1
|
Gutierrez-Ruiz OL, Johnson KM, Krueger EW, Nooren RE, Cruz-Reyes N, Heppelmann CJ, Hogenson TL, Fernandez-Zapico ME, McNiven MA, Razidlo GL. Ectopic expression of DOCK8 regulates lysosome-mediated pancreatic tumor cell invasion. Cell Rep 2023; 42:113042. [PMID: 37651233 PMCID: PMC10591794 DOI: 10.1016/j.celrep.2023.113042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Amplified lysosome activity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) orchestrated by oncogenic KRAS that mediates tumor growth and metastasis, though the mechanisms underlying this phenomenon remain unclear. Using comparative proteomics, we found that oncogenic KRAS significantly enriches levels of the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 8 (DOCK8) on lysosomes. Surprisingly, DOCK8 is aberrantly expressed in a subset of PDAC, where it promotes cell invasion in vitro and in vivo. DOCK8 associates with lysosomes and regulates lysosomal morphology and motility, with loss of DOCK8 leading to increased lysosome size. DOCK8 promotes actin polymerization at the surface of lysosomes while also increasing the proteolytic activity of the lysosomal protease cathepsin B. Critically, depletion of DOCK8 significantly reduces cathepsin-dependent extracellular matrix degradation and impairs the invasive capacity of PDAC cells. These findings implicate ectopic expression of DOCK8 as a key driver of KRAS-driven lysosomal regulation and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Omar L Gutierrez-Ruiz
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roseanne E Nooren
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole Cruz-Reyes
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
3
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
4
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
5
|
Varone A, Amoruso C, Monti M, Patheja M, Greco A, Auletta L, Zannetti A, Corda D. The phosphatase Shp1 interacts with and dephosphorylates cortactin to inhibit invadopodia function. Cell Commun Signal 2021; 19:64. [PMID: 34088320 PMCID: PMC8176763 DOI: 10.1186/s12964-021-00747-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. METHODS Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. RESULTS The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. CONCLUSION The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs. Video abstract.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Amoruso
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marcello Monti
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Manpreet Patheja
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Adelaide Greco
- Interdipartimental Center of Veterinary Radiology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Luigi Auletta
- IRCCS SDN, Via Emanuele Gianturco 113, 80142 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, Via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Biomedical Sciences, National Research Council, Piazzale Aldo Moro 7, 00185 Rome, Italy
| |
Collapse
|
6
|
Rathje K, Mortzfeld B, Hoeppner MP, Taubenheim J, Bosch TCG, Klimovich A. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLoS Pathog 2020; 16:e1008375. [PMID: 32191776 PMCID: PMC7081986 DOI: 10.1371/journal.ppat.1008375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The extent to which disturbances in the resident microbiota can compromise an animal’s health is poorly understood. Hydra is one of the evolutionary oldest animals with naturally occurring tumors. Here, we found a causal relationship between an environmental spirochete (Turneriella spec.) and tumorigenesis in Hydra. Unexpectedly, virulence of this pathogen requires the presence of Pseudomonas spec., a member of Hydra´s beneficial microbiome indicating that dynamic interactions between a resident bacterium and a pathogen cause tumor formation. The observation points to the crucial role of commensal bacteria in maintaining tissue homeostasis and adds support to the view that microbial community interactions are essential for disease. These findings in an organism that shares deep evolutionary connections with all animals have implications for our understanding of cancer. Here we follow up on our initial observation of tumor formation in the basal metazoan Hydra and demonstrate that tumor development in one of the evolutionary oldest animals is caused by a dynamic interplay between an environmental spirochete, the host-associated resident microbiota, and the tissue homeostasis within the animal. Unexpectedly, the pathogenicity of the environmental bacterium Turneriella is context-dependent: the virulence of this pathogen requires the presence of a member of Hydra’s beneficial microbiome—the Pseudomonas bacterium. Dynamic interactions between two microbiota members have profound effects onto the host tissue homeostasis and fitness. Our data provide direct evidence for the important role of the resident microbiome in maintaining tissue homeostasis and pathogen defense, a fundamental process that is likely to take place in every tissue of every animal species. In summary, our study uncovers an evolutionary conserved role of the resident microbiome in guarding host’s tissue homeostasis.
