of GRPR in the progression of depression remains unclear. Here, we showed the extent to which stress and antidepressant treatment impact GRPR expression, and explored the interactions between 5-HT2a receptor (5-HT2aR) and GRPR at the cellular level. METHODS The rat depression models were created with chronic unpredictable mild stress (CUMS). Then, these rats were treated with fluoxetine for 4 weeks after CUMS. We measured body weight and performed behavioral tests to determine the effects of stress and fluoxetine on depressive-like behaviors. Real-time PCR and western blotting were used to measure the mRNA and protein expression levels of GRPR in the hypothalamus. Then, Flag-tagged protein (pcmv-Flag-5HT2aR) and Myc-tagged protein (pcmv-Myc-GRPR) expression vectors were constructed, identified, and transfected into human embryo kidney 293 (HEK293) cells. The interaction between 5-HT2aR and GRPR was detected by coimmunoprecipitation and double-label immunofluorescence. RESULTS The rats subjected to 4 weeks of CUMS showed depressive-like behaviors, including decreased body weight, sucrose preference, and distance traveled, rearing frequency and velocity in the open field test and increased immobility time in the forced swimming test. Fluoxetine treatment reversed CUMS-induced depressive-like behavior. The mRNA and protein expression of GRPR in the hypothalamus was significantly increased after 4 weeks CUMS exposure, and treatment with fluoxetine reversed these changes. Coimmunoprecipitation showed that 5-HT2aR and GRPR combine with each other in vitro. Immunofluorescence revealed that the 5-HT2aR and GRPR were colocalization in both the cell membrane and cytoplasm. CONCLUSION Our study enhances the understanding of the involvement of GRPR in depression. This study also provides in vitro experimental evidence of the interaction between 5-HT2aR and GRPR, which may play an important role in the pathogenesis of depression.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiting Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Muñoz-Moreno L, Schally AV, Prieto JC, Carmena MJ, Bajo AM. Growth hormone-releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer. Prostate 2018; 78:915-926. [PMID: 29748961 DOI: 10.1002/pros.23648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Therapeutic strategies should be designed to transform aggressive prostate cancer phenotypes to a chronic situation. To evaluate the effects of the new growth hormone-releasing hormone receptor (GHRH-R) antagonists: MIA-602, MIA-606, and MIA-690 on processes associated with cancer progression as cell proliferation, adhesion, migration, and angiogenesis. METHODS We used three human prostate cell lines (RWPE-1, LNCaP, and PC3). We analyzed several molecules such as E-cadherin, β-catenin, Bcl2, Bax, p53, MMP2, MMP9, PCNA, and VEGF and signaling mechanisms that are involved on effects exerted by GHRH-R antagonists. RESULTS GHRH-R antagonists decreased cell viability and provoked a reduction in proliferation in LNCaP and PC3 cells. Moreover, GHRH-R antagonists caused a time-dependent increase of cell adhesion in all three cell lines and retarded the wound closure with the highest value with MIA-690 in PC3 cells. GHRH-R antagonists also provoked a large number of cells in SubG0 phase revealing an increase in apoptotic cells in PC3 cell line. CONCLUSIONS Taken all together, GHRH-R antagonists of the MIAMI series appear to be inhibitors of tumor progression in prostate cancer and should be considered for use in future therapeutic strategies on this malignancy.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, Florida
- Departments of Pathology and Medicine, Divisions of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan C Prieto
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - M José Carmena
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Maina T, Nock BA, Kulkarni H, Singh A, Baum RP. Theranostic Prospects of Gastrin-Releasing Peptide Receptor–Radioantagonists in Oncology. PET Clin 2017; 12:297-309. [PMID: 28576168 DOI: 10.1016/j.cpet.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Moscona JC, Peters MN, Schally AV, Srivastav S, Delafontaine P, Irimpen A. The effects of a growth hormone-releasing hormone antagonist and a gastrin-releasing peptide antagonist on intimal hyperplasia of the carotid artery after balloon injury in a diabetic rat model☆. Artery Res 2017. [DOI: 10.1016/j.artres.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
