1
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Ho HL, Lin SC, Chiang CW, Lin C, Liu CW, Yeh YC, Chen MY, Chou TY. miR-193b-3p suppresses lung cancer cell migration and invasion through PRNP targeting. J Biomed Sci 2025; 32:28. [PMID: 39972491 PMCID: PMC11841292 DOI: 10.1186/s12929-025-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Tumor metastasis is responsible for approximately 90% of mortality in lung cancer. Understanding the molecular mechanisms of lung cancer metastasis is crucial for developing new treatment strategies. Cellular prion protein (PrPc), encoded by PRNP gene, was previously found to enhance lung cancer invasiveness. However, research on the post-transcriptional regulation of PRNP remains limited. METHODS Dual-luciferase reporter assays identified miRNAs targeting the PRNP 3'-UTR, and RNA immunoprecipitation (RIP) confirmed the interaction between miR-193b-3p and PRNP mRNA. Promoter deletions and chromatin immunoprecipitation (ChIP) assays established c-Jun as a transcriptional repressor of miR-193b-3p. Functional validation of the c-Jun-miR-193b-3p-PrPc axis was conducted using transwell assays, LNA-in situ hybridization, RT-PCR, Western blot, and immunohistochemistry. Subcutaneous mouse xenograft models assessed the anti-tumor effects of miR-193b-3p in vivo. RESULTS We demonstrated that miR-193b-3p downregulates PrPc expression by directly targeting the 3'-UTR of PRNP. Overexpression of miR-193b-3p significantly suppressed PRNP expression at both mRNA and protein levels, and reduced lung cancer cell migration, invasion and proliferation, which was reversed by PrPc overexpression. Conversely, miR-193b-3p silencing enhanced PRNP expression as well as those oncogenic properties, which were mitigated by PRNP knockdown. Spearman correlation analysis revealed a significant negative association between miR-193b-3p and PrPc expression in lung cancer tissues (p = 0.017), and Kaplan-Meier survival analysis demonstrated that high PrPc (p = 0.039) or low miR-193b-3p (p = 0.027) expression correlated with poorer overall survival. Intra-tumoral injection of the miR-193b-3p mimic in mouse xenograft models significantly reduced tumor volume. In addition, c-Jun was identified as a transcriptional repressor of miR-193b-3p. Functional studies revealed that c-Jun knockdown inhibited lung cancer cell migration, invasion, and proliferation, effects that were reversed by either PrPc overexpression or miR-193b-3p inhibitor treatment. A significant association between PrPc and c-Jun expression in lung cancer tissues (p = 0.004) was observed. High expression of PrPc and/or c-Jun was found to be associated with poor overall survival of patients (p < 0.05). CONCLUSIONS This study is the first to uncover a novel regulatory pathway where c-Jun acts as a transcriptional repressor of miR-193b-3p, leading to PRNP upregulation, which promotes lung cancer migration and invasion. This previously unrecognized c-Jun-miR-193b-3p-PrPc axis also provides valuable insights for the potential development of new therapeutic strategies against lung cancer metastasis through RNA-targeting technology.
Collapse
Affiliation(s)
- Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Shin-Chih Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Chao-Wei Chiang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Ching Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Beitou District, No.155, Section 2, Linong Street, Taipei, 112304, Taiwan
| | - Che-Wei Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Beitou District, No.155, Section 2, Linong Street, Taipei, 112304, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Beitou District, No.155, Section 2, Linong Street, Taipei, 112304, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine and Precision Health Center, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei, 110301, Taiwan.
| |
Collapse
|
3
|
Kirtonia A, Pandya G, Singh A, Kumari R, Singh B, Kapoor S, Khattar E, Pandey AK, Garg M. Anticancer and therapeutic efficacy of XPO1 inhibition in pancreatic ductal adenocarcinoma through DNA damage and modulation of miR-193b/KRAS/LAMC2/ERK/AKT signaling cascade. Life Sci 2025; 362:123364. [PMID: 39778762 DOI: 10.1016/j.lfs.2024.123364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC. Firstly, we observed significant overexpression of XPO1 transcript in 179 PDAC patients than 171 normal pancreatic tissues in TCGA transcriptomic dataset. Higher XPO1 transcript levels displayed worse overall and disease-free survival. Further, we confirmed significant upregulation of XPO1 in a panel of PDAC cells. Eltanexor treatment resulted in significant inhibition of cell viability, clonogenic growth, migration, and epithelial-mesenchymal transition (EMT), along with the induction of cell cycle arrest. Mechanistically, eltanexor modulated the expression of key proteins including p21, p27, p53, cyclin B1, cyclin D1, c-Myc, N-cadherin, vimentin, E-cadherin associated with the cell viability, growth, cell cycle and EMT. Additionally, the eltanexor treatment resulted in marked increase in expression of γH2AX, and cleaved PARP, cleaved caspase-9 leading to induction of DNA damage and apoptosis of PDAC cells, respectively. Moreover, eltanexor treatment regulated the expression of key non-coding RNAs including miR193b, DINO, MALAT-1, H19, and SOX21-AS1 linked with tumorigenesis. Our results revealed a correlation among miR193b/KRAS/LAMC2, XPO1/KRAS, and LAMC2/KRAS. The findings also revealed that eltanexor treatment rescued the expression of miR193b which acts as a sponge for LAMC2 and KRAS resulting in the suppression of AKT/ERK downstream signaling cascade in PDAC. Interestingly, the combination of eltanexor with gemcitabine showed significant anticancer activity in PDAC cells. Altogether, our findings revealed the crucial role of XPO1 in modulating the expression of oncogenic proteins, ncRNAs, and DNA damage during PDAC progression as well as identified novel therapeutic miR-193b/KRAS/LAMC2/ERK/AKT axis.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Rachana Kumari
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER) Ahmedabad, Gandhinagar 382355, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
4
|
Otsuka K, Kuriki D, Kamachi K, Tanaka A, Matsuoka R. Analysis of the Effects of Short-Term Pterostilbene Intake on Healthy Participants: A Pilot Study. J Nutr Sci Vitaminol (Tokyo) 2025; 71:70-80. [PMID: 40024751 DOI: 10.3177/jnsv.71.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Pterostilbene, a polyphenolic compound and an analog of resveratrol, exerts various biological activities and has higher bioavailability and metabolic stability than resveratrol. However, the effectiveness of pterostilbene intake in humans, particularly its effect on blood microRNA (miRNA) expression levels, has not been evaluated. Accordingly, this pilot study aimed to investigate the effects of pterostilbene on blood biochemistry and blood miRNA expression levels and the safety of continuous intake at doses of 10 or 100 mg/d over 12 wk. A double-blind, placebo-controlled parallel-arm comparison trial was conducted with 30 healthy men. In the analysis of blood miRNA expression levels, miR-34a and miR-193b showed very high increases at week 4 and after week 4 of intake, respectively, suggesting that the responders might be present among participants in the pterostilbene intake group. No adverse events were reported during the trial in any participant, and no abnormalities were observed upon examination by the responsible physician. Thus, pterostilbene intake would regulate blood miRNA expression levels, and the results can be utilized in human studies investigating miRNA expression levels with functional food ingredients.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University
- Tokyo NODAI Research Institute, Tokyo University of Agriculture
| | - Daisuke Kuriki
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
| | | | | | | |
Collapse
|
5
|
Mohammadloo A, Asgari Y, Esmaeili-Bandboni A, Mazloomi MA, Ghasemi SF, Ameri S, Miri SR, Hamzelou S, Mahmoudi HR, Veisi-Malekshahi Z. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol 2024; 66:2830-2840. [PMID: 37934389 DOI: 10.1007/s12033-023-00893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann-Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5 × 10 6 -fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00-1.00, p < 0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96-1.00, p < 0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.
