1
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
2
|
Zhang J, Chen S, Hu X, Huang L, Loh P, Yuan X, Liu Z, Lian J, Geng L, Chen Z, Guo Y, Chen B. The role of the peripheral system dysfunction in the pathogenesis of sepsis-associated encephalopathy. Front Microbiol 2024; 15:1337994. [PMID: 38298892 PMCID: PMC10828041 DOI: 10.3389/fmicb.2024.1337994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Sepsis is a condition that greatly impacts the brain, leading to neurological dysfunction and heightened mortality rates, making it one of the primary organs affected. Injury to the central nervous system can be attributed to dysfunction of various organs throughout the entire body and imbalances within the peripheral immune system. Furthermore, central nervous system injury can create a vicious circle with infection-induced peripheral immune disorders. We collate the pathogenesis of septic encephalopathy, which involves microglial activation, programmed cell death, mitochondrial dysfunction, endoplasmic reticulum stress, neurotransmitter imbalance, and blood-brain barrier disruption. We also spotlight the effects of intestinal flora and its metabolites, enterocyte-derived exosomes, cholinergic anti-inflammatory pathway, peripheral T cells and their cytokines on septic encephalopathy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
5
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 451] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
6
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Mohebichamkhorami F, Fattahi R, Niknam Z, Aliashrafi M, Khakpour Naeimi S, Gilanchi S, Zali H. Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Res Ther 2022; 13:273. [PMID: 35729595 PMCID: PMC9210648 DOI: 10.1186/s13287-022-02942-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The damaged neuronal cells of adult mammalian lack the regenerative ability to replace the neuronal connections. Periodontal ligament stem cells (PDLSCs) are the promising source for neuroregenerative applications that can improve the injured microenvironment of the damaged neural system. They provide neuronal progenitors and neurotrophic, anti-apoptotic and anti-inflammatory factors. In this study, we aimed to comprehensively explore the various neuronal differentiation potentials of PDLSCs for application in neural regeneration therapy. MAIN TEXT PDLSCs have superior potential to differentiate into various neural-like cells through a dedifferentiation stage followed by differentiation process without need for cell division. Diverse combination of nutritional factors can be used to induce the PDLSCs toward neural lineage. PDLSCs when coupled with biomaterials could have significant implications for neural tissue repair. PDLSCs can be a new clinical research target for Alzheimer's disease treatment, multiple sclerosis and cerebral ischemia. Moreover, PDLSCs have beneficial effects on retinal ganglion cell regeneration and photoreceptor survival. PDLSCs can be a great source for the repair of injured peripheral nerve through the expression of several neural growth factors and differentiation into Schwann cells. CONCLUSION In conclusion, these cells are an appealing source for utilizing in clinical treatment of the neuropathological disorders. Although significant in vitro and in vivo investigations were carried out in order for neural differentiation evaluation of these cells into diverse types of neurons, more preclinical and clinical studies are needed to elucidate their therapeutic potential for neural diseases.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
| | | | - Samira Gilanchi
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
9
|
Wahba NS, Saliem AO, Abd Allah EG, Mohammed MZ. Therapeutic efficacy of adipose-derived mesenchymal stem cells after chronic fluoxetine treatment on pars distalis in adult male albino rats. Tissue Cell 2022; 76:101770. [DOI: 10.1016/j.tice.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
10
|
Chung SJ, Lee TY, Lee YH, Baik K, Jung JH, Yoo HS, Shim CJ, Eom H, Hong JY, Kim DJ, Sohn YH, Lee PH. Phase I Trial of Intra-arterial Administration of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Patients with Multiple System Atrophy. Stem Cells Int 2021; 2021:9886877. [PMID: 34712335 PMCID: PMC8548132 DOI: 10.1155/2021/9886877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This study is aimed at investigating the safety and tolerability of the intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with multiple system atrophy- (MSA-) cerebellar type (MSA-C). METHODS This was a single-center, open-label phase I clinical trial in patients with MSA-C. A three-stage dose escalation scheme (low-dose, 3.0 × 105 cells/kg; medium-dose, 6.0 × 105 cells/kg; high-dose, 9.0 × 105 cells/kg) was applied to determine the maximum tolerated dose of intra-arterial administration of BM-MSCs based on the no-observed-adverse-effect level derived from the toxicity study. The occurrence of adverse events was evaluated 1 day before and 1, 14, and 28 days after BM-MSC therapy. Additionally, we assessed changes in the Unified MSA Rating Scale (UMSARS) score 3 months after BM-MSC treatment. RESULTS One serious adverse drug reaction (ADR) of leptomeningeal enhancement following the intra-arterial BM-MSC administration occurred in one patient in the low-dose group. The safety review of the Internal Monitoring Committee interpreted this as radiological evidence of the blood-brain barrier permeability for MSCs. No other ADRs were observed in the medium- or high-dose groups. In particular, no ischemic lesions on diffusion-weighted images were observed in any of the study participants. Additionally, the medium- and high-dose groups tended to show a slower increase in UMSARS scores than the low-dose group during the 3-month follow-up. CONCLUSION The present study confirmed that a single intra-arterial administration of autologous BM-MSCs is a safe and promising neuroprotective strategy in patients with MSA-C.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin 16995, Republic of Korea
| | - Tae Yong Lee
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Jae Shim
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Hyojin Eom
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Ji-Yeon Hong
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Dong Joon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
12
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
13
|
Wu T, Xu W, Chen H, Li S, Dou R, Shen H, Liu X, Liu X, Hong Y, He J. Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1016-1029. [PMID: 32845287 DOI: 10.1093/abbs/gmaa082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have reported an increasing incidence of ischemic stroke, particularly in younger age groups. Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) are the most common stem cells acquired from the teeth of adults, even elderly people. However, there are no detailed reports on whether DPSCs or PDLSCs are suitable for the treatment of ischemic stroke. In this study, the in vitro differentiation of DPSCs and PDLSCs into neuron-like cells was evaluated. Then, we established a rat model of cerebral ischemia. DPSCs or PDLSCs were administered to animals, and the therapeutic effects of these two types of cells were investigated. The results showed that PDLSCs had a higher differentiation rate than DPSCs. Immunofluorescence studies showed that the expression of the neuronal differentiation marker Thy-1 was higher in PDLSCs than in DPSCs, and other gene markers of neuronal differentiation showed corresponding trends, which were confirmed by western blot analysis. In this process, the Notch and Wnt signaling pathways were inhibited and activated, respectively. Finally, rats with transient occlusion of the right middle cerebral artery were used as a model to assess the therapeutic effect of PDLSCs and DPSCs on ischemia. The results showed that rats in the PDLSC-treated group emitted significantly greater red fluorescence signal than the DPSC-treated group. PDLSC transplantation promoted the recovery of neurological function more effectively than DPSC transplantation. Hence, PDLSCs represent an autogenous source of adult mesenchymal stem cells with desirable biological properties and may be an ideal candidate for clinical applications.