von Hardenberg J, Schwartz M, Werner T, Fuxius S, Müller M, Bolenz C, Weiß C, Heinrich E. Influence of abiraterone acetate on circulating neuromediators in chemotherapy-naïve castration-resistant prostate cancer. Prostate 2016; 76:613-9. [PMID: 26779767 DOI: 10.1002/pros.23152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Abiraterone Acetate (AA) represents a highly effective androgen-receptor (AR) axis targeted agent. Treatment with AA in castration-resistant prostate cancer (CRPC) may partly mediate neuroendocrine differentiation (NED) as an escape mechanism, which may have implications for the choice of sequential therapy in CRPC. We evaluated how treatment with AA influences circulating neuromediators chromogranin A (CGA), neuron-specific enolase (NSE), and pro-gastrin-releasing peptide (Pro-GRP) in chemotherapy-naïve CRPC patients. METHODS We conducted an analysis in chemotherapy-naïve CRPC patients with clinical or radiographic progression of disease. A total of 35 patients were included at five institutions between February 2013 and December 2014. Sixteen of them had received AA. Serum samples were obtained before a docetaxel-based chemotherapy and analyzed in a reference laboratory. Univariable and multivariable analyses were performed to test the influence of AA treatment, its duration of treatment, and other clinicopathological variables on circulating neuromediators. RESULTS CGA and NSE levels were above the upper limit of normal (ULN) in n = 20 (57.1%) and n = 13 (37.1%), respectively. Treatment with AA and duration of treatment were not associated with levels above the ULN (CGA and NSE) or higher levels (Pro-GRP) of neuromediators. CGA levels were associated with age (P = 0.092), lymph node metastasis (P = 0.014), duration of androgen deprivation therapy (ADT; P = 0.083), and intake of proton pump inhibitors (P = 0.069). Pro-GRP levels were significantly associated with PSA levels (P = 0.002). On multivariate analysis, CGA levels above the ULN were significantly correlated with ADT (P = 0.01) and intake of proton pump inhibitors (P = 0.03). CONCLUSIONS Circulating neuromediators in chemotherapy-naïve CRPC patients were elevated in a high percentage of patients. ADT was found to be a relevant NED driver in this cohort. Our results may imply that patients with CRPC after first-line treatment with AA in CRPC are not at a higher risk for developing NED. The major limitation of the study represents the one-time analysis of neuromediators. Larger studies with serial blood measurements or biopsy analysis before and after treatment are needed to confirm our results.
Collapse
Affiliation(s)
- Jost von Hardenberg
- Department of Urology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Maike Schwartz
- Department of Urology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | | | - Stefan Fuxius
- Outpatient Oncology Practice Heidelberg, Heidelberg, Germany
| | - Markus Müller
- Department of Urology, Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Christian Bolenz
- Department of Urology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elmar Heinrich
- Department of Urology, University Hospital Goettingen, Goettingen, Germany
| |
Collapse
|
9
|
Santos J, Mesquita D, Barros-Silva JD, Jerónimo C, Henrique R, Morais A, Paulo P, Teixeira MR. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements. Oncoscience 2015; 2:497-507. [PMID: 26097883 PMCID: PMC4468336 DOI: 10.18632/oncoscience.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/13/2015] [Indexed: 01/14/2023] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease.
Collapse
Affiliation(s)
- Joana Santos
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Diana Mesquita
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - António Morais
- Department of Urology, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Paula Paulo
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute-Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| |
Collapse
|
10
|
Conteduca V, Aieta M, Amadori D, De Giorgi U. Neuroendocrine differentiation in prostate cancer: Current and emerging therapy strategies. Crit Rev Oncol Hematol 2014; 92:11-24. [DOI: 10.1016/j.critrevonc.2014.05.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022] Open
|
11
|
Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem 2013; 112:44-52. [PMID: 24001571 DOI: 10.1016/j.nlm.2013.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptides act as signaling molecules that regulate a range of aspects of brain function. Gastrin-releasing peptide (GRP) is a 27-amino acid mammalian neuropeptide, homolog of the amphibian peptide bombesin. GRP acts by binding to the GRP receptor (GRPR, also called BB2), a member of the G-protein coupled receptor (GPCR) superfamily. GRP produced by neurons in the central nervous system (CNS) plays a role in synaptic transmission by activating GRPRs located on postsynaptic membranes, influencing several aspects of brain function. Here we review the role of GRP/GRPR as a system mediating both stress responses and the formation and expression of memories for fearful events. GRPR signaling might integrate the processing of stress and fear with synaptic plasticity and memory, serving as an important component of the set of neurobiological systems underlying the enhancement of memory storage by aversive information.