Collapse
Affiliation(s)
- Atefeh Mohammadloo
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Biotechnology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ameri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Shahin Hamzelou
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi-Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
7
|
Kober P, Mossakowska BJ, Rusetska N, Baluszek S, Grecka E, Konopiński R, Matyja E, Oziębło A, Mandat T, Bujko M. Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. Int J Mol Sci 2023; 24:13483. [PMID: 37686289 PMCID: PMC10487813 DOI: 10.3390/ijms241713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Meningiomas are common intracranial tumors in adults. Abnormal microRNA (miRNA) expression plays a role in their pathogenesis. Change in miRNA expression level can be caused by impaired epigenetic regulation of miRNA-encoding genes. We found the genomic region covering the MIR193B gene to be DNA hypermethylated in meningiomas based on analysis of genome-wide methylation (HumanMethylation450K Illumina arrays). Hypermethylation of MIR193B was also confirmed via bisulfite pyrosequencing. Both hsa-miR-193b-3p and hsa-miR-193b-5p are downregulated in meningiomas. Lower expression of hsa-miR-193b-3p and higher MIR193B methylation was observed in World Health Organization (WHO) grade (G) II/III tumors as compared to GI meningiomas. CCND1 mRNA was identified as a target of hsa-miR-193b-3p as further validated using luciferase reporter assay in IOMM-Lee meningioma cells. IOMM-Lee cells transfected with hsa-miR-193b-3p mimic showed a decreased cyclin D1 level and lower cell viability and proliferation, confirming the suppressive nature of this miRNA. Cyclin D1 protein expression (immunoreactivity) was higher in atypical than in benign meningiomas, accordingly to observations of lower hsa-miR-193b-3p levels in GII tumors. The commonly observed hypermethylation of MIR193B in meningiomas apparently contributes to the downregulation of hsa-miR-193b-3p. Since hsa-miR-193b-3p regulates proliferation of meningioma cells through negative regulation of cyclin D1 expression, it seems to be an important tumor suppressor in meningiomas.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Beata Joanna Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Emilia Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ryszard Konopiński
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Artur Oziębło
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
8
|
Li X, Ma Z, Mei L. Comprehensive analysis of UBE2C expression and its potential roles and mechanisms in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:7397-7407. [PMID: 37580802 PMCID: PMC10457065 DOI: 10.18632/aging.204792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/01/2023] [Indexed: 08/16/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks one of the most common and lethal cancers all over the world. Previous studies suggest that ubiquitin-conjugating enzyme E2C (UBE2C) serves as an oncogene in human cancers. However, its expression, diagnosis, prognosis and potential mechanisms in HCC remain largely unknown. In this study, the expression of UBE2C in HCC was first analyzed by comprehensive bioinformatic analysis. ROC curve analysis and survival analysis were employed to assess the diagnostic and prognostic roles of UBE2C in HCC. UBE2C promoter methylation level and upstream regulatory miRNAs of UBE2C in HCC were explored. The present work demonstrated that UBE2C was significantly upregulated in HCC compared with normal controls. We also found significant diagnostic and prognostic values of UBE2C in HCC. Promoter methylation of UBE2C was obviously decreased in HCC and was negatively correlated with UBE2C mRNA expression. 10 miRNAs were predicted to potentially bind to UBE2C. In vitro assay and bioinformatic correlation analysis together revealed that hsa-miR-193b-3p might be another key upstream regulatory mechanism of UBE2C in HCC. In conclusion, UBE2C is overexpressed in HCC and may serve as a key diagnostic/prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Xiao Li
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Zhaosheng Ma
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Linhang Mei
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| |
Collapse
|
9
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
10
|
Cui B, Chen XJ, Sun J, Li SP, Zhou GP, Sun LY, Wei L, Zhu ZJ. Dendritic cells originating exosomal miR-193b-3p induces regulatory T cells to alleviate liver transplant rejection. Int Immunopharmacol 2023; 114:109541. [PMID: 36700764 DOI: 10.1016/j.intimp.2022.109541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exosomes exert considerable influence in mediating regulatory T (Treg) cells differentiation, which attach great importance to attenuating acute cellular rejection after liver transplantation (LT). And, miRNAs are known to play essential roles in cell-cell communication delivered by exosomes. However, the function of exosomal miRNAs in regulating Treg cells after LT remains unknown. Here, we performed an expression profiling analysis of exosome-miRNAs from human plasma after LT and investigated their immunoregulatory effects on Treg cells. METHODS Fifty-eight LT patients and nine donors were included in this report. miRNA profiles in plasma exosomes were analyzed using next-generation sequencing. Flow cytometry, HE and multiplex immunofluorescent staining were used to identify Treg cells in the liver and peripheral blood. A lentiviral vector system was used to overexpress miR-193b-3p in dendritic cells (DCs), and exosomes isolated from these transfected cells were co-cultured with spleen lymphocytesin vitro. A quantitative Real-time PCR and enzyme-linked immunosorbent assay were used to detect the expression of cytokines. RESULTS Treg cell infiltration was increased in the liver along with Th17 and CD8+ T cell, and it was down-regulated in peripheral blood in the acute rejection group. High-throughput sequencing revealed that miR-193b-3p was markedly up-regulated in plasma exosomes of non-rejection LT patients. The NLRP3 inflammasome was screened as a target for miR-193b-3p based on target prediction and functional enrichment analyses. Exosomal miR-193b-3p derived from DCs increased Treg cells as demonstrated in vitro. miR-193b-3p overexpression down-regulated NLRP3 as well as the inflammatory cytokines IL-1β and IL-17A while increasing levels of the cytokines IL-10 and TGF-β. CONCLUSION DC derived exosomal miR-193b-3p promoted Treg cells by inhibiting NLRP3 expression. These findings not only provide a new perspective on the mechanisms, but also hold great promise for the treatment or prevention of liver allograft rejection.
Collapse
Affiliation(s)
- Bin Cui
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Aviation General Hospital, Beijing 100012, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Jie Sun
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Shi-Peng Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Li-Ying Sun
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China; Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Lin Wei
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China.
| |
Collapse
|
11
|
The Novel Action of miR-193b-3p/CDK1 Signaling in HCC Proliferation and Migration: A Study Based on Bioinformatic Analysis and Experimental Investigation. Int J Genomics 2022; 2022:8755263. [PMID: 36600989 PMCID: PMC9806689 DOI: 10.1155/2022/8755263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common human malignancy with high mortality and dismal prognosis. A growing number of novel targets underlying HCC pathophysiology have been detected using microarray high throughput screening platforms. This study carried out bioinformatics analysis to explore underlying biomarkers in HCC and assessed the potential action of the miR-193b-3p/CDK1 signaling pathway in HCC progression. A total of 241 common differentially expressed genes (DEGs) were screened from GSE33294, GSE104310, and GSE144269. Functional analysis results implicated that DEGs are significantly associated with "cell cycle," "cell division," and "proliferation." The protein-protein interaction network analysis extracted ten hub genes from common DEGs. Ten hub genes were significantly overexpression in HCC tissues. Kaplan-Meier survival analysis revealed that 10 hub genes were linked with a poorer prognosis in HCC patients. Functional assays showed that CDK1 knockdown repressed HCC cell proliferation and migration. Luciferase reporter assay showed that miR-193b-3p could target CDK1 3' untranslated region, and miR-193b-3p negatively modulated CDK1. Enforced CDK1 expression attenuated miR-193b-3p-modulated suppressive actions on HCC cell proliferation and migration. To summarize, we performed a comprehensive bioinformatics analysis and identified 10 hub genes linked to the prognosis in HCC patients. Functional analysis revealed that CDK1, negatively regulated by miR-193b-3p, may act as an oncogene to promote HCC cell proliferation and migration and may predict poor prognosis of HCC patients. However, the role of CDK1/miR-193b-3p may still require further investigation.