Collapse
Affiliation(s)
- Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Rengang Dou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Hongtao Shen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xue Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xiaoyu Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| |
Collapse
|
14
|
Chia YC, Anjum CE, Yee HR, Kenisi Y, Chan MKS, Wong MBF, Pan SY. Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain? Stem Cells Int 2020; 2020:8889061. [PMID: 32952573 PMCID: PMC7487096 DOI: 10.1155/2020/8889061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Blood-brain barrier (BBB) is a term describing the highly selective barrier formed by the endothelial cells (ECs) of the central nervous system (CNS) homeostasis by restricting movement across the BBB. An intact BBB is critical for normal brain functions as it maintains brain homeostasis, modulates immune cell transport, and provides protection against pathogens and other foreign substances. However, it also prevents drugs from entering the CNS to treat neurodegenerative diseases. Stem cells, on the other hand, have been reported to bypass the BBB and successfully home to their target in the brain and initiate repair, making them a promising approach in cellular therapy, especially those related to neurodegenerative disease. This review article discusses the mechanism behind the successful homing of stem cells to the brain, their potential role as a drug delivery vehicle, and their applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yvonne Cashinn Chia
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Clarice Evey Anjum
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Hui Rong Yee
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Yenny Kenisi
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Mike K. S. Chan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Michelle B. F. Wong
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Shing Yi Pan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| |
Collapse
|
15
|
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2020; 30:839-855. [PMID: 31203262 DOI: 10.1515/revneuro-2019-0002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Antitumor effect of cell therapy with mesenchymal stem cells on murine melanoma B16-F10. Biomed Pharmacother 2020; 128:110294. [PMID: 32485571 DOI: 10.1016/j.biopha.2020.110294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the antitumor and immunomodulatory effects of mesenchymal stem cells (MSC) obtained from bone marrow in the treatment of dorsal melanoma B16-F10. The MSC cells were obtained from the bone marrow of isogenic C57BL/6J mice, characterized and inoculated by two routes, intratumor (it) and intravenous (iv). The hematological profile, expression markers and receptors, phases of the cell cycle and mitochondrial electrical potential were evaluated by flow cytometry. The dorsal tumor mass showed a significant reduction after treatment by the two routes of administration with a significant effect by the intravenous route. MSC showed immunomodulatory potential and did not induce an increase in the markers involved in tumor control and progression. The number of cells in the sub-G1 phase increased significantly after treatments compared to the control group. The percentage of cells in phases G0/G1, S and G2/M decreased, with only the group (it) showing a significant reduction. The intratumor group showed a significant decrease in the G2/M phase. Treatment with MSC provided a significant decrease in the percentage of metabolically active tumor cells, demonstrating its intrinsic effect in the control of cell proliferation. Regarding the mechanism of cell death, MSCs modulated the expression of proteins involved in the regulation of the cell cycle, angiogenesis receptors and pro-apoptotic proteins by intrinsic and extrinsic routes. Therefore, the use of undifferentiated MSC, administered intratumor and intravenous is possibly a promising treatment for melanoma.