Collapse
|
12
|
Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, Sukegawa I, Sukegawa J, Fukunaga K, Yanagisawa T. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci 2013; 122:193-204. [PMID: 23823934 DOI: 10.1254/jphs.12287fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Release of growth hormone (GH) from the somatotroph is regulated by binding GH-releasing hormone (GHRH) to its cognate receptor (GHRHR), one of the members of the G protein-coupled receptor (GPCR) superfamily. Proteins bound to the carboxy (C)-terminus of GPCR have been reported to regulate intracellular trafficking and function of the receptor; however, no functionally significant protein associated with GHRHR has been reported. We have identified a protein interacting with C-kinase 1 (PICK1) as a binding partner of GHRHR. In vitro binding assay revealed the PDZ-domain of PICK1 and the last four amino acid residues of GHRHR were prerequisite for the interaction. Further, in vivo association of these proteins was confirmed. Immunostaining data of a stable cell line expressing GHRHR with or without PICK1 suggested the C-terminus of GHRHR promoted cell surface expression of GHRHR and PICK1 affected the kinetics of the cell surface expression of GHRHR. Furthermore, cAMP production assay showed the C-terminus of GHRHR is involved in the regulation of receptor activation, and the interaction of GHRHR with PICK1 may influence intensities of the signal response after ligand stimulation. Thus, the interaction of the C-terminus of GHRHR with PICK1 has a profound role in regulating the trafficking and the signaling of GHRHR. [Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.12287FP].
Collapse
Affiliation(s)
- Yuriko Katsushima
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rick FG, Schally AV, Block NL, Abi-Chaker A, Krishan A, Szalontay L. Mechanisms of synergism between antagonists of growth hormone-releasing hormone and antagonists of luteinizing hormone-releasing hormone in shrinking experimental benign prostatic hyperplasia. Prostate 2013; 73:873-83. [PMID: 23280565 DOI: 10.1002/pros.22633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) affects aging men. Combined therapy with antagonists of growth hormone-releasing hormone (GHRH) and of luteinizing hormone-releasing hormone (LHRH or GnRH) induces prostate shrinkage in rat models. We investigated the mechanisms of action of this combination on cell cycle traverse and expression of prostatic genes. METHODS Effects of GHRH antagonist, JMR-132 (40 µg/day), the LHRH antagonist, cetrorelix (0.625 mg/kg), and their combination were evaluated on testosterone-induced benign prostatic hyperplasia in male Wistar rats. Influence of JMR-132, cetrorelix, and their combinations on cell viability was assessed by MTS assay in BPH-1 human prostate epithelial cells and WPMY-1 normal prostate stromal cells. Cell cycle was analyzed by laser flow cytometry. Real-time PCR arrays were performed. RESULTS The combination of antagonists caused marked shrinkage of rat prostate (29.5%). In vitro, JMR-132 plus cetrorelix (both 5µM) produced synergistic (57.4%) inhibition of growth of BPH-1 cells, but a lesser inhibition (46%) of WPMY-1 cells. Co-treatment of with JMR-132 plus cetrorelix induced a significant increase of BPH-1 cells blocked in S-phase plus cells with lower G0 /G1 and G2 /M DNA content. Significant changes in expression of >40 gene transcripts related to growth factors, inflammatory cytokines, and signal transduction were identified. CONCLUSIONS GHRH antagonist and LHRH antagonist combination potentiates rat prostate weight reduction and synergistically inhibits of growth of BPH-1 leading to cell cycle arrest in S-phase. These effects were lesser in normal stromal prostate cell line, WPMY-1. Our findings suggest that GHRH antagonists could be useful for BPH therapy, possibly in combination with LHRH antagonists.
Collapse
Affiliation(s)
- Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida 33125, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A 2013; 110:2617-22. [PMID: 23359692 DOI: 10.1073/pnas.1222355110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH.