Collapse
Affiliation(s)
- Kai Rathje
- Zoological Institute, Kiel University, Kiel, Germany
| | - Benedikt Mortzfeld
- Zoological Institute, Kiel University, Kiel, Germany
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, United States of America
| | - Marc P. Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Taubenheim
- Zoological Institute, Kiel University, Kiel, Germany
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Kiel University, Kiel, Germany
- * E-mail: (TCGB); (AK)
| | | |
Collapse
|
7
|
Dalaka E, Kronenberg NM, Liehm P, Segall JE, Prystowsky MB, Gather MC. Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. SCIENCE ADVANCES 2020; 6:eaax6912. [PMID: 32195338 PMCID: PMC7065877 DOI: 10.1126/sciadv.aax6912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/17/2019] [Indexed: 05/03/2023]
Abstract
Mechanobiology plays a prominent role in cancer invasion and metastasis. The ability of a cancer to degrade extracellular matrix (ECM) is likely connected to its invasiveness. Many cancer cells form invadopodia-micrometer-sized cellular protrusions that promote invasion through matrix degradation (proteolysis). Although it has been hypothesized that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remain elusive. Here, we use a recently developed interferometric force imaging technique that provides piconewton resolution to quantify invadopodial forces in cells of head and neck squamous carcinoma and to monitor their temporal dynamics. We compare the force exerted by individual protrusions to their ability to degrade ECM and investigate the mechanical effects of inhibiting invadopodia through overexpression of microRNA-375. By connecting the biophysical and biochemical characteristics of invadopodia, our study provides a new perspective on cancer invasion that, in the future, may help to identify biomechanical targets for cancer therapy.
Collapse
Affiliation(s)
- E. Dalaka
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - N. M. Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - P. Liehm
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - J. E. Segall
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - M. C. Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Corresponding author.
| |
Collapse
|
8
|
Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau WB, Lau B, Li Y, Zhao X, Wei Y, Zhou S. Surgical stress and cancer progression: the twisted tango. Mol Cancer 2019; 18:132. [PMID: 31477121 PMCID: PMC6717988 DOI: 10.1186/s12943-019-1058-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Surgical resection is an important avenue for cancer treatment, which, in most cases, can effectively alleviate the patient symptoms. However, accumulating evidence has documented that surgical resection potentially enhances metastatic seeding of tumor cells. In this review, we revisit the literature on surgical stress, and outline the mechanisms by which surgical stress, including ischemia/reperfusion injury, activation of sympathetic nervous system, inflammation, systemically hypercoagulable state, immune suppression and effects of anesthetic agents, promotes tumor metastasis. We also propose preventive strategies or resolution of tumor metastasis caused by surgical stress.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Peidong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ya Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China.,Deyang People's Hospital, Deyang, Sichuan, People's Republic of China
| | - Jiahui Yan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Zixuan Liu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, USA
| | - Ying Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
10
|
Chen S, Tan Y, Deng H, Shen Z, Liu Y, Wu P, Tan C, Jiang Y. UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget 2017; 8:71736-71749. [PMID: 29069742 PMCID: PMC5641085 DOI: 10.18632/oncotarget.17601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 J2 (UBE2J2) is an ubiquitin proteasome component that responds to proteotoxic stress. We found that UBE2J2 was highly expressed in cellular protrusions of HCCLM3 metastatic hepatocellular carcinoma (HC) cells. Immunohistochemical analyses showed that UBE2J2 was expressed at higher levels in HC patient tissues than in corresponding non-tumor tissues. Because cellular protrusions are important for cell invasion, we hypothesized that UBE2J2 promotes HC cell invasion. We used chip-based surface plasmon resonance (SPR) to assess possible mechanisms of UBE2J2-regulated HCCLM3 cell invasion. We found that p-EGFR interacted with UBE2J2, and this finding was confirmed by co-immunoprecipitation analysis. UBE2J2 overexpression activated endothelial-mesenchymal transition in the non-invasive SMMC7721 HC cell line, and promoted invasion. UBE2J2 silencing reduced HCCLM3 cell invasion and endocytosis, and downregulated p-EGFR expression. p-EGFR inhibition by lapatinib reduced UBE2J2-promoted cell invasion, suggesting p-EGFR is important for UBE2J2-mediated HCCLM3 cell invasion. These findings demonstrate that endocytosis by HC cells is closely related to invasion, and may provide new anti-HC therapeutic targets. UBE2J2 may also be a novel biomarker for clinical HC diagnosis.