Collapse
|
17
|
Wartchow KM, Rodrigues L, Lissner LJ, Federhen BC, Selistre NG, Moreira A, Gonçalves CA, Sesterheim P. Insulin-producing cells from mesenchymal stromal cells: Protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci 2020; 251:117587. [PMID: 32224027 DOI: 10.1016/j.lfs.2020.117587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Barbara Carolina Federhen
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Nicholas Guerini Selistre
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Aline Moreira
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| | - Patrícia Sesterheim
- Institute of Cardiology of Rio Grande do Sul, Experimental Center, Porto Alegre, Brazil
| |
Collapse
|
18
|
Sukhinich KK, Namestnikova DD, Gubskii IL, Gabashvili AN, Mel'nikov PA, Vitushev EY, Vishnevskii DA, Revkova VA, Solov'eva AA, Voitkovskaya KS, Vakhrushev IV, Burunova VV, Berdalin AB, Aleksandrova MA, Chekhonin VP, Gubskii LV, Yarygin KN. Distribution and Migration of Human Placental Mesenchymal Stromal Cells in the Brain of Healthy Rats after Stereotaxic or Intra-Arterial Transplantation. Bull Exp Biol Med 2020; 168:542-551. [PMID: 32157512 DOI: 10.1007/s10517-020-04750-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Human placenta mesenchymal stromal cells were injected to healthy rats either stereotaxically into the striatum or intra-arterially through the internal carotid artery. Some cells injected into the brain migrated along the corpus callosum both medially and laterally or concentrated around small blood vessels. A small fraction of MSC injected intra-arterially adhered to the endothelium and stayed inside blood vessels for up to 48 hours mostly in the basin of the middle cerebral artery. Neither stereotaxic, nor intra-arterial transplantation of mesenchymal stromal cells modulated the proliferation of neural stem cells in the subventricular zone of the brain, but stereotaxic transplantation suppressed activation of their proliferation in response to traumatization with the needle.
Collapse
Affiliation(s)
- K K Sukhinich
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - D D Namestnikova
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskii
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - P A Mel'nikov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E Ya Vitushev
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - D A Vishnevskii
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - V A Revkova
- Federal Research and Clinical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - A A Solov'eva
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K S Voitkovskaya
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V V Burunova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A B Berdalin
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Aleksandrova
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - V P Chekhonin
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gubskii
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Godoy JAP, Paiva RMA, Souza AM, Kondo AT, Kutner JM, Okamoto OK. Clinical Translation of Mesenchymal Stromal Cell Therapy for Graft Versus Host Disease. Front Cell Dev Biol 2019; 7:255. [PMID: 31824942 PMCID: PMC6881464 DOI: 10.3389/fcell.2019.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Graft versus host disease (GVHD) is a common condition in patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT). The immune cells derived from the grafted stem cells attack recipient's tissues, including those from the skin, liver, eyes, mouth, lungs, gastrointestinal tract, neuromuscular system, and genitourinary tract, may lead to severe morbidity and mortality. Acute GVHD can occur within few weeks after the allogeneic cells have engrafted in the recipient while chronic GVHD may occur any time after transplant, typically within months. Although treatable by systemic corticosteroid administration, effective responses are not achieved for a significant proportion of patients, a condition associated with poor prognosis. The use of multipotent mesenchymal stromal cells (MSCs) as an alternative to treat steroid-refractory GVHD had improved last decade, but the results are still controversial. Some studies have shown improvement in the life quality of patients after MSCs treatment, while others have found no significant benefits. In addition to variations in trial design, discrepancies in protocols for MSCs isolation, characterization, and ex vivo manipulation, account for inconsistent clinical results. In this review, we discuss the immunomodulatory properties supporting the therapeutic use of MSCs in GVHD and contextualize the main clinical findings of recent trials using these cells. Critical parameters for the clinical translation of MSCs, including consistent production of MSCs according to Good Manufacturing Practices (GMPs) and informative potency assays for product quality control (QC), are addressed.
Collapse
Affiliation(s)
- Juliana A. P. Godoy
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel M. A. Paiva
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Aline M. Souza
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Andrea T. Kondo
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose M. Kutner
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Oswaldo K. Okamoto
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Human Fetal Bone Marrow-Derived Mesenchymal Stem Cells Promote the Proliferation and Differentiation of Pancreatic Progenitor Cells and the Engraftment Function of Islet-Like Cell Clusters. Int J Mol Sci 2019; 20:ijms20174083. [PMID: 31438545 PMCID: PMC6747176 DOI: 10.3390/ijms20174083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.
Collapse
|
21
|
Taraballi F, Pastò A, Bauza G, Varner C, Amadori A, Tasciotti E. Immunomodulatory potential of mesenchymal stem cell role in diseases and therapies: A bioengineering prospective. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2019.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou HM, Kalionis B. An ex vivo human placental vessel perfusion method to study mesenchymal stem/stromal cell migration. Stem Cell Investig 2019; 6:2. [PMID: 30842969 DOI: 10.21037/sci.2018.12.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022]
Abstract
Background To initiate tissue repair, mesenchymal stem/stromal cells (MSCs) must enter the blood stream, migrate to the targeted area, cross the endothelial barrier and home to the damaged tissue. This process is not yet fully understood in humans and thus, the aim of this study was to develop an ex vivo placental vessel perfusion method to examine human MSC movement from a blood vessel into human tissue. This will provide a better understanding of MSC migration, movement through the endothelial barrier and engraftment into target tissue, in a setting that more closely represents the in vivo state, compared with conventional in vitro human cell culture models. Moreover, important similarities and differences to animal experimental model systems may be revealed by this method. Methods Human placental hTERT transformed MSC lines were labelled with live-cell fluorescence dyes, and then perfused into term human placental blood vessel. After labelled MSCs were perfused into the vessel, the vessel was dissected from the placenta and incubated at cell growth conditions. Following incubation, the vessel was washed thoroughly to remove unattached, labelled MSCs and then snap frozen for sectioning. After sectioning, immunofluorescence staining of the endothelium was carried out to detect if labelled MSCs crossed the endothelial barrier. Results Twelve placental vessel perfusions were successfully completed. In eight of the twelve perfused vessels, qualitative assessment of immunofluorescence in sections (n=20, 5 µm sections/vessel) revealed labelled MSCs had crossed the endothelial barrier. Conclusions The human placental ex vivo vessel perfusion method could be used to assess human MSC migration into human tissue. Cells of the MSC lines were able to adhere and transmigrate through the endothelial barrier in a manner similar to that of leukocytes. Notably, cells that transmigrated remained in close proximity to the endothelium, which is consistent with the reported MSC vascular niche in placental blood vessels.