Collapse
|
15
|
Xu Y, Jiang Y, Wu B. New Agonist- and Antagonist-Based Treatment Approaches for Advanced Prostate Cancer. J Int Med Res 2012; 40:1217-26. [PMID: 22971474 DOI: 10.1177/147323001204000401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increased understanding of prostate cancer biology has led to new treatment strategies and promising new agents for treating prostate cancer, in particular peptide-based agonists and antagonists. In this review article, new therapy modalities and potential approaches for the treatment of advanced prostate cancer are discussed, including agonists and antagonists of luteinizing hormone-releasing hormone, antagonists of bombesin/gastrin-releasing peptide, and growth hormone-releasing hormone and somatostatin analogues. Though the prognosis of patients with prostate cancer is much improved by some of these treatment approaches, including combination treatment methods, extensive side-effects are still reported. These include sexual dysfunction, functional lesions of the liver and renal system, osteoporosis, anaemia and diarrhoea. Future studies should focus on new treatment agents and treatment approaches that can eliminate side-effects and improve quality of life in patients with prostate cancer on the basis of potent treatment efficacy.
Collapse
Affiliation(s)
- Y Xu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yf Jiang
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - B Wu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| |
Collapse
|
16
|
Rick FG, Buchholz S, Schally AV, Szalontay L, Krishan A, Datz C, Stadlmayr A, Aigner E, Perez R, Seitz S, Block NL, Hohla F. Combination of gastrin-releasing peptide antagonist with cytotoxic agents produces synergistic inhibition of growth of human experimental colon cancers. Cell Cycle 2012; 11:2518-25. [PMID: 22751419 DOI: 10.4161/cc.20900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the efficacy of a powerful antagonist of bombesin/gastrin-releasing peptide (BN/GRP) RC-3940-II administered as a single agent or in combination with cytotoxic agents on the growth of HT-29, HCT-116 and HCT-15 human colon cancer in vitro and in vivo. GRP-receptor mRNA and protein were found in all three cell lines tested. Exposure of HT-29 cells to 10 μM RC-3940-II led to an increase in the number of cells blocked in S phase and G 2/M and cells with lower G(0)/G(1) DNA content. Similar changes on the cell cycle traverse of HT-29 cells could also be seen at lower concentrations of RC-3940-II (1 μM) after pretreatment with 100 nM GRP (14-27), indicating a dose-dependent mechanism of action based on the blockage of BN/GRP induced proliferation of tumor cells at lower concentrations. Daily in vivo treatment with BN/GRP antagonist RC-3940-II decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice by 25 to 67% (p < 0.005). Combined treatment with RC-3940-II and chemotherapeutic agents 5-FU and irinotecan resulted in a synergistic tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts by 43% to 78%. In HT-29 and HCT-116 xenografts the inhibition for the combinations of RC-3940-II and irinotecan vs. single substances (p < 0.05) was significantly greater. These findings support the use of RC-3940-II as an anticancer agent and may help to design clinical trials using RC-3940-II in combinations with cytotoxic agents.
Collapse
Affiliation(s)
- Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stangelberger A, Schally AV, Rick FG, Varga JL, Baker B, Zarandi M, Halmos G. Inhibitory effects of antagonists of growth hormone releasing hormone on experimental prostate cancers are associated with upregulation of wild-type p53 and decrease in p21 and mutant p53 proteins. Prostate 2012; 72:555-65. [PMID: 21796649 DOI: 10.1002/pros.21458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The tumor suppressor gene p53 is implicated in cell cycle control and apoptosis. Antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit human experimental prostate cancers. METHODS We investigated the involvement of p53 apoptotic pathways in this effect. Nude mice bearing xenografted PC-3, DU-145, and MDA-PCa-2b human prostate cancer lines were treated with a new potent GHRH antagonist MZ-J-7-138. To determine whether tumor inhibition by MZ-J-7-138 involves apoptotic mechanisms such as p53 and p21, we evaluated by Western Blot the expression of mutant mt-p53 in PC-3 and DU-145 and of wild type (wt-p53) in MDA-PCa-2b prostate cancers as well as p21. RESULTS MZ-J-7-138 significantly inhibited the growth of PC-3, DU-145, and MDA-PCa-2b xenografts in nude mice. Androgen deprivation with the LHRH antagonist Cetrorelix enhanced the anti-proliferative effect of GHRH antagonist MZ-J-7-138 on MDA-PCa-2b tumors. The expression of mutant (mt-p53) and p21 protein in PC-3 and DU-145 tumors was significantly decreased by treatment with MZ-J-7-138, whereas wild type wt-p53 expression in MDA-PCA-2b tumors was up regulated by treatment with Cetrorelix. All three models investigated expressed specific, high affinity GHRH receptors. CONCLUSIONS Our findings indicate that the anti-proliferative effects of GHRH antagonist MZ-J-7-138 and LHRH antagonist Cetrorelix on prostate cancers involve p53 and p21 signaling.