Collapse
|
12
|
Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, Ostano P, Chiorino G, Trusolino L, Blandino G, Ciliberto G, Zizza P, Biroccio A. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett 2022; 533:215607. [PMID: 35240232 DOI: 10.1016/j.canlet.2022.215607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Strada Provinciale 142, Candiolo, TO, 10060, Italy; Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Candiolo, TO, 10060, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
13
|
Wang J, Yao R, Luo Q, Tan L, Jia B, Ouyang N, Li Y, Tong J, Li J. miR‑200b upregulation promotes migration of BEAS‑2B cells following long‑term exposure to cigarette smoke by targeting ETS1. Mol Med Rep 2021; 24:562. [PMID: 34109431 PMCID: PMC8201442 DOI: 10.3892/mmr.2021.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking is the leading cause of all histological types of lung cancer, and the role that microRNAs (miRNAs) serve in its pathogenesis is being increasingly recognized. The aim of the present study was to investigate the role of miR‑200b on migration in cigarette smoke‑induced malignant transformed cells. In the present study, miR‑200b expression was found to be increased in cigarette smoke (CS)‑exposed BEAS‑2B cells, lung cancer cell lines and tumor tissue samples. Using wound healing and Transwell migration assays, the migratory ability was shown to be increased in miR‑200b‑overexpressing cells, whereas miR‑200b knockdown resulted in reduced migration. Additionally, the expression of E‑Cadherin was downregulated, whereas that of N‑Cadherin was upregulated in miR‑200b mimic‑transfected cells, suggesting an increase in epithelial‑mesenchymal transition. Downstream, using four target gene prediction tools, six target genes of miR‑200b were predicted, amongst which, ETS proto‑oncogene 1 transcription factor (ETS1) was shown to be significantly associated with tumor invasion depth and negatively associated with miR‑200b expression. The interaction between miR‑200b and ETS1 was confirmed using a dual‑luciferase reporter assay. Using rescue experiments, the increased migratory ability of the miR‑200b‑overexpressing cells was reversed by ETS1 overexpression. In summary, this study showed that miR‑200b overexpression serves a carcinogenic role and promotes the migration of BEAS‑2B cells following long‑term exposure to CS by targeting ETS1.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ruixin Yao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Nan Ouyang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yezhou Li
- School of Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Aghajanzadeh T, Tebbi K, Talkhabi M. Identification of potential key genes and miRNAs involved in Hepatoblastoma pathogenesis and prognosis. J Cell Commun Signal 2021; 15:131-142. [PMID: 33051830 PMCID: PMC7904995 DOI: 10.1007/s12079-020-00584-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatoblastoma (HB) is one of the most common liver malignancies in children, while the molecular basis of the disease is largely unknown. Therefore, this study aims to explore the key genes and molecular mechanisms of the pathogenesis of HB using a bioinformatics approach. The gene expression dataset GSE131329 was used to find differentially expressed genes (DEGs). Functional and enrichment analyses of the DEGs were performed by the EnrichR. Then, the protein-protein interaction (PPI) network of the up-regulated genes was constructed and visualized using STRING database and Cytoscape software, respectively. MCODE was used to detect the significant modules of the PPI network, and cytoHubba was utilized to rank the important nodes (genes) of the PPI modules. Overall, six ranking methods were employed and the results were validated by the Oncopression database. Moreover, the upstream regulatory network and the miRNA-target interactions of the up-regulated DEGs were analyzed by the X2K web and the miRTarBase respectively. A total of 594 DEGs, including 221 up- and 373 down-regulated genes, were obtained, which were enriched in different cellular and metabolic processes, human diseases, and cancer. Furthermore, 15 hub genes were screened, out of which, 11 were validated. Top 10 transcription factors, kinases, and miRNAs were also determined. To the best of our knowledge, the association of RACGAP1, MKI67, FOXM1, SIN3A, miR-193b, and miR-760 with HB was reported for the first time. Our findings may be used to shed light on the underlying mechanisms of HB and provide new insights for better prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Taha Aghajanzadeh
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Kiarash Tebbi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
15
|
Zhang T, Liu D, Wang Y, Sun M, Xia L. The E-Twenty-Six Family in Hepatocellular Carcinoma: Moving into the Spotlight. Front Oncol 2021; 10:620352. [PMID: 33585247 PMCID: PMC7873604 DOI: 10.3389/fonc.2020.620352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of morbidity and mortality worldwide. Although therapeutic strategies have recently advanced, tumor metastasis and drug resistance continue to pose challenges in the treatment of HCC. Therefore, new molecular targets are needed to develop novel therapeutic strategies for this cancer. E-twenty-six (ETS) transcription family has been implicated in human malignancies pathogenesis and progression, including leukemia, Ewing sarcoma, gastrointestinal stromal tumors. Recently, increasing studies have expanded its great potential as functional players in other cancers, including HCC. This review focuses primarily on the key functions and molecular mechanisms of ETS factors in HCC. Elucidating these molecular details may provide novel potential therapeutic strategies for cancers.
Collapse
Affiliation(s)
| | | | | | | | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Khordadmehr M, Shahbazi R, Baradaran B, Sadreddini S, Shanehbandi D, Hajiasgharzadeh K, Firouzamandi M. Mir-193a-5p Replacement Can Alter Metastasis Gene Expression in Breast Adenocarcinoma Cells In Vitro. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Recent evidence presented the significant role of the microRNA-193 (miR-193) family in biological processes by the contribution of specific targeting, which mainly display as a tumor suppressor in various cancers. In the present study, we evaluated the effect of miR-193a-5p replacement on some metastasis gene expression in metastatic breast cancer (BC) cells. Methods: For this purpose, firstly, the quantitative real-time polymerase chain reaction (qRTPCR) was used to detect the miR-193a-5p expression in the MDA-MB-231 BC cell line. Subsequently, miR-193a-5p was transfected into the cells, and the expression levels of ROCK1 (Rho‑associated, coiled‑coil containing protein kinase 1), CXCR4 (Chemokine Receptor-4), CD44, and vimentin genes were evaluated by qRT-PCR. Results: The expression level of miR-193a-5p strongly reduced in MDA-MB-231 cells. Interestingly, the ROCK1 (P < 0. 001), CD44 (P < 0.0001), CXCR4 (P < 0. 001) and vimentin (P < 0. 001) expression levels significantly decreased following miR-193a-5p transfection in MDA-MB-231 BC cells. Conclusion: To conclude, it seems that miR-193a-5p restoration can attenuate the metastatic behavior of BC cells in vitro through decreased expression level of metastasis-related genes and may constitute an effective novel therapeutic strategy in miRNA-replacement therapy and treatment of metastatic breast adenocarcinoma in the future.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| |
Collapse
|
17
|
Non-Coding RNAs as Prognostic Biomarkers: A miRNA Signature Specific for Aggressive Early-Stage Lung Adenocarcinomas. Noncoding RNA 2020; 6:ncrna6040048. [PMID: 33333738 PMCID: PMC7768474 DOI: 10.3390/ncrna6040048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50 and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30–50%) with early stage disease still experience relapse and an adverse prognosis. Thus, the identification of effective prognostic biomarkers in stage I lung cancer is nowadays paramount. Here, we applied a multi-tiered approach relying on coupled RNA-seq and miRNA-seq data analysis of a large cohort of lung cancer patients (TCGA-LUAD, n = 510), which enabled us to identify prognostic miRNA signatures in stage I lung adenocarcinoma. Such signatures showed high accuracy (AUC ranging between 0.79 and 0.85) in scoring aggressive disease. Importantly, using a network-based approach we rewired miRNA-mRNA regulatory networks, identifying a minimal signature of 7 miRNAs, which was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) and controls a variety of genes overlapping with cancer relevant pathways. Our results further demonstrate the reliability of miRNA-based biomarkers for lung cancer prognostication and make a step forward to the application of miRNA biomarkers in the clinical routine.
Collapse
|
18
|
Cabral B, Hoffmann L, Bottaro T, Costa P, Ramos A, Coelho H, Villela-Nogueira C, Ürményi T, Faffe D, Silva R. Circulating microRNAs associated with liver fibrosis in chronic hepatitis C patients. Biochem Biophys Rep 2020; 24:100814. [PMID: 33015376 PMCID: PMC7520427 DOI: 10.1016/j.bbrep.2020.100814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
A major challenge in hepatitis C research is the detection of early potential for progressive liver disease. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and can be biomarkers of pathological processes. In this study, we compared circulating miRNAs identified in hepatitis C virus (HCV)-infected patients presenting two extremes of liver disease: mild/moderate fibrosis and cirrhosis. The patients in the cirrhosis group subsequently developed hepatocellular carcinoma (HCC). We identified 163 mature miRNAs in the mild/moderate fibrosis group and 171 in the cirrhosis group, with 144 in common to both groups. Differential expression analysis revealed 5 upregulated miRNAs and 2 downregulated miRNAs in the cirrhosis group relative to the mild/moderate fibrosis group. Functional analyses of regulatory networks (target gene and miRNA) identified gene categories involved in cell cycle biological processes and metabolic pathways related to cell cycle, cancer, and apoptosis. These results suggest that the differentially expressed circulating miRNAs observed in this work (miR-215-5p, miR-483-5p, miR-193b-3p, miR-34a-5p, miR-885-5p, miR-26b-5p and miR -197-3p) may be candidates for biomarkers in the prognosis of liver disease.
Collapse
Affiliation(s)
- B.C.A. Cabral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. Hoffmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. Bottaro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P.F. Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A.L.A. Ramos
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H.S.M. Coelho
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C.A. Villela-Nogueira
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T.P. Ürményi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D.S. Faffe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Abstract
OBJECTIVES: Barrett's esophagus (BE) is the precursor lesion and a major risk factor for esophageal adenocarcinoma (EAC). Although patients with BE undergo routine endoscopic surveillance, current screening methodologies have proven ineffective at identifying individuals at risk of EAC. Since microRNAs (miRNAs) have potential diagnostic and prognostic value as disease biomarkers, we sought to identify an miRNA signature of BE and EAC. METHODS: High-throughput sequencing of miRNAs was performed on serum and tissue biopsies from 31 patients identified either as normal, gastroesophageal reflux disease (GERD), BE, BE with low-grade dysplasia (LGD), or EAC. Logistic regression modeling of miRNA profiles with Lasso regularization was used to identify discriminating miRNA. Quantitative reverse transcription polymerase chain reaction was used to validate changes in miRNA expression using 46 formalin-fixed, paraffin-embedded specimens obtained from normal, GERD, BE, BE with LGD or HGD, and EAC subjects. RESULTS: A 3-class predictive model was able to classify tissue samples into normal, GERD/BE, or LGD/EAC classes with an accuracy of 80%. Sixteen miRNAs were identified that predicted 1 of the 3 classes. Our analysis confirmed previous reports indicating that miR-29c-3p and miR-193b-5p expressions are altered in BE and EAC and identified miR-4485-5p as a novel biomarker of esophageal dysplasia. Quantitative reverse transcription polymerase chain reaction validated 11 of 16 discriminating miRNAs. DISCUSSION: Our data provide an miRNA signature of normal, precancerous, and cancerous tissue that may stratify patients at risk of progressing to EAC. We found that serum miRNAs have a limited ability to distinguish between disease states, thus limiting their potential utility in early disease detection.