Collapse
Affiliation(s)
- Shaopeng Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ying Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | | | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanhong Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Pan Wu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
12
|
Wang H, Leung M, Wandinger-Ness A, Hudson LG, Song M. Constrained inference of protein interaction networks for invadopodium formation in cancer. IET Syst Biol 2016; 10:76-85. [PMID: 26997662 PMCID: PMC4804358 DOI: 10.1049/iet-syb.2015.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 11/19/2022] Open
Abstract
Integrating prior molecular network knowledge into interpretation of new experimental data is routine practice in biology research. However, a dilemma for deciphering interactome using Bayes' rule is the demotion of novel interactions with low prior probabilities. Here the authors present constrained generalised logical network (CGLN) inference to predict novel interactions in dynamic networks, respecting previously known interactions and observed temporal coherence. It encodes prior interactions as probabilistic logic rules called local constraints, and forms global constraints using observed dynamic patterns. CGLN finds constraint-satisfying trajectories by solving a k-stops problem in the state space of dynamic networks and then reconstructs candidate networks. They benchmarked CGLN on randomly generated networks, and CGLN outperformed its alternatives when 50% or more interactions in a network are given as local constraints. CGLN is then applied to infer dynamic protein interaction networks regulating invadopodium formation in motile cancer cells. CGLN predicted 134 novel protein interactions for their involvement in invadopodium formation. The most frequently predicted interactions centre around focal adhesion kinase and tyrosine kinase substrate TKS4, and 14 interactions are supported by the literature in molecular contexts related to invadopodium formation. As an alternative to the Bayesian paradigm, the CGLN method offers constrained network inference without requiring prior probabilities and thus can promote novel interactions, consistent with the discovery process of scientific facts that are not yet in common beliefs.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ming Leung
- Departments of Biology and Computer Science, Duke University, Durham, NC 27708, USA
| | | | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
13
|
Ruggiero C, Fragassi G, Grossi M, Picciani B, Di Martino R, Capitani M, Buccione R, Luini A, Sallese M. A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget 2016; 6:3375-93. [PMID: 25682866 PMCID: PMC4413660 DOI: 10.18632/oncotarget.3270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022] Open
Abstract
We recently identified an endomembrane-based signalling cascade that is activated by the KDEL receptor (KDELR) on the Golgi complex. At the Golgi, the KDELR acts as a traffic sensor (presumably via binding to chaperones that leave the ER) and triggers signalling pathways that balance membrane fluxes between ER and Golgi. One such pathway relies on Gq and Src. Here, we examine if KDELR might control other cellular modules through this pathway. Given the central role of Src in extracellular matrix (ECM) degradation, we investigated the impact of the KDELR-Src pathway on the ability of cancer cells to degrade the ECM. We find that activation of the KDELR controls ECM degradation by increasing the number of the degradative structures known as invadopodia. The KDELR induces Src activation at the invadopodia and leads to phosphorylation of the Src substrates cortactin and ASAP1, which are required for basal and KDELR-stimulated ECM degradation. This study furthers our understanding of the regulatory circuitry underlying invadopodia-dependent ECM degradation, a key phase in metastases formation and invasive growth.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.,Current address: Institut de Pharmacologie Moléculaire et Cellulaire CNRS and Associated International Laboratory (LIA) NEOGENEX CNRS and University of Nice-Sophia-Antipolis, Valbonne, France
| | - Giorgia Fragassi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mauro Grossi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Benedetta Picciani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Mirco Capitani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Roberto Buccione
- Laboratory of Tumour Cell Invasion, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Michele Sallese
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
14
|
Charbonneau M, Lavoie RR, Lauzier A, Harper K, McDonald PP, Dubois CM. Platelet-Derived Growth Factor Receptor Activation Promotes the Prodestructive Invadosome-Forming Phenotype of Synoviocytes from Patients with Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2016; 196:3264-75. [DOI: 10.4049/jimmunol.1500502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/15/2016] [Indexed: 11/19/2022]
|
15
|
Revach OY, Winograd-Katz SE, Samuels Y, Geiger B. The involvement of mutant Rac1 in the formation of invadopodia in cultured melanoma cells. Exp Cell Res 2016; 343:82-88. [PMID: 26873115 DOI: 10.1016/j.yexcr.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/04/2016] [Indexed: 01/07/2023]
Abstract