Collapse
|
18
|
Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases. Proc Natl Acad Sci U S A 2012; 109:1655-60. [PMID: 22307626 DOI: 10.1073/pnas.1120588109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.
Collapse
|
19
|
Roesler R, Schwartsmann G. Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne) 2012; 3:159. [PMID: 23251133 PMCID: PMC3523293 DOI: 10.3389/fendo.2012.00159] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides acting on specific cell membrane receptors of the G protein-coupled receptor (GPCR) superfamily regulate a range of important aspects of nervous and neuroendocrine function. Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that binds to the GRP receptor (GRPR, BB2). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system (CNS) plays an important role in regulating brain function, including aspects related to emotional responses, social interaction, memory, and feeding behavior. In addition, some alterations in GRP or GRPR expression or function have been described in patients with neurodegenerative, neurodevelopmental, and psychiatric disorders, as well as in brain tumors. Findings from preclinical models are consistent with the view that the GRPR might play a role in brain disorders, and raise the possibility that GRPR agonists might ameliorate cognitive and social deficits associated with neurological diseases, while antagonists may reduce anxiety and inhibit the growth of some types of brain cancer. Further preclinical and translational studies evaluating the potential therapeutic effects of GRPR ligands are warranted.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- *Correspondence: Rafael Roesler, Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil. e-mail:
| | - Gilberto Schwartsmann
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
20
|
Heinrich E, Trojan L, Friedrich D, Voss M, Weiss C, Michel MS, Grobholz R. Neuroendocrine tumor cells in prostate cancer: evaluation of the neurosecretory products serotonin, bombesin, and gastrin - impact on angiogenesis and clinical follow-up. Prostate 2011; 71:1752-8. [PMID: 21480309 DOI: 10.1002/pros.21392] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/10/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neuroendocrine differentiated tumor cells (NETC) can be found in a large portion of prostate carcinoma (PCa) specimens. This is the first study to systematically quantify and analyze the influence of the NETC distribution and of their secretory products, serotonin, bombesin, and gastrin, on angiogenesis and in the clinical follow-up of PCa patients. METHODS 175 PCa specimens were included in this study. NETC were displayed using the marker CgA. Specimens showing a high expression of CgA were analyzed for serotonin, bombesin, and gastrin. Blood vessels were stained with the epitope CD34. Data was analyzed for inter-correlation and its correlation to clinical-pathological parameters and the results of a mid-term follow-up. RESULTS The number of NETC was correlated with the pT-status and the Gleason score. Specimens with high NETC expression had an increased microvessel density (MVD). No correlation between the neurosecretory products and the clinical-pathological parameters was found. High NETC expression, high bombesin expression and increased MVD were associated with early treatment failure in the follow-up. CONCLUSION NETC have an influence on angiogenesis and are correlated with the clinical-pathological parameters. A high expression of NETC is associated with an early failure of treatment. Our study underlines the importance of NETC in prostate cancer.