Collapse
|
20
|
Xun G, Ma M, Li B, Zhao S. miR-138 and miR-193 target long non-coding RNA UCA1 to inhibit cell proliferation, migration, and invasion of lung cancer. Thorac Cancer 2020; 11:2681-2689. [PMID: 32767514 PMCID: PMC7471048 DOI: 10.1111/1759-7714.13605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non‐coding RNA‐urothelial carcinoma associated 1 (LncRNA‐UCA1) is a crucial oncogene that is deregulated in many types of cancers. However, the mechanism of UCA1 function, especially for its posttranscriptional regulation in lung cancer, remains unclear. Methods miRCode was used to predict potential miRNA candidates that might target UCA1. The targets of miR‐138 and miR‐193 on UCA1 and CDK6 were verified by luciferase reporter analysis. Western blotting was used to detect protein levels. The RNA level was evaluated using quantitative real‐time polymerase chain reaction (PCR). Proliferation, wound healing, and transwell invasion assays were performed to assess cell proliferation and invasion abilities. Correlations between miR‐138 or miR‐193 and UCA1 in lung cancer tissues was assessed using quantitative real‐time PCR. Results miR‐138 and miR‐193 specifically targeted and regulated lncRNA‐UCA1. MiR‐138 and miR‐193 both suppressed cell proliferation and cell cycle progression. Moreover, miR‐138 and miR‐193 inhibited cell migration and invasion. Overexpression of UCA1 reversed the proliferation, migration, and invasion suppression effects of miR‐138 or miR‐193. Furthermore, miR‐138/193 affected the expression of UCA1 downstream genes. UCA1 regulated the expression of CDK6 as a miR‐138 and miR‐193 common target. In human lung cancer tissues, our study showed a significant negative correlation between miR‐138 or miR‐193 and UCA1 in lung cancer tissues. Conclusions Our results demonstrated that miR‐138 and miR‐193 affect cell function by directly targeting and regulating UCA1 in lung cancer.
Collapse
Affiliation(s)
- Guangsu Xun
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ming Ma
- Department of PharmacyThe Second Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Bing Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Song Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
21
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
22
|
Elhendawy M, Abdul-Baki EA, Abd-Elsalam S, Hagras MM, Zidan AA, Abdel-Naby AY, Watny M, Elkabash IA, Salem ML, Elshanshoury M, Soliman S, Abdou S. MicroRNA signature in hepatocellular carcinoma patients: identification of potential markers. Mol Biol Rep 2020; 47:4945-4953. [PMID: 32430845 DOI: 10.1007/s11033-020-05521-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play important roles in liver pathologies and they are potential biomarkers for diagnosis of liver diseases progression. Changes in miRNA sera expression can be used as non-invasive biomarkers for hepatocellular carcinoma (HCC). The aim of the study was to identify the miRNome profiling of HCC and its diagnostic value in distinguishing HCC from healthy individuals. Expression profiles of miRNAs in serum samples of 20 HCC patients and 10 healthy controls were detected. Whole miRNome profiling was done using next generation sequencing. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of the deregulated miRNAs for discriminating HCC cases from healthy controls. MiRNA 142 was highly expressed in HCC (P value = 0.023) while miRNAs 191, 22, and 126 were higher in the controls (P value = 0.005, 0.034, 0.010 respectively). We have identified 5 novel miRNAs and they were highly expressed in HCC than controls. Analysis of ROC curve demonstrated that these deregulated miRNAs can be used as a reliable biomarker for detection of HCC with high diagnostic accuracy (AUC = 0.93). We have detected a panel of serum miRNAs that can be used as a reliable noninvasive screening biomarker of HCC. The study recommends further research to shed light on a possible role of the newly discovered novel miRNAs in HCC pathogenesis.
Collapse
Affiliation(s)
- Mohammed Elhendawy
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt
| | - Enas A Abdul-Baki
- Physiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt.
| | - Maha M Hagras
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdul-Aziz Zidan
- Immunology & Physiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Amira Y Abdel-Naby
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona Watny
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ibrahem Ali Elkabash
- Public Health & Community Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Shaimaa Soliman
- Public Health & Community Medicine Department, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Said Abdou
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
A Novel Long Non-Coding RNA-01488 Suppressed Metastasis and Tumorigenesis by Inducing miRNAs That Reduce Vimentin Expression and Ubiquitination of Cyclin E. Cells 2020; 9:cells9061504. [PMID: 32575745 PMCID: PMC7348830 DOI: 10.3390/cells9061504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) play important roles in human cancer development, including cell differentiation, apoptosis, and tumor progression. However, their underlying mechanisms of action are largely unknown at present. In this study, we focused on a novel suppressor lincRNA that has the potential to inhibit progression of human hepatocellular carcinoma (HCC). Our experiments disclosed long intergenic non-protein coding RNA 1488 (LINC01488) as a key negative regulator of HCC. Clinically, patients with high LINC01488 expression displayed greater survival rates and better prognosis. In vitro and in vivo functional assays showed that LINC01488 overexpression leads to significant suppression of cell proliferation and metastasis in HCC. Furthermore, LINC01488 bound to cyclin E to induce its ubiquitination and reduced expression of vimentin mediated by both miR-124-3p/miR-138-5p. Our results collectively indicate that LINC01488 acts as a tumor suppressor that inhibits metastasis and tumorigenesis in HCC via the miR-124-3p/miR-138-5p/vimentin axis. Furthermore, LINC01488 interacts with and degrades cyclin E, which contributes to its anti-tumorigenic activity. In view of these findings, we propose that enhancement of LINC01488 expression could be effective as a potential therapeutic strategy for HCC.