In this article, we discuss the complex involvement of a Rho-family GTPase, Rac1, in cell migration and in invadopodia-mediated matrix degradation. We discuss the involvement of invadopodia in invasive cell migration, and their capacity to promote cancer metastasis. Considering the regulation of invadopodia formation, we describe studies that demonstrate the role of Rac1 in the metastatic process, and the suggestion that this effect is attributable to the capacity of Rac1 to promote invadopodia formation. This notion is demonstrated here by showing that knockdown of Rac1 in melanoma cells expressing a wild-type form of this GTPase, reduces invadopodia-dependent matrix degradation. Interestingly, we also show that excessive activity of Rac1, displayed by the P29S, hyperactive, "fast cycling" mutant of Rac1, which is present in 5-10% of melanoma tumors, inhibits invadopodia function. Moreover, knockdown of this hyperactive mutant enhanced matrix degradation, indicating that excessive Rac1 activity by this mutant can negatively regulate invadopodia formation and function.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Creed SJ, Le CP, Hassan M, Pon CK, Albold S, Chan KT, Berginski ME, Huang Z, Bear JE, Lane JR, Halls ML, Ferrari D, Nowell CJ, Sloan EK. β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cell invasion. Breast Cancer Res 2015; 17:145. [PMID: 26607426 PMCID: PMC4660629 DOI: 10.1186/s13058-015-0655-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction For efficient metastatic dissemination, tumor cells form invadopodia to degrade and move through three-dimensional extracellular matrix. However, little is known about the conditions that favor invadopodia formation. Here, we investigated the effect of β-adrenoceptor signaling - which allows cells to respond to stress neurotransmitters - on the formation of invadopodia and examined the effect on tumor cell invasion. Methods To characterize the molecular and cellular mechanisms of β-adrenergic signaling on the invasive properties of breast cancer cells, we used functional cellular assays to quantify invadopodia formation and to evaluate cell invasion in two-dimensional and three-dimensional environments. The functional significance of β-adrenergic regulation of invadopodia was investigated in an orthotopic mouse model of spontaneous breast cancer metastasis. Results β-adrenoceptor activation increased the frequency of invadopodia-positive tumor cells and the number of invadopodia per cell. The effects were selectively mediated by the β2-adrenoceptor subtype, which signaled through the canonical Src pathway to regulate invadopodia formation. Increased invadopodia occurred at the expense of focal adhesion formation, resulting in a switch to increased tumor cell invasion through three-dimensional extracellular matrix. β2-adrenoceptor signaling increased invasion of tumor cells from explanted primary tumors through surrounding extracellular matrix, suggesting a possible mechanism for the observed increased spontaneous tumor cell dissemination in vivo. Selective antagonism of β2-adrenoceptors blocked invadopodia formation, suggesting a pharmacological strategy to prevent tumor cell dissemination. Conclusion These findings provide insight into conditions that control tumor cell invasion by identifying signaling through β2-adrenoceptors as a regulator of invadopodia formation. These findings suggest novel pharmacological strategies for intervention, by using β-blockers to target β2-adrenoceptors to limit tumor cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sarah J Creed
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Caroline P Le
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Mona Hassan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Cindy K Pon
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Sabine Albold
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Keefe T Chan
- Department of Cell & Developmental Biology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA. .,Current address: Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
| | - Matthew E Berginski
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| | - Zhendong Huang
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - James E Bear
- Department of Cell & Developmental Biology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - J Robert Lane
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Davide Ferrari
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia. .,Cousins Center for PNI, UCLA Semel Institute, and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
| |
Collapse
|
17
|
Revach OY, Geiger B. The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adh Migr 2015; 8:215-25. [PMID: 24714132 DOI: 10.4161/cam.27842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as "invadosomes," are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
18
|
Linder S, Scita G. RABGTPases in MT1-MMP trafficking and cell invasion: Physiology versus pathology. Small GTPases 2015; 6:145-52. [PMID: 26107110 DOI: 10.4161/21541248.2014.985484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The matrix metalloproteinase MT1-MMP is a central regulator of cell invasion in both physiological and pathological settings, such as tissue surveillance by immune cells and cancer cell metastasis. MT1-MMP cleaves a plethora of intra- and extracellular proteins, including extracellular matrix proteins, matrix receptors, and also other MMPs, and thus enables modification of both the cell surface proteome and the pericellular environment. Despite its importance for cell invasion, the pathways regulating MT1-MMP exposure on the cell surface are largely unknown. Recently, our groups discovered that a specific subset of RABGTPases, most notably RAB5a, is critical for MT1-MMP trafficking in primary human macrophages and carcinoma cells. Here, we discuss and contrast our findings for both cell types, pointing out common features and differences in the RABGTPase-dependent trafficking of MT1-MMP in health and disease.