Collapse
Affiliation(s)
- Balta Al-Sowayan
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rosemary J Keogh
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Mohammed Abumaree
- Stem Cell and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Harry M Georgiou
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
23
|
Jin W, Liang X, Brooks A, Futrega K, Liu X, Doran MR, Simpson MJ, Roberts MS, Wang H. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 2018; 6:e6072. [PMID: 30564525 PMCID: PMC6286806 DOI: 10.7717/peerj.6072] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However in vivo MSC distribution following intravenous transplantation remains poorly understood, potentially hampering the precise prediction and evaluation of therapeutic efficacy. Methods A murine model of partial ischemia/reperfusion (I/R) is used to induce liver injury, increase the hepatic levels of SDF-1, and study in vivo MSC distribution. Hypoxia-preconditioning increases the expression of CXCR4 in human bone marrow-derived MSCs. Quantitative assays for human DNA using droplet digital PCR (ddPCR) allow us to examine the in vivo kinetics of intravenously infused human MSCs in mouse blood and liver. A mathematical model-based system is developed to characterize in vivo homing of human MSCs in mouse models with SDF-1 levels in liver and CXCR4 expression on the transfused MSCs. The model is calibrated to experimental data to provide novel estimates of relevant parameter values. Results Images of immunohistochemistry for SDF-1 in the mouse liver with I/R injury show a significantly higher SDF-1 level in the I/R injured liver than that in the control. Correspondingly, the ddPCR results illustrate a higher MSC concentration in the I/R injured liver than the normal liver. CXCR4 is overexpressed in hypoxia-preconditioned MSCs. An increased number of hypoxia-preconditioned MSCs in the I/R injured liver is observed from the ddPCR results. The model simulations align with the experimental data of control and hypoxia-preconditioned human MSC distribution in normal and injured mouse livers, and accurately predict the experimental outcomes with different MSC doses. Discussion The modelling results suggest that SDF-1 in organs is an effective in vivo attractant for MSCs through the SDF-1/CXCR4 axis and reveal the significance of the SDF-1/CXCR4 chemotaxis on in vivo homing of MSCs. This in vivo modelling approach allows qualitative characterization and prediction of the MSC homing to normal and injured organs on the basis of clinically accessible variables, such as the MSC dose and SDF-1 concentration in blood. This model could also be adapted to abnormal conditions and/or other types of circulating cells to predict in vivo homing patterns.
Collapse
Affiliation(s)
- Wang Jin
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Xiaowen Liang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Anastasia Brooks
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kathryn Futrega
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Xin Liu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Michael R Doran
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia.,Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Haolu Wang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
24
|
Guo YC, Chiu YH, Chen CP, Wang HS. Interleukin-1β induces CXCR3-mediated chemotaxis to promote umbilical cord mesenchymal stem cell transendothelial migration. Stem Cell Res Ther 2018; 9:281. [PMID: 30359318 PMCID: PMC6202827 DOI: 10.1186/s13287-018-1032-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to home to injured and inflamed regions via the bloodstream to assist in tissue regeneration in response to signals of cellular damage. However, the factors and mechanisms that affect their transendothelial migration are still unclear. In this study, the mechanisms involved in interleukin-1β (IL-1β) enhancing the transendothelial migration of MSCs were investigated. METHODS Immunofluorescence staining and Western blotting were used to observe IL-1β-induced CXC chemokine receptor 3 (CXCR3) expression on MSCs. Quantitative real-time PCR and ELISA were used to demonstrate IL-1β upregulated both chemokine (C-X-C motif) ligand 9 (CXCL9) mRNA and CXCL9 ligand secretion in human umbilical vein endothelial cells (HUVECs). Monolayer co-cultivation, agarose drop chemotaxis, and transwell assay were conducted to investigate the chemotaxis invasion and transendothelial migration ability of IL-1β-induced MSCs in response to CXCL9. RESULTS In this study, our immunofluorescence staining showed that IL-1β induces CXCR3 expression on MSCs. This result was confirmed by Western blotting. Following pretreatment with protein synthesis inhibitor cycloheximide, we found that IL-1β induced CXCR3 on the surface of MSCs via protein synthesis pathway. Quantitative real-time PCR and ELISA validated that IL-1β upregulated both CXCL9 mRNA and CXCL9 ligand secretion in HUVECs. In response to CXCL9, chemotaxis invasion and transendothelial migration ability were increased in IL-1β-stimulated MSCs. In addition, we pretreated MSCs with CXCR3 antagonist AMG-487 and p38 MAPK inhibitor SB203580 to confirm CXCR3-CXCL9 interaction and the role of CXCR3 in IL-1β-induced chemotaxis invasion and transendothelial migration. CONCLUSION We found that IL-1β induces the expression of CXCR3 through p38 MAPK signaling and that IL-1β also enhances CXCL9 ligand secretion in HUVECs. These results indicated that IL-1β promotes the transendothelial migration of MSCs through CXCR3-CXCL9 axis. The implication of the finding could enhance the efficacy of MSCs homing to target sites.