Collapse
Affiliation(s)
- Elmar Heinrich
- Department of Urology, University Hospital Mannheim, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Heinrich E, Probst K, Michel MS, Trojan L. Gastrin-releasing peptide: predictor of castration-resistant prostate cancer? Prostate 2011; 71:642-8. [PMID: 20945407 DOI: 10.1002/pros.21280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/30/2010] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neuroendocrine (NE) cells of the prostate are known to be androgen-independent and NE peptides like gastrin-releasing peptide (GRP) or neuron-specific enolase (NSE) can stimulate growth in a paracrine manner, and this is thought to be one of the escape mechanisms in castration-resistant prostate cancer (CRPCa). In a longitudinal study, we investigated the development of the NE serum factors GRP, NSE, and chromogranin A and their correlation with prostate-specific androgen (PSA) during hormonal treatment. MATERIALS AND METHODS Thirty two patients, with histology-proven, localized or metastatic prostatic carcinoma (PCa), who were undergoing therapy with LHRH analogue or a combination of LHRH analog and peripheral androgen blockade, took part in the study. In addition, eight healthy volunteers were each tested twice for serum GRP to elicit a "physiological" standard value. Blood samples were taken periodically from each patient within an 18-month time frame. RESULTS We defined the standard value for GRP in the healthy participants as 0.852 ng/ml (mean + 2 SD) and observed that the GRP values for patients with PCa were significantly higher (P = 0.034). There was a positive correlation between PSA and GRP in patients with biochemical failure. CgA correlated with PSA development in the CRPCa patients. NSE values rose steadily over the study period, but with no correlation to PSA. CONCLUSION Our data confirm that NE factors are elevated during hormonal treatment of prostate cancer. GRP is higher in PCa patients undergoing androgen deprivation therapy and is possibly involved in the initiation of hormonal escape in PCa.
Collapse
Affiliation(s)
- Elmar Heinrich
- Department of Urology, University Hospital Mannheim, Mannheim, Germany.
| | | | | | | |
Collapse
|
22
|
Annunziata M, Grande C, Scarlatti F, Deltetto F, Delpiano E, Camanni M, Ghigo E, Granata R. The growth hormone–releasing hormone (GHRH) antagonist JV-1-36 inhibits proliferation and survival of human ectopic endometriotic stromal cells (ESCs) and the T HESC cell line. Fertil Steril 2010; 94:841-9. [DOI: 10.1016/j.fertnstert.2009.03.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/25/2022]
|
23
|
Stangelberger A, Schally AV, Djavan B. New treatment approaches for prostate cancer based on peptide analogues. Eur Urol 2007; 53:890-900. [PMID: 18201818 DOI: 10.1016/j.eururo.2007.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 12/04/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVES New therapy modalities for the treatment of advanced prostate cancer based on peptide analogues are reviewed. RESULTS Agonists and antagonists of luteinising hormone-releasing hormone (LHRH) lead to androgen deprivation, but direct effects on tumours may also play a role. Radiolabeled somatostatin analogues can be targeted to tumours expressing receptors for somatostatin and have been successfully applied for the localization of these tumours. Tumoural LHRH, growth hormone-releasing hormone (GHRH), and bombesin/gastrin-releasing peptide (BN/GRP) and their receptors appear to be involved in the proliferation of prostate cancer. On the basis of the recent advances in the understanding of the role of neuropeptides in tumour growth and progression, new therapeutic modalities are being developed that are based on antagonists of GHRH and of BN/GRP, which inhibit growth factors or their receptors. Another promising approach for the therapy of prostate cancer consists of the use of cytotoxic analogues of LHRH, bombesin, and somatostatin, which can be targeted to receptors for these peptides in prostate cancers and their metastases. CONCLUSIONS New promising forms of hormone therapy and targeted chemotherapy may improve therapy of advanced stage prostate cancer.