Collapse
Affiliation(s)
- Stefan Linder
- a Institute for Medical Microbiology; Virology and Hygiene ; University Medical Center Eppendorf ; Hamburg , Germany
| | | |
Collapse
|
19
|
Zhang J, Tang L, Chen Y, Duan Z, Xiao L, Li W, Liu X, Shen L. Upregulation of Abelson interactor protein 1 predicts tumor progression and poor outcome in epithelial ovarian cancer. Hum Pathol 2015; 46:1331-40. [PMID: 26193797 DOI: 10.1016/j.humpath.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
Abelson interactor protein 1 (Abi1) is a key regulator of actin reorganization and lamellipodia formation. Because of its role in cell migration, Abi1 has been implicated in tumor progression. In the present study, we investigated the role of Abi1 in epithelial ovarian cancer (EOC) by analyzing its expression and correlation with clinicopathological and survival data. We evaluated the expression of Abi1 in 223 paraffin-embedded EOC specimens by immunohistochemistry and 46 frozen EOC samples by Western blot and real-time reverse transcription polymerase chain reaction analysis. Results showed that Abi1 protein and mRNA expression was significantly higher in EOC tissue compared with noncancerous tumors and normal ovaries (P < .05). Moreover, high level of Abi1 expression was significantly correlated with advanced stage, high grade, elevated Ca-125 level, and suboptimal surgical debulking (P < .05). By Western blot analysis, Abi1 was expressed in highly invasive cells compared with weakly invasive cells (P < .05). Immunofluorescence was performed to demonstrate Abi1 expression in SKOV3 cells. Additionally, upregulation of Abi1 significantly correlated with shorter survival (P < .05). Most importantly, multivariate analysis showed that Abi1 overexpression is an independent prognostic factor, complementary to clinical stage and residual tumor size. In conclusion, our findings suggest that Abi1 acts as a tumor-promoting gene in EOC progression, which may lead to unfavorable prognosis. Abi1 may serve as a potential effective prognostic marker for EOC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Xiao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenwen Li
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaohan Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyuan Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
20
|
Revach OY, Weiner A, Rechav K, Sabanay I, Livne A, Geiger B. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci Rep 2015; 5:9466. [PMID: 25820462 PMCID: PMC4377574 DOI: 10.1038/srep09466] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 01/11/2023] Open
Abstract
Invadopodia are actin-rich membrane protrusions through which cells adhere to the extracellular matrix and degrade it. In this study, we explored the mechanical interactions of invadopodia in melanoma cells, using a combination of correlative light and electron microscopy. We show here that the core actin bundle of most invadopodia interacts with integrin-containing matrix adhesions at its basal end, extends through a microtubule-rich cytoplasm, and at its apical end, interacts with the nuclear envelope and indents it. Abolishment of invadopodia by microtubules or src inhibitors leads to the disappearance of these nuclear indentations. Based on the indentation profile and the viscoelastic properties of the nucleus, the force applied by invadopodia is estimated to be in the nanoNewton range. We further show that knockdown of the LINC complex components nesprin 2 or SUN1 leads to a substantial increase in the prominence of the adhesion domains at the opposite end of the invadopodia. We discuss this unexpected, long-range mechanical interplay between the apical and basal domains of invadopodia, and its possible involvement in the penetration of invadopodia into the matrix.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Allon Weiner
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilana Sabanay
- 1] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel [2] Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Cmoch A, Podszywalow-Bartnicka P, Palczewska M, Piwocka K, Groves P, Pikula S. Stimulators of mineralization limit the invasive phenotype of human osteosarcoma cells by a mechanism involving impaired invadopodia formation. PLoS One 2014; 9:e109938. [PMID: 25314307 PMCID: PMC4196965 DOI: 10.1371/journal.pone.0109938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). RESULTS In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.