Collapse
Affiliation(s)
- Yu-Chien Guo
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China
| | - Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
25
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
26
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
27
|
Chen Q, Zheng C, Li Y, Bian S, Pan H, Zhao X, Lu WW. Bone Targeted Delivery of SDF-1 via Alendronate Functionalized Nanoparticles in Guiding Stem Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23700-23710. [PMID: 29939711 DOI: 10.1021/acsami.8b08606] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cells are well-known for their great capacity for tissue regeneration. This provides a promising source for cell-based therapies in treating various bone degenerative disorders. However, the major hurdles for their application in transplantation are the poor bone marrow homing and engraftment efficiencies. Stromal cell-derived factor 1 (SDF-1) has been identified as a major stem cell homing factor. With the aims of bone targeted SDF-1 delivery and regulating MSCs migration, alendronate modified liposomal nanoparticles (Aln-Lipo) carrying SDF-1 gene were developed in this study. Alendronate modification significantly increased the mineral binding affinity of liposomes, and facilitated the gene delivery to osteoblastic cells. Up-regulated SDF-1 expression in osteoblasts triggered MSCs migration. Systemic infusion of Aln-Lipo-SDF-1 with fluorescence labeling in mice showed the accumulation in osseous tissue by biophotonic imaging. Corresponding to the delivered SDF-1, the transplanted GFP+ MSCs were attracted to bone marrow and contributed to bone regeneration. This study may provide a useful technique in regulating stem cell migration.
Collapse
Affiliation(s)
- Qingchang Chen
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
| | - Chuping Zheng
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
- School of Pharmaceutical Science , Guangzhou Medical University , Guangzhou , Guangdong , 511436 , PR China
| | - Yanqun Li
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
| | - Shaoquan Bian
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , PR China
| | - William W Lu
- Department of Orthopaedic and Traumatology , The University of Hong Kong , 21 Sassoon Rd. , Pokfulam , 999077 , Hong Kong, PR China
| |
Collapse
|
28
|
Schreier C, Rothmiller S, Scherer MA, Rummel C, Steinritz D, Thiermann H, Schmidt A. Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard. Toxicol Lett 2018; 293:105-111. [PMID: 29426001 DOI: 10.1016/j.toxlet.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The chemical warfare agent sulfur mustard (SM), also known as mustard gas, was first used in World War I. Although prohibited by the chemical warfare convention, significant amounts of SM still exist and have still to be regarded as a threat for military personnel and civilians. After SM exposure, the most prominent clinical symptom is the development of extensive non-healing skin wounds. This chronic wound healing dysfunction is persisting over long time. Mesenchymal stem cells (MSC) are known to play an important role in wound healing. Moreover, it is also known that patients with chronic wound healing diseases have compromised mesenchymal stem cell functionality. Based on these observations and the known relationship between wound healing dysfunction and MSC function we investigated the impact of sulfur mustard on human MSC. MATERIAL & METHODS Mesenchymal stem cells (MSC) were isolated from femoral heads of healthy donors. They were cultured for less than four passages. MSC were exposed towards different sulfur mustard concentrations. After exposure we analyzed the secretome and the migration capacity. The migration capacity under influence of SM was analyzed after treatment with various cytokines. RESULTS SM exposure (even at very low concentrations) showed negative effects on the migration capability. Many cytokines that are necessary for MSC migration were secreted in a reduced manner. The reduced migratory capacity can be compensated in part by the addition of cytokines. Here especially IL-8 (e and m) and IL-6 significantly compensated the SM induced migration reduction. DISCUSSION The effect of sulfur mustard on MSC might play an important role in the persistence of long-term adverse effects; here the reduced migration could particularly be important. The compensation of the SM-induced migration reduction by addition of cytokines could possibly solve this problem. Moreover, our current results will help to understand the relationship between alkylating agents and MSC and thus will also give guidance in the future perspective for the therapeutic use of MSC in patients suffering from sulfur mustard induced chronic skin wounds.
Collapse
Affiliation(s)
- Cassandra Schreier
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Michael A Scherer
- Department of Traumatology and Orthopedics, HELIOS Amper Clinics, Krankenhausstrasse 15, 85221 Dachau, Germany
| | - Christoph Rummel
- Wolfart Clinic, Department of Orthopedics and Sports Medicine, Waldstrasse 7, 82166 Gräfelfing, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| |
Collapse
|
29
|
Dapkute D, Steponkiene S, Bulotiene D, Saulite L, Riekstina U, Rotomskis R. Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors. Int J Nanomedicine 2017; 12:8129-8142. [PMID: 29158674 PMCID: PMC5683786 DOI: 10.2147/ijn.s143367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors. Such characteristics enable MSCs to be used in cellular hitchhiking of nanoparticles. In this study, MSCs extracted from the skin connective tissue were investigated as transporters of semiconductor nanocrystals quantum dots (QDs). Materials and methods Cytotoxicity of carboxylated CdSe/ZnS QDs was assessed by lactate dehydrogenase cell viability assay. Quantitative uptake of QDs was determined by flow cytometry; their intracellular localization was evaluated by confocal microscopy. In vitro tumor-tropic migration of skin-derived MSCs was verified by Transwell migration assay. For in vivo migration studies of QD-loaded MSCs, human breast tumor-bearing immunodeficient mice were used. Results QDs were found to be nontoxic to MSCs in concentrations no more than 16 nM. The uptake studies showed a rapid QD endocytosis followed by saturating effects after 6 h of incubation and intracellular localization in the perinuclear region. In vitro migration of MSCs toward MDA-MB-231 breast cancer cells and their conditioned medium was up to nine times greater than the migration toward noncancerous breast epithelial cells MCF-10A. In vivo, systemically administered QD-labeled MSCs were mainly located in the tumor and metastatic tissues, evading most healthy organs with the exception being blood clearance organs (spleen, kidneys, liver). Conclusion Skin-derived MSCs demonstrate applicability in cell-mediated delivery of nanoparticles. The findings presented in this study promise further development of a cell therapy and nanotechnology-based tool for early cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania.,Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Simona Steponkiene