Collapse
|
24
|
Gao J, Ma S, Yang F, Chen X, Wang W, Zhang J, Li Y, Wang T, Shan L. miR‑193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma. Oncol Rep 2020; 44:139-155. [PMID: 32377743 PMCID: PMC7254955 DOI: 10.3892/or.2020.7601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has indicated that microRNAs (miRs) are involved in the malignant behavior of cancer. The present study explored the role of miR‑193b in the development and metastasis of osteosarcoma. Compared with F4 osteosarcoma cells, which have a relatively low metastatic potential, highly metastatic F5M2 cells exhibited a lower expression of miR‑193b. Furthermore, miR‑193b exerted negative effects on cell proliferation, colony formation, cell cycle progression, migration and invasion, and induced apoptosis. In vivo studies revealed negative influences of miR‑193b on tumorigenesis and metastasis. The tumor‑suppressive role of miR‑193b was achieved by targeting KRAS and stathmin 1 (STMN1). Notably, overexpression of KRAS and STMN1 attenuated the miR‑193b‑induced inhibition of malignant behaviors. There was a double‑negative regulatory loop between MYC and miR‑193b, with MYC inhibiting miR‑193b expression by directly binding to its promoter region and miR‑193b negatively influencing MYC expression indirectly through some unknown mechanism. Collectively, these findings indicated that miR‑193b may serve a tumor suppressive role in osteosarcoma by targeting KRAS and STMN1. The double‑negative regulatory loop between MYC and miR‑193b may contribute to the sustained upregulation of MYC, the downregulation of miR‑193b, and to the subsequently enhanced expression of KRAS and STMN1, which may eventually lead to the development and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Jinjian Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Sai Ma
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianping Zhang
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Yufang Li
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tao Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
25
|
Yamashita H, Surapureddi S, Kovi RC, Bhusari S, Ton TV, Li JL, Shockley KR, Peddada SD, Gerrish KE, Rider CV, Hoenerhoff MJ, Sills RC, Pandiri AR. Unique microRNA alterations in hepatocellular carcinomas arising either spontaneously or due to chronic exposure to Ginkgo biloba extract (GBE) in B6C3F1/N mice. Arch Toxicol 2020; 94:2523-2541. [PMID: 32306082 DOI: 10.1007/s00204-020-02749-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Ginkgo biloba extract (GBE) is used in traditional Chinese medicine as a herbal supplement for improving memory. Exposure of B6C3F1/N mice to GBE in a 2-year National Toxicology Program (NTP) bioassay resulted in a dose-dependent increase in hepatocellular carcinomas (HCC). To identify key microRNAs that modulate GBE-induced hepatocarcinogenesis, we compared the global miRNA expression profiles in GBE-exposed HCC (GBE-HCC) and spontaneous HCC (SPNT-HCC) with age-matched vehicle control normal livers (CNTL) from B6C3F1/N mice. The number of differentially altered miRNAs in GBE-HCC and SPNT-HCC was 74 (52 up and 22 down) and 33 (15 up and 18 down), respectively. Among the uniquely differentially altered miRNAs in GBE-HCC, miR-31 and one of its predicted targets, Cdk1 were selected for functional validation. A potential miRNA response element (MRE) in the 3'-untranslated regions (3'-UTR) of Cdk1 mRNA was revealed by in silico analysis and confirmed by luciferase assays. In mouse hepatoma cell line HEPA-1 cells, we demonstrated an inverse correlation between miR-31 and CDK1 protein levels, but no change in Cdk1 mRNA levels, suggesting a post-transcriptional effect. Additionally, a set of miRNAs (miRs-411, 300, 127, 134, 409-3p, and 433-3p) that were altered in the GBE-HCCs were also altered in non-tumor liver samples from the 90-day GBE-exposed group compared to the vehicle control group, suggesting that some of these miRNAs could serve as potential biomarkers for GBE exposure or hepatocellular carcinogenesis. These data increase our understanding of miRNA-mediated epigenetic regulation of GBE-mediated hepatocellular carcinogenesis in B6C3F1/N mice.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Ginkgo biloba
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plant Extracts/toxicity
- Time Factors
- Transcriptome
Collapse
Affiliation(s)
- Haruhiro Yamashita
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Frontier Research Center, Taisho Pharmaceutical Co. Ltd, Tokyo, 100-6609, Japan
| | - Sailesh Surapureddi
- Signal Transduction Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- United States Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA
| | - Ramesh C Kovi
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, 27709, USA
| | - Sachin Bhusari
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, 1 Coca Cola Plaza, NW, Atlanta, GA, USA
| | - Thai Vu Ton
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- Department of Biostatistics, University of Pittsburgh, 7126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 1526, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Cynthia V Rider
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
26
|
Jiang L, He C, Zhang X, Chen Y, Li G. MiR-193b-5p inhibits proliferation and enhances radio-sensitivity by downregulating the AKT/mTOR signaling pathway in tongue cancer. Transl Cancer Res 2020; 9:1851-1860. [PMID: 35117532 PMCID: PMC8799127 DOI: 10.21037/tcr.2020.02.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been found to have functions regulating cell proliferation, differentiation and apoptosis, thereby regulating the occurrence, development and prognosis of tumors. MiR-193b-3p is well-known for its tumorigenic effect, but there are few studies on miR-193b-5p, and its role in tongue cancer has not been reported. METHODS In the present research, we investigated the specific role of miR-193b-5p in tongue cancer. MiR-193b-5p mimics were transfected into tongue cancer cell lines CAL27 and TCA-8113 to generate miR-193b-5p overexpression cells. CCK-8, clonogenic assay, wound healing assay, transwell and flow cytometry analysis were performed to detect cell proliferation, migration, invasion and apoptosis. RESULTS Our data showed that the exogenous overexpression of miR-193b-5p blocked the proliferation, inhibited the phosphorylation of AKT and mTOR, and downregulated the levels of Cyclin D1 and P70 of CAL27 and TCA-8113 cells. We predicted that miR-193b-5p suppressed the proliferation of cancer cells by inhibiting the AKT/mTOR pathway. MiR-193b-5p mimics also induced the apoptosis of CAL27 and TCA-8113 cells by inhibiting the expression of Bcl2 and promoting the levels of Active-Caspase3 and Bax. Furthermore, a marked decline in the migration and invasiveness of tongue cancer cells transected with miR-193b-5p mimics was observed. According to the results of western blot, miR-193b-5p downregulated the levels of the epithelial-to-mesenchymal transition (EMT) markers, including N-cad, Vimentin, Snail and Slug, while upregulating E-cad expression level in CAL27 and TCA-8113 cells, suggesting that miR-193b-5p inhibited the migration and invasion by reversing the EMT process. In addition, miR-193b-5p mimics inhibited the formation of clonogenic colonies of CAL27 and TCA-8113 cells after irradiation. CONCLUSIONS Taken together, miR-193b-5p mimics block cell proliferation, migration and invasion and induce apoptosis by inhibiting the AKT/mTOR signaling pathway; they also reversed EMT progression and inhibited the radio-resistance of tongue cancer cells. Our results provide a potential target for the clinical treatment of human tongue cancer.
Collapse
Affiliation(s)
- Lipeng Jiang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Chunyan He
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Yan Chen
- Department of Radiotherapy, Affiliated Hospital of Chifeng University, Chifeng 024000, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
27
|
Bialkowski K, Kasprzak KS. A profile of 8-oxo-dGTPase activities in the NCI-60 human cancer panel: Meta-analytic insight into the regulation and role of MTH1 (NUDT1) gene expression in carcinogenesis. Free Radic Biol Med 2020; 148:1-21. [PMID: 31883466 DOI: 10.1016/j.freeradbiomed.2019.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
We measured the specific 8-oxo-dGTPase activity profile of the NCI-60 panel of malignant cell lines, and MTH1 protein levels in a subset of 16 lines. Their 8-oxo-dGTPase activity was compared to twelve publicly accessible MTH1 mRNA expression data bases and their cross-consistency was analyzed. 8-oxo-dGTPase and MTH1 protein levels in these cell lines are generally, but not always, mainly determined by MTH1 mRNA expression levels. The aneuploidy number of MTH1 gene copies only slightly affects its mRNA expression levels. By using the data mining platforms Compare and CellMiner, our 8-oxo-dGTPase profile was compared to five global gene expression datasets to identify genes whose expression levels are directly or inversely associated with 8-oxo-dGTPase. We analyzed effects of SNP within MTH1 on MTH1 mRNA level and enzyme activity. Similar association analysis was performed for five microRNA expression datasets. We identified several proteins and microRNA which might be involved in the regulation of MTH1 expression and we discuss potential mechanisms. Comparison of chemical and natural products sensitivities of the NCI-60 panel suggests seven compounds which are directly or inversely associated with 8-oxo-dGTPase. We provide an integrated picture of MTH1 expression combined from eleven consistent MTH1 mRNA and our 8-oxo-dGTPase activity NCI-60 profiles.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-092, Poland.