Collapse
Affiliation(s)
- Anna Cmoch
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Malgorzata Palczewska
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrick Groves
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
22
|
Woodham EF, Machesky LM. Polarised cell migration: intrinsic and extrinsic drivers. Curr Opin Cell Biol 2014; 30:25-32. [PMID: 24953729 DOI: 10.1016/j.ceb.2014.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/17/2014] [Indexed: 11/24/2022]
Abstract
Cell polarity arises out of asymmetry of the distribution and organisation of cell contents. Polarity is an important feature of all living organisms and much energy is devoted to breaking symmetry and establishing polarity. Recent developments in our understanding of how the budding yeast Saccharomyces cerevisiae establishes and maintains polarity for cell division shed light on universal mechanisms that may be relevant to both asymmetric cell division and polarised cell migration in other organisms. Here, we summarise some of the recent developments in our understanding of polarity of the cytoskeleton and associated signalling molecules as it relates to cell migration. Parallels are drawn between planar cell polarity and apical-basal polarity in epithelial tissues and front-back polarity in migrating cells.
Collapse
Affiliation(s)
- Emma F Woodham
- The CRUK Beatson Institute for Cancer Research, University of Glasgow, College of MVLS, Garscube Campus, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Laura M Machesky
- The CRUK Beatson Institute for Cancer Research, University of Glasgow, College of MVLS, Garscube Campus, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
23
|
Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Rondé P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis 2014; 5:e1379. [PMID: 25118939 PMCID: PMC4454304 DOI: 10.1038/cddis.2014.329] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
Melanoma is one of the most deadly cancers because of its high propensity to metastasis, a process that requires migration and invasion of tumor cells driven by the regulated formation of adhesives structures like focal adhesions (FAs) and invasive structures like invadopodia. FAK, the major kinase of FAs, has been implicated in many cellular processes, including migration and invasion. In this study, we investigated the role of FAK in the regulation of invasion. We report that suppression of FAK in B16F10 melanoma cells led to increased invadopodia formation and invasion through Matrigel, but impaired migration. These effects are rescued by FAK WT but not by FAK(Y397F) reexpression. Invadopodia formation requires local Src activation downstream of FAK and in a FAK phosphorylation-dependant manner. FAK deletion correlates with increased phosphorylation of Tks-5 (tyrosine kinase substrate with five SH3 domain) and reactive oxygen species production. In conclusion, our data show that FAK is able to mediate opposite effects on cell migration and invasion. Accordingly, beneficial effects of FAK inhibition are context dependent and may depend on the cell response to environmental cues and/or on the primary or secondary changes that melanoma experienced through the invasion cycle.
Collapse
Affiliation(s)
- K Kolli-Bouhafs
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - E Sick
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - F Noulet
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - J-P Gies
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - J De Mey
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - P Rondé
- 1] CNRS, UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Illkirch, France [2] Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
24
|
Abstract
The occurrence of invadopodia has been, since its characterization, a hallmark of cancerous cell invasion and metastasis. These structures are now the subject of a controversy concerning their cellular function, molecular regulation, and assembly. The terms invadopodia and podosomes have been used interchangeably since their discovery back in 1980. Since then, these phenotypes are now more established and accepted by the scientific community as vital structures for 3D cancer cell motility. Many characteristics relating to invadopodia and podosomes have been elucidated, which might prove these structures as good targets for metastasis treatment. In this review, we briefly review the actin reorganization process needed in most types of cancer cell motility. We also review the important characteristics of invadopodia, including molecular components, assembly, markers, and the signaling pathways, providing a comprehensive model for invadopodia regulation.
Collapse
Affiliation(s)
- Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University , Beirut , Lebanon
| | | |
Collapse
|
25
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
26
|
Myers RB, Wei L, Castellot JJ. The matricellular protein CCN5 regulates podosome function via interaction with integrin αvβ 3. J Cell Commun Signal 2014; 8:135-46. [PMID: 24488697 DOI: 10.1007/s12079-013-0218-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
CCN proteins play crucial roles in cell motility, matrix turnover, and proliferation. In particular, CCN5 plays a role in cell motility and proliferation in several cell types; however, no functional binding proteins for CCN5 have been identified. In this study we report that CCN5 binds to the cell surface receptor integrin αvβ3 in vascular smooth muscle cells. Furthermore, this interaction takes place in podosomes, organelles known to degrade matrix and mediate motility. We show that CCN5 regulates the ability of podosomes to degrade matrix, but does not affect podosome formation. The level of CCN5 present in a podosome negatively correlates with its ability to degrade matrix. Conversely, knockdown of CCN5 greatly enhances the matrix-degrading ability of podosomes. These findings suggest that the antimotility effects of CCN5 may be mediated through the direct interaction of CCN5 and integrin αvβ3 in podosomes and the concomitant suppression of matrix degradation that is required for cell migration.