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Liga Saulite
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania.,Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
30
|
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells 2017; 35:1446-1460. [DOI: 10.1002/stem.2614] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Nitzsche
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology, McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Claudia Müller
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Barbara Lukomska
- NeuroRepair Department; Mossakowski Medical Research Centre; Warsaw Poland
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern; Kuopio Finland
| | - Alexander Deten
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Johannes Boltze
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| |
Collapse
|
31
|
Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury. Front Neurol 2017; 8:28. [PMID: 28265255 PMCID: PMC5316525 DOI: 10.3389/fneur.2017.00028] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University , Doha , Qatar
| | - George Deeb
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Rahaf Rahal
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Khairallah Atwi
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | - Amr Gali
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Eliana Sleiman
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
32
|
A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells. Sci Rep 2016; 6:22293. [PMID: 26924777 PMCID: PMC4770280 DOI: 10.1038/srep22293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Although mesenchymal stem cells (MSCs) present a promising tool in cell therapy for the treatment of various diseases, the in vivo distribution of administered MSCs has still been poorly understood, which hampers the precise prediction and evaluation of their therapeutic efficacy. Here, we developed the first model to characterize the physiological kinetics of administered MSCs based on direct visualization of cell spatiotemporal disposition by intravital microscopy and assessment of cell quantity using flow cytometry. This physiologically based kinetic model was validated with multiple external datasets, indicating potential inter-route and inter-species predictive capability. Our results suggest that the targeting efficiency of MSCs is determined by the lung retention and interaction between MSCs and target organs, including cell arrest, depletion and release. By adapting specific parameters, this model can be easily applied to abnormal conditions or other types of circulating cells for designing treatment protocols and guiding future experiments.
Collapse
|
33
|
Affiliation(s)
- Kiyotake Ishikawa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
34
|
Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 2015; 77:87-97. [PMID: 26584349 DOI: 10.1016/j.biomaterials.2015.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewis(x) (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4(+) T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders.
Collapse
|
35
|
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
36
|
The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS One 2015; 10:e0128922. [PMID: 26067671 PMCID: PMC4467037 DOI: 10.1371/journal.pone.0128922] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/01/2015] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is an infiltrative tumor that is difficult to eradicate. Treating GBM with mesenchymal stem cells (MSCs) that have been modified with the HSV-Tk suicide gene has brought significant advances mainly because MSCs are chemoattracted to GBM and kill tumor cells via a bystander effect. To use this strategy, abundantly present adipose-tissue-derived mesenchymal stem cells (AT-MSCs) were evaluated for the treatment of GBM in mice. AT-MSCs were prepared using a mechanical protocol to avoid contamination with animal protein and transduced with HSV-Tk via a lentiviral vector. The U-87 glioblastoma cells cultured with AT-MSC-HSV-Tk died in the presence of 25 or 50 μM ganciclovir (GCV). U-87 glioblastoma cells injected into the brains of nude mice generated tumors larger than 3.5 mm2 after 4 weeks, but the injection of AT-MSC-HSV-Tk cells one week after the U-87 injection, combined with GCV treatment, drastically reduced tumors to smaller than 0.5 mm2. Immunohistochemical analysis of the tumors showed the presence of AT-MSC-HSV-Tk cells only within the tumor and its vicinity, but not in other areas of the brain, showing chemoattraction between them. The abundance of AT-MSCs and the easier to obtain them mechanically are strong advantages when compared to using MSCs from other tissues.
Collapse
|
37
|
Ebrahim NA, Leach L. Temporal studies into attachment, VE-cadherin perturbation, and paracellular migration of human umbilical mesenchymal stem cells across umbilical vein endothelial monolayers. Stem Cells Dev 2014; 24:426-36. [PMID: 25317631 DOI: 10.1089/scd.2014.0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of human umbilical cords (WJ-MSC) are a valuable alternate source of stem cells. Their role in situ and whether they can interact and cross intact endothelial monolayers requires elucidation. The aim of this study was to investigate the dynamic interactions between WJ-MSC and human umbilical vein endothelial cells (HUVEC), including attachment, transit times, extravasation pathway, and the effects of WJ-MSC on junctional vascular endothelial (VE)-cadherin. HUVEC were grown to near confluence in endothelial media and to full confluence in mixed media before the addition of PKH26-labelled WJ-MSC. Time lapse fluorescence microscopy showed stem cells undergoing membrane blebbing followed by amoeboid movement on HUVEC monolayers before rounding up and changing shape toward the spindle-shaped morphology during/after transmigration to subendothelial positions. Cells demonstrated a time lag of 60 min before paracellular extravasation, confirmed by confocal microscopy. Forty-six percent of attached cells crossed in the first 2 h. By 16 h, a majority of cells had transmigrated with >96% of cells crossing by 22 h. There were concomitant changes in endothelial junctional VE-cadherin with statistically significant increases in discontinuous staining at 2 h, return to control values at 16 h, even as from 22 h onward HUVEC displayed increased percentage of junctions with continuous staining and upregulation of protein. Our data suggests that WJ-MSC crosses the endothelial barrier through the paracellular pathway and can influence junctional organization of HUVEC with discreet perturbation of VE-cadherin preceding transmigration followed by upregulation once the adluminal side is reached. The latter may reflect a perivascular support function of WJ-MSC in the umbilical cord.