| | - Kazimierz S Kasprzak
- Scientist Emeritus, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
28
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
29
|
Khosravi M, Faezeh NG, Abdollah A, Biranvand AS, Ghasempour G, Rezaee S, Kakavandi N, Najafi M. miR-193b-3p inhibits PLAU gene expression in patients with in-stent restenosis. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019; 8:cells8121504. [PMID: 31771261 PMCID: PMC6953055 DOI: 10.3390/cells8121504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Collapse
|
31
|
Edwards VL, Smith SB, McComb EJ, Tamarelle J, Ma B, Humphrys MS, Gajer P, Gwilliam K, Schaefer AM, Lai SK, Terplan M, Mark KS, Brotman RM, Forney LJ, Bavoil PM, Ravel J. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. mBio 2019; 10:e01548-19. [PMID: 31409678 PMCID: PMC6692509 DOI: 10.1128/mbio.01548-19] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
The mechanism(s) by which Lactobacillus-dominated cervicovaginal microbiota provide a barrier to Chlamydia trachomatis infection remain(s) unknown. Here we evaluate the impact of different Lactobacillus spp. identified via culture-independent metataxonomic analysis of C. trachomatis-infected women on C. trachomatis infection in a three-dimensional (3D) cervical epithelium model. Lactobacillus spp. that specifically produce d(-) lactic acid were associated with long-term protection against C. trachomatis infection, consistent with reduced protection associated with Lactobacillus iners, which does not produce this isoform, and with decreased epithelial cell proliferation, consistent with the observed prolonged protective effect. Transcriptomic analysis revealed that epigenetic modifications involving histone deacetylase-controlled pathways are integral to the cross talk between host and microbiota. These results highlight a fundamental mechanism whereby the cervicovaginal microbiota modulates host functions to protect against C. trachomatis infection.IMPORTANCE The vaginal microbiota is believed to protect women against Chlamydia trachomatis, the etiologic agent of the most prevalent sexually transmitted infection (STI) in developed countries. The mechanism underlying this protection has remained elusive. Here, we reveal the comprehensive strategy by which the cervicovaginal microbiota modulates host functions to protect against chlamydial infection, thereby providing a novel conceptual mechanistic understanding. Major implications of this work are that (i) the impact of the vaginal microbiota on the epithelium should be considered in future studies of chlamydial infection and other STIs and (ii) a fundamental understanding of the cervicovaginal microbiota's role in protection against STIs may enable the development of novel microbiome-based therapeutic strategies to protect women from infection and improve vaginal and cervical health.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven B Smith
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elias J McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeanne Tamarelle
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, Institut Pasteur, INSERM, Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Gwilliam
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison M Schaefer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel K Lai
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mishka Terplan
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katrina S Mark
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Dual-strand tumor suppressor miR-193b-3p and -5p inhibit malignant phenotypes of lung cancer by suppressing their common targets. Biosci Rep 2019; 39:BSR20190634. [PMID: 31262974 PMCID: PMC6630026 DOI: 10.1042/bsr20190634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging studies suggest that microRNAs (miRNAs) play multiple roles in cancer malignancy, including proliferation and acquisition of metastatic potential. Differentially expressed miRNAs responsible for the malignancy of lung cancer were searched by miRNA microarray using a previously established brain metastatic lung cancer model. Twenty-five miRNAs were down-regulated in brain metastatic lung cancer cells. Among those, miR-193b-3p and -5p were chosen for further studies. Their function in metastatic potential and proliferation was examined using Transwell invasion, wound healing, and colony forming assays. The underlying mechanism of tumor-suppressor miR-193b-3p and -5p was explored using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), Western blot, Argonaute 2-RNA immunoprecipitation (Ago2-RIP), and reporter assays. Both strands of miR-193b were down-regulated in brain metastatic lung cancer cells and in tissues from lung cancer patients. Overexpression of miR-193b-3p and -5p inhibited invasive and migratory activities and diminished clonogenic ability. Conversely, inhibition of miR-193b-3p or -5p increased the metastatic potential and colony forming ability. Cyclin D1 (CCND1), Ajuba LIM Protein (AJUBA), and heart development protein with EGF like domains 1 (HEG1) were identified as common target genes of miR-193b-3p and -5p. A reporter assay and an Ago2-RIP experiment showed that both miRNAs directly bind to the 3′ untranslated region (3′UTR) of the target mRNA. Knockdown of target gene reduced the proliferative and metastatic potential of primary and metastatic lung cancer cells. Our results demonstrate miR-193b is a dual-strand tumor suppressor and a novel therapeutic target for lung cancer.
Collapse
|
33
|
Hang S, Wang X, Li H. RETRACTED: Triptolide inhibits viability and migration while promotes apoptosis in nephroblastoma cells by regulation of miR-193b-3p. Exp Mol Pathol 2019; 108:80-88. [PMID: 30978333 DOI: 10.1016/j.yexmp.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as panels from Figure 1E appear similar to panels from Figures 1G, 3D and 5D. Given the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Shiying Hang
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China; Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272011, China
| | - Xianghong Wang
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China
| | - Hai Li
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China.
| |
Collapse
|
34
|
Fang Z, Li C, Li S. MicroRNA-193b acts as a tumor suppressor in colon cancer progression via targeting RAB22A. Exp Ther Med 2019; 17:3921-3928. [PMID: 31007734 PMCID: PMC6468329 DOI: 10.3892/etm.2019.7435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/04/2019] [Indexed: 01/08/2023] Open
Abstract
To explore microRNA (miR)-193b expression and its potential role in colon cancer, reverse transcription-quantitative polymerase chain reaction was performed to detect the miR-193b expression levels in 62 colon cancer tissues and normal adjacent tissues. The miR-193b-overexpressed cell line SW620 was used to study the role of miR-193b in colon cancer. Subsequently, a Transwell assay and cell cycle assay were performed to observe the functional cell changes in the in vitro expression levels of miR-193b. Results indicated that miR-193b expression levels were significantly decreased in colon cancer tissues compared with adjacent normal tissue (P<0.001) and the expression of miR-193b was significantly correlated with TNM staging (P=0.03) and lymph node invasion (P=0.007). Furthermore, overexpression of miR-193b significantly decreased colon cancer cell cycle progression and its migration ability. In addition, the present findings suggested that the increased expression of miR-193b by RAB22A, inhibited downstream proteins involved in the Ras signaling pathway, including the Ras and extracellular signal-related kinase which may inhibit cancer proliferation and migration. In conclusion, the aim was to clarify the association of miR-193b expression with colon cancer, and to explore the mechanism of miR-193b in colon cancer proliferation and cell migration. The preliminary findings revealed that miR-193b may have an important role in the process in colon cancer cell cycle and migration by the RAB22A-Ras signaling pathway, thus providing a theoretical basis for miR-193b as a potential molecular target for colon cancer treatment.
Collapse
Affiliation(s)
- Zhiming Fang
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengren Li
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Shouchao Li
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
35
|
Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol 2019; 234:16861-16872. [PMID: 30779342 DOI: 10.1002/jcp.28368] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19-22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR-193 family comprising miR-193a-3p, miR-193a-5p, miR-193b-3p, and miR-193b-5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Yang X, Zhao C, Bamunuarachchi G, Wang Y, Liang Y, Huang C, Zhu Z, Xu D, Lin K, Senavirathna LK, Xu L, Liu L. miR-193b represses influenza A virus infection by inhibiting Wnt/β-catenin signalling. Cell Microbiol 2019; 21:e13001. [PMID: 30650225 PMCID: PMC6459727 DOI: 10.1111/cmi.13001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chunling Zhao
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lan Xu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
37
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Wang H, Chen W, Yang P, Zhou J, Wang K, Tao Q. Knockdown of linc00152 inhibits the progression of gastric cancer by regulating microRNA-193b-3p/ETS1 axis. Cancer Biol Ther 2018; 20:461-473. [PMID: 30404587 PMCID: PMC6422511 DOI: 10.1080/15384047.2018.1529124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a serious threat for public health worldwide. Long non-coding RNA (lncRNA) linc00152 has been well reported to be an oncogene and a potential biomarker in multiple cancers including GC. However, the molecular mechanisms of linc00152 in GC development need to be further investigated. METHODS RT-qPCR assay was employed to detect the levels of linc00152, microRNA-193b-3p (miR-193b-3p) and ETS1 mRNA. ETS1 protein level was measured by western blot assay. Cell proliferative, migratory and invasive capacities were assessed by colony formation together with CCK-8 assays, transwell migration and invasion assays, respectively. Bioinformatics analyses and luciferase reporter assay were used to explore whether miR-193b-3p could interact with linc00152 or ETS1 3'UTR. The roles and molecular basis of linc00152 silence on the growth of GC xenograft tumors were tested in vivo. RESULTS Linc00152 expression was notably upregulated in GC tissues and cells. The proliferative, migratory and invasive abilities of GC cells were weakened by linc00152 depletion, miR-193b-3p overexpression or ETS1 knockdown. Linc00152 upregulation inhibited miR-193b-3p expression by direct interaction and abolished miR-193b-3p-mediated anti-proliferation, anti-migration and anti-invasion effects in GC cells. ETS1 was a target of miR-193b-3p and linc00152 could promote ETS1 expression by downregulating miR-193b-3p. In vivo experiments further validated that linc00152 knockdown inhibited the growth of GC xenograft tumors by upregulating miR-193b-3p and downregulating ETS1. CONCLUSION Knockdown of linc00152 inhibited GC progression by sequestering miR-193b-3p from ETS1 in vitro and in vivo, elucidating a novel molecular mechanism of linc00152 in promoting GC carcinogenesis.