Collapse
Affiliation(s)
- Ronald B Myers
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
27
|
Abstract
Clustered N-WASP binds directly to actin-filament barbed ends and can either slow individual filament growth or processively accelerate the assembly of bundled actin filaments. This novel Arp2/3-independent mechanism of N-WASP likely plays a role in invadopodia and podosome formation, in which both N-WASP and actin filaments are tightly clustered. Neuronal Wiskott–Aldrich syndrome protein (N-WASP)–activated actin polymerization drives extension of invadopodia and podosomes into the basement layer. In addition to activating Arp2/3, N-WASP binds actin-filament barbed ends, and both N-WASP and barbed ends are tightly clustered in these invasive structures. We use nanofibers coated with N-WASP WWCA domains as model cell surfaces and single-actin-filament imaging to determine how clustered N-WASP affects Arp2/3-independent barbed-end assembly. Individual barbed ends captured by WWCA domains grow at or below their diffusion-limited assembly rate. At high filament densities, however, overlapping filaments form buckles between their nanofiber tethers and myosin attachment points. These buckles grew ∼3.4-fold faster than the diffusion-limited rate of unattached barbed ends. N-WASP constructs with and without the native polyproline (PP) region show similar rate enhancements in the absence of profilin, but profilin slows barbed-end acceleration from constructs containing the PP region. Increasing Mg2+ to enhance filament bundling increases the frequency of filament buckle formation, consistent with a requirement of accelerated assembly on barbed-end bundling. We propose that this novel N-WASP assembly activity provides an Arp2/3-independent force that drives nascent filament bundles into the basement layer during cell invasion.
Collapse
Affiliation(s)
- Nimisha Khanduja
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | |
Collapse
|
28
|
Li D, Jin L, Alesi GN, Kim YM, Fan J, Seo JH, Wang D, Tucker M, Gu TL, Lee BH, Taunton J, Magliocca KR, Chen ZG, Shin DM, Khuri FR, Kang S. The prometastatic ribosomal S6 kinase 2-cAMP response element-binding protein (RSK2-CREB) signaling pathway up-regulates the actin-binding protein fascin-1 to promote tumor metastasis. J Biol Chem 2013; 288:32528-32538. [PMID: 24085294 PMCID: PMC3820886 DOI: 10.1074/jbc.m113.500561] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/30/2013] [Indexed: 01/11/2023] Open
Abstract
Metastasis is the leading cause of death in patients with breast, lung, and head and neck cancers. However, the molecular mechanisms underlying metastases in these cancers remain unclear. We found that the p90 ribosomal S6 kinase 2 (RSK2)-cAMP response element-binding protein (CREB) pathway is commonly activated in diverse metastatic human cancer cells, leading to up-regulation of a CREB transcription target Fascin-1. We also observed that the protein expression patterns of RSK2 and Fascin-1 correlate in primary human tumor tissue samples from head and neck squamous cell carcinoma patients. Moreover, knockdown of RSK2 disrupts filopodia formation and bundling in highly invasive cancer cells, leading to attenuated cancer cell invasion in vitro and tumor metastasis in vivo, whereas expression of Fascin-1 significantly rescues these phenotypes. Furthermore, targeting RSK2 with the small molecule RSK inhibitor FMK-MEA effectively attenuated the invasive and metastatic potential of cancer cells in vitro and in vivo, respectively. Taken together, our findings for the first time link RSK2-CREB signaling to filopodia formation and bundling through the up-regulation of Fascin-1, providing a proinvasive and prometastatic advantage to human cancers. Therefore, protein effectors of the RSK2-CREB-Fascin-1 pathway represent promising biomarkers and therapeutic targets in the clinical prognosis and treatment of metastatic human cancers.
Collapse
Affiliation(s)
- Dan Li
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lingtao Jin
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Gina N Alesi
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Young-Mee Kim
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jun Fan
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jae Ho Seo
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dongsheng Wang
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Meghan Tucker
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923
| | - Ting-Lei Gu
- Cell Signaling Technology, Inc., Danvers, Massachusetts 01923
| | - Benjamin H Lee
- the Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Jack Taunton
- the Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94107
| | - Kelly R Magliocca
- the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Zhuo G Chen
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dong M Shin
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Fadlo R Khuri
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sumin Kang
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322,.