Collapse
|
24
|
Stangelberger A, Schally AV, Zarandi M, Heinrich E, Groot K, Havt A, Kanashiro CA, Varga JL, Halmos G. The combination of antagonists of LHRH with antagonists of GHRH improves inhibition of androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancers. Prostate 2007; 67:1339-53. [PMID: 17624923 DOI: 10.1002/pros.20605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) could extend the duration of response of androgen sensitive prostate cancers to androgen deprivation. METHODS We investigated the effect of new GHRH antagonists MZ-J-7-118 and MZ-J-7-138 and luteinizing hormone-releasing hormone (LHRH) antagonist Cetrorelix or castration on androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancer models xenografted into nude mice. Animals bearing androgen-independent LuCaP-35V prostatic cancer model were also treated with MZ-J-7-118. RESULTS Receptors for LHRH and GHRH were present in MDA-PCA-2b, LuCaP-35, and LuCaP-35V tumors. GHRH antagonists increased the inhibitory effect of surgical castration and LHRH antagonists on androgen sensitive MDA-PCa-2b and LuCaP-35 tumors. The time to relapse of androgen-dependent LuCaP-35 tumors was extended by GHRH antagonists. Growth of androgen-independent LuCaP-35V xenografts was also significantly inhibited by MZ-J-7-118. In MDA-PCa-2b tumors treatment with MZ-J-7-118 caused a significant decrease of VEGF and Cetrorelix or its combination with MZ-J-7-118 reduced EGF. The B(max) of EGF receptors was significantly reduced by Cetrorelix, MZ-J-7-118 and their combination. CONCLUSIONS Our findings suggest that the use of a combination of antagonists of GHRH and LHRH could improve the therapy for androgen sensitive prostate cancer. Antagonists of GHRH could be also considered for treatment of androgen-independent prostate cancers.
Collapse
Affiliation(s)
- Anton Stangelberger
- Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Papatsoris AG, Karamouzis MV, Papavassiliou AG. The power and promise of “rewiring” the mitogen-activated protein kinase network in prostate cancer therapeutics. Mol Cancer Ther 2007; 6:811-9. [PMID: 17363478 DOI: 10.1158/1535-7163.mct-06-0610] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. Initially, tumor growth is androgen dependent and thus responsive to pharmacologic androgen deprivation, but there is a high rate of treatment failure because the disease evolves in an androgen-independent state. Growing evidence suggests that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade represents a pivotal molecular circuitry participating directly or indirectly in prostate cancer evolution. The crucial role of the protein elements comprising this complex signal transduction network makes them potential targets for pharmacologic interference. Here, we will delineate the current knowledge regarding the involvement of the Ras/MAPK pathway in prostate carcinogenesis, spotlight ongoing research concerning the development of novel targeted agents such as the Ras/MAPK inhibitors in prostate cancer, and discuss the future perspectives of their therapeutic efficacy.
Collapse
Affiliation(s)
- Athanasios G Papatsoris
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
26
|
Doxsee DW, Gout PW, Kurita T, Lo M, Buckley AR, Wang Y, Xue H, Karp CM, Cutz JC, Cunha GR, Wang YZ. Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy. Prostate 2007; 67:162-71. [PMID: 17075799 DOI: 10.1002/pros.20508] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Certain cancers depend for growth on uptake of cystine/cysteine from their environment. Here we examined advanced human prostate cancer cell lines, DU-145 and PC-3, for dependence on extracellular cystine and sensitivity to sulfasalazine (SASP), a potent inhibitor of the x(c)(-) cystine transporter. METHODS Cultures were evaluated for growth dependence on exogenous cystine, x(c)(-) transporter expression, response to SASP (growth and glutathione content). In vivo, effect of SASP was determined on subrenal capsule xenograft growth. RESULTS Cystine omission from culture medium arrested DU-145 and PC-3 cell proliferation; both cell lines expressed the x(c)(-) transporter and were growth inhibited by SASP (IC(50)s: 0.20 and 0.28 mM, respectively). SASP-induced growth inhibition was associated with vast reductions in cellular glutathione content - both effects based on cystine starvation. SASP (i.p.) markedly inhibited growth of DU-145 and PC-3 xenografts without major toxicity to hosts. CONCLUSIONS SASP-induced cystine/cysteine starvation leading to glutathione depletion may be useful for therapy of prostate cancers dependent on extracellular cystine.
Collapse
Affiliation(s)
- Daniel W Doxsee
- Department of Cancer Endocrinology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN, Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2006; 10:6-14. [PMID: 17075603 DOI: 10.1038/sj.pcan.4500922] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cellular signaling pathways of the prostate play a central role in the induction, maintenance, and progression of prostate cancer (CaP). Neuroendocrine (NE) cells demonstrate attributes that suggest they are an integral part of these signaling cascades. We summarize what is known regarding NE cells in CaP focusing on NE cellular transdifferentiation. This significant event in CaP progression appears to be accelerated by androgen deprivation (AD) treatment. We examine biochemical pathways that may impact NE differentiation in a chronological manner focusing on AD therapy (ADT) as a central event in inducing androgen-independent CaP. Our analysis is limited to the common adenocarcinoma pattern of CaP and excludes small-cell and carcinoid prostatic variants. In conclusion, we speculate on the future of treatment and research in this area.