Collapse
Affiliation(s)
- Haifang Wang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Wenxiang Chen
- Department of Spine Orthopaedics, Liaocheng Traditional Chinese Medicine hospital, Liaocheng, China
| | - Peng Yang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jun Zhou
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Kaiyuan Wang
- Chinese Medical Department of Internal respiration, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingchun Tao
- Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
39
|
Liu T, Yang T, Xu Z, Tan S, Pan T, Wan N, Li S. MicroRNA-193b-3p regulates hepatocyte apoptosis in selenium-deficient broilers by targeting MAML1. J Inorg Biochem 2018; 186:235-245. [DOI: 10.1016/j.jinorgbio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 02/08/2023]
|
40
|
Siddeek B, Li N, Mauduit C, Chehade H, Rigal E, Tolsa JF, Armengaud JB, Yzydorczyk C, Benahmed M, Vergely C, Simeoni U. Transient postnatal over nutrition induces long-term alterations in cardiac NLRP3-inflammasome pathway. Nutr Metab Cardiovasc Dis 2018; 28:944-951. [PMID: 29752038 DOI: 10.1016/j.numecd.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The prevalence of obesity is increasing worldwide at an alarming rate. Altered early nutrition, in particular postnatal overfeeding (PNOF), is a risk factor for impaired cardiac function in adulthood. In the understanding of the initiation or progression of heart diseases, NLRP3 inflammasome and non-coding RNAs have been proposed as key players. In this context, the aim of this study was to decipher the role of NLRP3 inflammasome and its post transcriptional control by micro-RNAs in the regulation of cardiac metabolic function induced by PNOF in mice. METHODS AND RESULTS Based on a model of mice exposed to PNOF through litter size reduction, we observed increased cardiac protein expression levels of NLRP3 and ETS-1 associated with alterations in insulin signaling. Additionally, miR-193b levels were down-regulated in the adult hearts of overfed animals. In a cardiomyocyte cell line, transfection with miR-193b induced down-regulation of ETS-1 and NLRP3 and improved insulin signaling. CONCLUSIONS These findings suggest that the miR-193b could be involved in cardiac phenotypic changes observed in adulthood induced by PNOF likely through the regulation of ETS-1 and NLRP3 expression, and through this of insulin signaling.
Collapse
Affiliation(s)
- B Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | - N Li
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - C Mauduit
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France
| | - H Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - E Rigal
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - J-F Tolsa
- Woman-Mother-Child Department, Division of Neonatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J-B Armengaud
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - C Yzydorczyk
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - M Benahmed
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France
| | - C Vergely
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - U Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Hoffman DJ, Reynolds RM, Hardy DB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev 2018; 75:951-970. [PMID: 29186623 DOI: 10.1093/nutrit/nux053] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic and clinical research has provided a large body of evidence supporting the developmental origins of health and disease (DOHaD), but there has been a relative dearth of mechanistic studies in humans due to the complexity of working with large, longitudinal cohorts. Nonetheless, animal models of undernutrition have provided substantial evidence for the potential epigenetic, metabolic, and endocrine mechanisms behind DOHaD. Furthermore, recent research has explored the interaction between the environment and the gastrointestinal system by investigating how the gut microbial ecology may impact the capacity for nutrient processing and absorption in a manner that may limit growth. This review presents a summary of current research that supports the concept of DOHaD, as well as potential mechanisms and interactions that explain how nutrition in utero and during early childhood influences lifelong health.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and the New Jersey Institute for Food, Nutrition, and Health, Center for Childhood Nutrition Education and Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel B Hardy
- Department of Obstetrics & Gynecology and the Department of Physiology & Pharmacology, The Children's Health Research Institute and the Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
42
|
MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1, MCL-1 and MYCN. Oncotarget 2018; 9:18160-18179. [PMID: 29719597 PMCID: PMC5915064 DOI: 10.18632/oncotarget.24793] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most common diagnosed tumor in infants and the second most common extracranial tumor of childhood. The survival rate of patients with high-risk neuroblastoma is still very low despite intensive multimodal treatments. Therefore, new treatment strategies are needed. In recent years, miRNA-based anticancer therapy has received growing attention. Advances in this novel treatment strategy strongly depends on the identification of candidate miRNAs with broad-spectrum antitumor activity. Here, we identify miR-193b as a miRNA with tumor suppressive properties. We show that miR-193b is expressed at low levels in neuroblastoma cell lines and primary tumor samples. Introduction of miR-193b mimics into nine neuroblastoma cell lines with distinct genetic characteristics significantly reduces cell growth in vitro independent of risk factors such as p53 functionality or MYCN amplification. Functionally, miR-193b induces a G1 cell cycle arrest and cell death in neuroblastoma cell lines by reducing the expression of MYCN, Cyclin D1 and MCL-1, three important oncogenes in neuroblastoma of which inhibition has shown promising results in preclinical testing. Therefore, we suggest that miR-193b may represent a new candidate for miRNA-based anticancer therapy in neuroblastoma.
Collapse
|
43
|
MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother 2017; 96:634-641. [DOI: 10.1016/j.biopha.2017.10.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
|
44
|
Zhang J, Qin J, Su Y. miR-193b-3p possesses anti-tumor activity in ovarian carcinoma cells by targeting p21-activated kinase 3. Biomed Pharmacother 2017; 96:1275-1282. [DOI: 10.1016/j.biopha.2017.11.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
|
45
|
Zeng JF, Zeng ZL, Zhang K, Zhao Y, Liu YM, Chen JJ, Tong H, Wei DH, Jiang ZS, Wang Z. miR-23b-3p and miR-125b-5p downregulate apo(a) expression by targeting Ets1 in HepG2 cells. Cell Biol Int 2017; 42:313-323. [PMID: 29064597 DOI: 10.1002/cbin.10896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/24/2022]
Abstract
High concentrations of plasma lipoprotein(a) [Lp(a)] have been inferred to be an independent risk factor for cardiovascular and cerebrovascular diseases, such as coronary artery diseases, restenosis, and stroke. Apolipoprotein(a) [apo(a)] is one of the most important components of Lp(a) and contributes greatly to the increased concentration of plasma Lp(a). As a critical positive transacting factor of apo(a) gene, Ets1 has been proven as a target gene of several miRNAs, such as miR-193b, miR-125b-5p, miR-200b, miR-1, and miR-499. In this study, a series of experiments on miRNAs and relative miRNAs inhibitor delivered HepG2 cells were conducted, and two miRNAs that downregulate the apo(a) by targeting the 3'-UTR of Ets1 were identified. Results showed that apo(a) and Ets1 were differentially expressed in SMMC7721 and HepG2 cell lines. Meanwhile, apo(a) and Ets1 were inversely correlated with several hepatic endogenous miRNAs, such as miR-125b-5p, miR-23b-3p, miR-26a-5p, and miR-423-5p, which were predicted to bind to Ets1. Results show that miR-125b-5p and miR-23b-3p mimics could inhibit the synthesis of apo(a) by directly targeting Ets1 in HepG2, thereby reducing the plasma Lp (a) concentration.
Collapse
Affiliation(s)
- Jun-Fa Zeng
- The Second Hospital Affiliated to University of South China, Hengyang, Hunan, 421001, PR China
| | - Zhao-Lin Zeng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Kai Zhang
- The Second Hospital Affiliated to University of South China, Hengyang, Hunan, 421001, PR China
| | - Yue Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ya-Mi Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jiao-Jiao Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hai Tong
- The First Hospital Affiliated to University of South China, Hengyang, Hunan, 421001, PR China
| | - Dang-Heng Wei
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zuo Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
46
|
MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci Rep 2017; 7:13996. [PMID: 29070803 PMCID: PMC5656623 DOI: 10.1038/s41598-017-14454-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is responsible for metabolism of an endogenous inhibitor of nitric oxide synthase (NOS), asymmetric dimethylarginine (ADMA), which plays a key role in modulating angiogenesis. In addition to angiogenesis, tumours can establish a vascular network by forming vessel-like structures from tumour cells; a process termed vasculogenic mimicry (VM). Here, we identified over-expression of DDAH1 in aggressive MDA-MB-231, MDA-MB-453 and BT549 breast cancer cell lines when compared to normal mammary epithelial cells. DDAH1 expression was inversely correlated with the microRNA miR-193b. In DDAH1+ MDA-MB-231 cells, ectopic expression of miR-193b reduced DDAH1 expression and the conversion of ADMA to citrulline. In DDAH1− MCF7 cells, inhibition of miR-193b elevated DDAH1 expression. Luciferase reporter assays demonstrated DDAH1 as a direct target of miR-193b. MDA-MB-231 cells organised into tube structures in an in vitro assay of VM, which was significantly inhibited by DDAH1 knockdown or miR-193b expression. Mechanistically, we found miR-193b regulates cell proliferation and migration of MDA-MB-231 cells, whilst DDAH1 knockdown inhibited cell migration. These studies represent the first evidence for DDAH1 expression, regulation and function in breast cancer cells, and highlights that targeting DDAH1 expression and/or enzymatic activity may be a valid option in the treatment of aggressive breast cancers.