Collapse
Affiliation(s)
- Neven A Ebrahim
- Cardiovascular Research Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham , Nottingham, United Kingdom
| | | |
Collapse
|
38
|
Krstić J, Obradović H, Jauković A, Okić-Đorđević I, Trivanović D, Kukolj T, Mojsilović S, Ilić V, Santibañez JF, Bugarski D. Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:431-44. [PMID: 25433194 DOI: 10.1016/j.bbamcr.2014.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) have the potential to migrate toward damaged tissues increasing tissue regeneration. Interleukin-17 (IL-17) is a proinflammatory cytokine with pleiotropic effects associated with many inflammatory diseases. Although IL-17 can modulate MSC functions, its capacity to regulate MSC migration is not well elucidated so far. Here, we studied the role of IL-17 on peripheral blood (PB) derived MSC migration and transmigration across endothelial cells. IL-17 increased PB-MSC migration in a wound healing assay as well as cell mobilization from collagen gel. Concomitantly IL-17 induced the expression of urokinase type plasminogen activator (uPA) without affecting matrix metalloproteinase expression. The incremented uPA expression mediated the capacity of IL-17 to enhance PB-MSC migration in a ERK1,2 MAPK dependent way. Also, IL-17 induced PB-MSC migration alongside with changes in cell polarization and uPA localization in cell protrusions. Moreover, IL-17 increased PB-MSC adhesion to endothelial cells and transendothelial migration, as well as increased the capacity of PB-MSC adhesion to fibronectin, in an uPA-dependent fashion. Therefore, our data suggested that IL-17 may act as chemotropic factor for PB-MSCs by incrementing cell motility and uPA expression during inflammation development.
Collapse
Affiliation(s)
- Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Vesna Ilić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Juan F Santibañez
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia.
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| |
Collapse
|
39
|
Hamilla SM, Stroka KM, Aranda-Espinoza H. VE-cadherin-independent cancer cell incorporation into the vascular endothelium precedes transmigration. PLoS One 2014; 9:e109748. [PMID: 25275457 PMCID: PMC4183660 DOI: 10.1371/journal.pone.0109748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
Metastasis is accountable for 90% of cancer deaths. During metastasis, tumor cells break away from the primary tumor, enter the blood and the lymph vessels, and use them as highways to travel to distant sites in the body to form secondary tumors. Cancer cell migration through the endothelium and into the basement membrane represents a critical step in the metastatic cascade, yet it is not well understood. This process is well characterized for immune cells that routinely transmigrate through the endothelium to sites of infection, inflammation, or injury. Previous studies with leukocytes have demonstrated that this step depends heavily on the activation status of the endothelium and subendothelial substrate stiffness. Here, we used a previously established in vitro model of the endothelium and live cell imaging, in order to observe cancer cell transmigration and compare this process to leukocytes. Interestingly, cancer cell transmigration includes an additional step, which we term ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs, leading to the dislocation of EC VE-cadherin away from EC junctions bordering cancer cells, and spread into the monolayer. In some cases, ECs completely detach from the matrix. Furthermore, cancer cell incorporation occurs independently of the activation status and the subendothelial substrate stiffness for breast cancer and melanoma cells, a notable difference from the process by which leukocytes transmigrate. Meanwhile, pancreatic cancer cell incorporation was dependent on the activation status of the endothelium and changed on very stiff subendothelial substrates. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation is one of the earliest steps.
Collapse
Affiliation(s)
- Susan M. Hamilla
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, Nabi A. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res 2014; 9:919-23. [PMID: 25206912 PMCID: PMC4146223 DOI: 10.4103/1673-5374.133133] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.
Collapse
Affiliation(s)
- Fatemeh Anbari
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Reza Bahrami
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadeghian
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Nabi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
41
|
Alexandrova SA, Pinaev GP. Actin cytoskeleton reorganization in bone marrow multipotent mesenchymal stromal cells at the initial step of transendothelial migration. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
42
|
Kokhuis TJA, Skachkov I, Naaijkens BA, Juffermans LJM, Kamp O, Kooiman K, van der Steen AFW, Versluis M, de Jong N. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng 2014; 112:220-7. [PMID: 25088405 DOI: 10.1002/bit.25337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023]
Abstract
The use of stem cells for the repair of damaged cardiac tissue after a myocardial infarction holds great promise. However, a common finding in experimental studies is the low number of cells delivered at the area at risk. To improve the delivery, we are currently investigating a novel delivery platform in which stem cells are conjugated with targeted microbubbles, creating echogenic complexes dubbed StemBells. These StemBells vibrate in response to incoming ultrasound waves making them susceptible to acoustic radiation force. The acoustic force can then be employed to propel circulating StemBells from the centerline of the vessel to the wall, facilitating localized stem cell delivery. In this study, we investigate the feasibility of manipulating StemBells acoustically in vivo after injection using a chicken embryo model. Bare stem cells or unsaturated stem cells (<5 bubbles/cell) do not respond to ultrasound application (1 MHz, peak negative acoustical pressure P_ = 200 kPa, 10% duty cycle). However, stem cells which are fully saturated with targeted microbubbles (>30 bubbles/cell) can be propelled toward and arrested at the vessel wall. The mean translational velocities measured are 61 and 177 μm/s for P- = 200 and 450 kPa, respectively. This technique therefore offers potential for enhanced and well-controlled stem cell delivery for improved cardiac repair after a myocardial infarction.