Collapse
Affiliation(s)
- E C Nelson
- Department of Urology, Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
28
|
Schulz S, Röcken C, Schulz S. Immunohistochemical detection of bombesin receptor subtypes GRP-R and BRS-3 in human tumors using novel antipeptide antibodies. Virchows Arch 2006; 449:421-7. [PMID: 16967266 DOI: 10.1007/s00428-006-0265-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Bombesin (BN)-like peptides can stimulate cancer cell growth through binding to their specific G protein-coupled receptors. It is well established that BN receptors are being overexpressed in a subset of human tumors; however, little is known about the cellular and subcellular localization of individual BN receptor subtypes in these tissues. In this study, we developed and characterized novel antipeptide antibodies to the carboxy terminal regions of the gastrin-releasing peptide-preferring bombesin receptor (GRP-R) and the bombesin receptor subtype-3 (BRS-3). Specificity of the antisera was demonstrated by (1) detection of broad bands migrating at Mr 50,000-70,000 in Western blots of membranes from receptor-expressing tissues; (2) cell surface staining of transfected cells; (3) translocation of GRP-R receptor immunostaining after BN exposure; and (4) abolition of tissue immunostaining by preadsorbtion of the antibodies with their immunizing peptides. The distribution of BN receptors was investigated in 74 formalin-fixed, paraffin-embedded human tumors. GRP-R receptors were most frequently detected in breast and prostate carcinomas. BRS-3 receptors were often detected in prostate and pancreatic carcinomas and in pituitary adenomas. Immunoreactive GRP-R and BRS-3 receptors were in many cases predominantly confined to the plasma membrane and uniformly present on nearly all tumor cells. The development of these novel antipeptide antibodies will facilitate the identification of those tumors, which may be targets for diagnostic or radiotherapeutic application of subtype-selective BN analogs.
Collapse
Affiliation(s)
- Solveig Schulz
- Department of Obstetrics and Gynecology, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | | | | |
Collapse
|
29
|
Roesler R, Luft T, Oliveira SHS, Farias CB, Almeida VR, Quevedo J, Dal Pizzol F, Schröder N, Izquierdo I, Schwartsmann G. Molecular mechanisms mediating gastrin-releasing peptide receptor modulation of memory consolidation in the hippocampus. Neuropharmacology 2006; 51:350-7. [PMID: 16735043 DOI: 10.1016/j.neuropharm.2006.03.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/24/2006] [Accepted: 03/24/2006] [Indexed: 11/16/2022]
Abstract
Although the gastrin-releasing peptide-preferring bombesin receptor (GRPR) has been implicated in memory formation, the underlying molecular events are poorly understood. In the present study, we examined interactions between the GRPR and cellular signaling pathways in influencing memory consolidation in the hippocampus. Male Wistar rats received bilateral infusions of bombesin (BB) into the dorsal hippocampus immediately after inhibitory avoidance (IA) training. Intermediate doses of BB enhanced, whereas a higher dose impaired, 24-h IA memory retention. The BB-induced memory enhancement was prevented by pretraining infusions of a GRPR antagonist or inhibitors of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) kinase and protein kinase A (PKA), but not by a neuromedin B receptor (NMBR) antagonist. We next further investigated the interactions between the GRPR and the PKA pathway. BB-induced enhancement of consolidation was potentiated by coinfusion of activators of the dopamine D1/D5 receptor (D1R)/cAMP/PKA pathway and prevented by a PKA inhibitor. We conclude that memory modulation by hippocampal GRPRs is mediated by the PKC, MAPK, and PKA pathways. Furthermore, pretraining infusion of BB prevented beta-amyloid peptide (25-35)-induced memory impairment, supporting the view that the GRPR is a target for the development of cognitive enhancers for dementia.
Collapse
Affiliation(s)
- R Roesler
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, Campus Centro/UFRGS, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|