Collapse
|
47
|
Ali HEA, Abdel Hameed R, Effat H, Ahmed EK, Atef AA, Sharawi SK, Ali M, Abd Elmageed ZY, Abdel Wahab AH. Circulating microRNAs panel as a diagnostic tool for discrimination of HCV-associated hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2017; 41:e51-e62. [PMID: 28750770 DOI: 10.1016/j.clinre.2017.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve the overall survival of HCC patients. However, current diagnostic markers are compromised and limited by their low sensitivity and specificity. In this work, circulating microRNAs (miRs) were utilized as a diagnostic tool to test their efficiency to segregate HCC and hepatitis C virus (HCV)-infected patients from healthy subjects. Nine HCC-related miRs (miR-21, miR-30c, miR-93, miR-122, miR-125b, miR-126, miR-130a, miR-193b and miR-222) were analyzed by Real-Time PCR in 86 serum samples; 34 HCC and 52 HCV patients in addition to 25 healthy subjects. The sensitivity and specificity of these miRs were assessed. Our results demonstrated that the median serum level of seven miRs was significantly reduced (P ranges from <0.01 to<0.001) in HCC patients whereas nine miRs were reduced (P<0.001) in HCV compared to healthy controls. Receiver operating characteristic (ROC) curve analyses had shown high diagnostic accuracy (AUC=1.0) when seven and nine combined miRs were considered in HCC and HCV groups, respectively compared to their counterparts. However, a combination of differentially expressed miRs did not improve the discriminatory power (AUC=0.742) when HCC compared to non-HCC groups. miR-122 showed the highest sensitivity and specificity to stratify HCC and HCV versus normal individuals and HCC versus HCV patients. We conclude that differentially expressed miRs in the serum of HCV and HCC patients can be utilized as surrogate and non-invasive biomarker for segregation of HCV and HCC patients from healthy subjects.
Collapse
Affiliation(s)
- Hamdy E Abouzeid Ali
- Department of Radiobiological Applications, Nuclear Research Centre, Atomic Energy Authority, Cairo, Egypt; Department of Pharmaceutical Sciences, Texas A&M Health Science Center, 78363, Kingsville, TX USA
| | - Rehab Abdel Hameed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Heba Effat
- Department of Cancer Biology, National Cancer Institute, Cairo University, 1, Kasr El Eini Street Fom El Khalig, 11796 Cairo, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sabry K Sharawi
- Department of Cancer Biology, National Cancer Institute, Cairo University, 1, Kasr El Eini Street Fom El Khalig, 11796 Cairo, Egypt
| | - Mohamed Ali
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zakaria Y Abd Elmageed
- Department of Pharmaceutical Sciences, Texas A&M Health Science Center, 78363, Kingsville, TX USA.
| | - Abdel Hady Abdel Wahab
- Department of Cancer Biology, National Cancer Institute, Cairo University, 1, Kasr El Eini Street Fom El Khalig, 11796 Cairo, Egypt.
| |
Collapse
|
48
|
Yerukala Sathipati S, Ho SY. Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles. Sci Rep 2017; 7:7507. [PMID: 28790336 PMCID: PMC5548864 DOI: 10.1038/s41598-017-07739-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma is a multifactorial disease. MicroRNA (miRNA) expression profiles are extensively used for discovering potential theranostic biomarkers of lung cancer. This work proposes an optimized support vector regression (SVR) method called SVR-LUAD to simultaneously identify a set of miRNAs referred to the miRNA signature for estimating the survival time of lung adenocarcinoma patients using their miRNA expression profiles. SVR-LUAD uses an inheritable bi-objective combinatorial genetic algorithm to identify a small set of informative miRNAs cooperating with SVR by maximizing estimation accuracy. SVR-LUAD identified 18 out of 332 miRNAs using 10-fold cross-validation and achieved a correlation coefficient of 0.88 ± 0.01 and mean absolute error of 0.56 ± 0.03 year between real and estimated survival time. SVR-LUAD performs well compared to some well-recognized regression methods. The miRNA signature consists of the 18 miRNAs which strongly correlates with lung adenocarcinoma: hsa-let-7f-1, hsa-miR-16-1, hsa-miR-152, hsa-miR-217, hsa-miR-18a, hsa-miR-193b, hsa-miR-3136, hsa-let-7g, hsa-miR-155, hsa-miR-3199-1, hsa-miR-219-2, hsa-miR-1254, hsa-miR-1291, hsa-miR-192, hsa-miR-3653, hsa-miR-3934, hsa-miR-342, and hsa-miR-141. Gene ontology annotation and pathway analysis of the miRNA signature revealed its biological significance in cancer and cellular pathways. This miRNA signature could aid in the development of novel therapeutic approaches to the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
49
|
Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, Cascione L, Paulus-Hock V, Boulter L, Guest R, Quagliata L, Hahne JC, Ridgway R, Jamieson T, Athineos D, Veronese A, Visone R, Murgia C, Ferrari G, Guzzardo V, Evans TRJ, MacLeod M, Feng GJ, Dale T, Negrini M, Forbes SJ, Terracciano L, Scarpa A, Patel T, Valeri N, Workman P, Sansom O, Braconi C. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 2017; 66:1268-1277. [PMID: 27618837 PMCID: PMC5530482 DOI: 10.1136/gutjnl-2016-312278] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer. DESIGN Hypomorphic Apc mice (Apcfl/fl) and thiocetamide (TAA)-treated rats developed Wnt/β-catenin dependent hepatocarcinoma (HCC) and cholangiocarcinoma (CCA), respectively. T-UCR expression was assessed by microarray, real-time PCR and in situ hybridisation. RESULTS Overexpression of the T-UCR uc.158- could differentiate Wnt/β-catenin dependent HCC from normal liver and from β-catenin negative diethylnitrosamine (DEN)-induced HCC. uc.158- was overexpressed in human HepG2 versus Huh7 cells in line with activation of the Wnt pathway. In vitro modulation of β-catenin altered uc.158- expression in human malignant hepatocytes. uc.158- expression was increased in CTNNB1-mutated human HCCs compared with non-mutated human HCCs, and in human HCC with nuclear localisation of β-catenin. uc.158- was increased in TAA rat CCA and reduced after treatment with Wnt/β-catenin inhibitors. uc.158- expression was negative in human normal liver and biliary epithelia, while it was increased in human CCA in two different cohorts. Locked nucleic acid-mediated inhibition of uc.158- reduced anchorage cell growth, 3D-spheroid formation and spheroid-based cell migration, and increased apoptosis in HepG2 and SW1 cells. miR-193b was predicted to have binding sites within the uc.158- sequence. Modulation of uc.158- changed miR-193b expression in human malignant hepatocytes. Co-transfection of uc.158- inhibitor and anti-miR-193b rescued the effect of uc.158- inhibition on cell viability. CONCLUSIONS We showed that uc.158- is activated by the Wnt pathway in liver cancers and drives their growth. Thus, it may represent a promising target for the development of novel therapeutics.
Collapse
Affiliation(s)
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | | | | | | | | | | | - Luke Boulter
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Rachel Guest
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luca Quagliata
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | | | - Rachel Ridgway
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Tam Jamieson
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Angelo Veronese
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Rosa Visone
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Claudio Murgia
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | - Martin MacLeod
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Gui Ji Feng
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Trevor Dale
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | | | - Nicola Valeri
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | | | - Owen Sansom
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Chiara Braconi
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| |
Collapse
|
50
|
Shen Y, Liu S, Yuan H, Ying X, Fu H, Zheng X. A long non-coding RNA lncRNA-PE promotes invasion and epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-200a/b-ZEB1 pathway. Tumour Biol 2017; 39:1010428317705756. [PMID: 28488544 DOI: 10.1177/1010428317705756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs have been revealed to play important roles in the progression of hepatocellular carcinoma. However, the detailed mechanisms underlying their activities are not fully understood. Using microarray technology, a number of long non-coding RNAs were previously identified to be aberrantly expressed in hepatocellular carcinoma. In this study, one of these long non-coding RNAs, designated lncRNA-PE (lncRNA promotes epithelial-mesenchymal transition), was further explored to study its expression profile and function. A cohort of human hepatocellular carcinoma tissue samples combined with benign controls and established human hepatocellular carcinoma cell lines were examined for the expression of lncRNA-PE. The biological functions of lncRNA-PE were examined by wound-healing and Transwell assays, which revealed that lncRNA-PE promotes cell invasion and migration. By detecting the level of epithelial-mesenchymal transition markers, lncRNA-PE was revealed to promote epithelial-mesenchymal transition in hepatocellular carcinoma cells. Further study suggested that lncRNA-PE downregulated miR-200a/b by repressing the primary transcript expression, enhanced ZEB1 expression, and promoted epithelial-mesenchymal transition of hepatocellular carcinoma cells. All these data imply that lncRNA-PE might play an important role in hepatocellular carcinoma development via the miR-200a/b-ZEB1 pathway.
Collapse
Affiliation(s)
- Yuan Shen
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shanshan Liu
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- 3 Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyu Yuan
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hanjiang Fu
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaofei Zheng
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|