Collapse
Affiliation(s)
- T J A Kokhuis
- Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
MSC have been used in diverse animal disease models to investigate their regenerative capacity. Although the clinical outcome was often encouraging, the mode of action of the cells remains unresolved. Differentiation of MSC into cell types of their target organs was only rarely shown, with the exception of the musculoskeletal system. Thus, the effect of the cells on the clinical outcome in several disease models of tissue degeneration must be independent of trans-differentiation and caused by indirect or paracrine effects. Furthermore, tracking of the cells in vivo revealed that only a small proportion of the cells home and persists in the target sites, and that most of the cells are not detectable after 7∼14 days post transplantation. It seems that MSC can deliver a profound clinical effect without trans-differentiation, without homing to target organs in significant numbers and despite the cell's disappearance within short periods of time. These finding also suggest that the full potency of MSC has not yet been exploited in the current applications. Here we will provide an overview of the different routes used for cell delivery and the fate of the cells after transplantation. The effects on clinical outcome are discussed with respect to the role cell entrapment in non-target organs may play for the observed clinical effects.
Collapse
Affiliation(s)
- Andreas Kurtz
- Charité Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
44
|
Bayo J, Marrodán M, Aquino JB, Silva M, García MG, Mazzolini G. The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma. Liver Int 2014; 34:330-42. [PMID: 24112437 DOI: 10.1111/liv.12338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/15/2013] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.
Collapse
Affiliation(s)
- Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 2014; 9:488-503. [PMID: 24493315 DOI: 10.1002/term.1870] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.
Collapse
Affiliation(s)
- Nikolaos K Paschos
- Department of Biomedical Engineering and Orthopedic Surgery, University of California at Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Efficient delivery of stem cells to target tissues is a major problem in regenerative medicine. Adipose derived stem cells have been proposed as important tools in cell therapy for recovering tissues after damage. Nevertheless, the ability of these ASCs to migrate or invade in order to reach the tissue of interest has not been tested so far. In this study we present evidence that the ASCs derived from obese subjects present a detrimental ability to migrate and invade in comparison with ASCs derived from control subjects. Besides, obese-derived ASCs are unable to respond to certain stimuli and to form enough capillaries after stimulation. We propose that the use of specific cytokines could overcome these deficiencies of the obese environment, offering a tool to optimize cell therapy.
Collapse
Affiliation(s)
- Laura M Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) , Madrid , Spain
| | | | | | | |
Collapse
|
47
|
Kim SY, Park SH, Shin JW, Kang YG, Jeon KJ, Hyun JS, Oh MJ, Shin JW. Mechanical stimulation and the presence of neighboring cells greatly affect migration of human mesenchymal stem cells. Biotechnol Lett 2013; 35:1817-22. [DOI: 10.1007/s10529-013-1270-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/07/2013] [Indexed: 01/13/2023]
|
48
|
Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res 2013; 1513:1-8. [DOI: 10.1016/j.brainres.2013.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/07/2013] [Accepted: 03/13/2013] [Indexed: 01/02/2023]
|
49
|
Teo GSL, Ankrum JA, Martinelli R, Boetto SE, Simms K, Sciuto TE, Dvorak AM, Karp JM, Carman CV. Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells 2013; 30:2472-86. [PMID: 22887987 DOI: 10.1002/stem.1198] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemically administered adult mesenchymal stem cells (MSCs), which are being explored in clinical trials to treat inflammatory disease, exhibit the critical ability to extravasate at sites of inflammation. We aimed to characterize the basic cellular processes mediating this extravasation and compare them to those involved in leukocyte transmigration. Using high-resolution confocal and dynamic microscopy, we show that, like leukocytes, human bone marrow-derived MSC preferentially adhere to and migrate across tumor necrosis factor-α-activated endothelium in a vascular cell adhesion molecule-1 (VCAM-1) and G-protein-coupled receptor signaling-dependent manner. As several studies have suggested, we observed that a fraction of MSC was integrated into endothelium. In addition, we observed two modes of transmigration not previously observed for MSC: Paracellular (between endothelial cells) and transcellular (directly through individual endothelial cells) diapedesis through discrete gaps and pores in the endothelial monolayer, in association with VCAM-1-enriched "transmigratory cups". Contrasting leukocytes, MSC transmigration was not preceded by significant lateral migration and occurred on the time scale of hours rather than minutes. Interestingly, rather than lamellipodia and invadosomes, MSC exhibited nonapoptotic membrane blebbing activity that was similar to activities previously described for metastatic tumor and embryonic germ cells. Our studies suggest that low avidity binding between endothelium and MSC may grant a permissive environment for MSC blebbing. MSC blebbing was associated with early stages of transmigration, in which blebs could exert forces on underlying endothelial cells indicating potential functioning in breaching the endothelium. Collectively, our data suggest that MSC transmigrate actively into inflamed tissues via both leukocyte-like and novel mechanisms.
Collapse
Affiliation(s)
- Grace S L Teo
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Molecular characteristics of bone marrow mesenchymal stem cells, source of regenerative medicine. Int J Cardiol 2013; 163:125-31. [DOI: 10.1016/j.ijcard.2011.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 12/22/2022]
|