| |
Collapse
|
29
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
30
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
HDAC6 deacetylase activity is required for hypoxia-induced invadopodia formation and cell invasion. PLoS One 2013; 8:e55529. [PMID: 23405166 PMCID: PMC3566011 DOI: 10.1371/journal.pone.0055529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Despite significant progress in the cancer field, tumor cell invasion and metastasis remain a major clinical challenge. Cell invasion across tissue boundaries depends largely on extracellular matrix degradation, which can be initiated by formation of actin-rich cell structures specialized in matrix degradation called invadopodia. Although the hypoxic microenvironment within solid tumors has been increasingly recognized as an important driver of local invasion and metastasis, little is known about how hypoxia influences invadopodia biogenesis. Here, we show that histone deacetylase 6 (HDAC6), a cytoplasmic member of the histone deacetylase family, is a novel modulator of hypoxia-induced invadopodia formation. Hypoxia was found to enhance HDAC6 tubulin deacetylase activity through activation of the EGFR pathway. Activated HDAC6, in turn, triggered Smad3 phosphorylation resulting in nuclear accumulation. Inhibition of HDAC6 activity or knockdown of the protein inhibited both hypoxia-induced Smad3 activation and invadopodia formation. Our data provide evidence that hypoxia influences invadopodia formation in a biphasic manner, which involves the activation of HDAC6 deacetylase activity by EGFR, resulting in enhanced Smad phosphorylation and nuclear accumulation. The identification of HDAC6 as a key participant of hypoxia-induced cell invasion may have important therapeutic implications for the treatment of metastasis in cancer patients.
Collapse
|
32
|
Sharma VP, Entenberg D, Condeelis J. High-resolution live-cell imaging and time-lapse microscopy of invadopodium dynamics and tracking analysis. Methods Mol Biol 2013; 1046:343-57. [PMID: 23868599 DOI: 10.1007/978-1-62703-538-5_21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Invadopodia are specialized structures of cancer cells which aid in cancer cell invasion and metastasis. Therefore, studying the early steps of invadopodium assembly and its life cycle at the subcellular level by using high spatiotemporal resolution imaging provides an opportunity for understanding the signaling mechanisms involved in this very important process. In this chapter, we describe the design of a custom-built high-resolution fluorescence microscope which makes this challenging imaging possible. We also describe an ImageJ plugin that we have developed for tracking of invadopodia and lifetime analysis.
Collapse
Affiliation(s)
- Ved P Sharma
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
33
|
Lauzier A, Charbonneau M, Paquette M, Harper K, Dubois CM. Transglutaminase 2 cross-linking activity is linked to invadopodia formation and cartilage breakdown in arthritis. Arthritis Res Ther 2012; 14:R159. [PMID: 22762273 PMCID: PMC3580551 DOI: 10.1186/ar3899] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction The microenvironment surrounding inflamed synovium leads to the activation of fibroblast-like synoviocytes (FLSs), which are important contributors to cartilage destruction in rheumatoid arthritic (RA) joints. Transglutaminase 2 (TG2), an enzyme involved in extracellular matrix (ECM) cross-linking and remodeling, is activated by inflammatory signals. This study was undertaken to assess the potential contribution of TG2 to FLS-induced cartilage degradation. Methods Transglutaminase (TGase) activity and collagen degradation were assessed with the immunohistochemistry of control, collagen-induced arthritic (CIA) or TG2 knockdown (shRNA)-treated joint tissues. TGase activity in control (C-FLS) and arthritic (A-FLS) rat FLSs was measured by in situ 5-(biotinamido)-pentylamine incorporation. Invadopodia formation and functions were measured in rat FLSs and cells from normal (control; C-FLS) and RA patients (RA-FLS) by in situ ECM degradation. Immunoblotting, enzyme-linked immunosorbent assay (ELISA), and p3TP-Lux reporter assays were used to assess transforming growth factor-β (TGF-β) production and activation. Results TG2 and TGase activity were associated with cartilage degradation in CIA joints. In contrast, TGase activity and cartilage degradation were reduced in joints by TG2 knockdown. A-FLSs displayed higher TGase activity and TG2 expression in ECM than did C-FLSs. TG2 knockdown or TGase inhibition resulted in reduced invadopodia formation in rat and human arthritic FLSs. In contrast, increased invadopodia formation was noted in response to TGase activity induced by TGF-β, dithiothreitol (DTT), or TG2 overexpression. TG2-induced increases in invadopodia formation were blocked by TGF-β neutralization or inhibition of TGF-βR1. Conclusions TG2, through its TGase activity, is required for ECM degradation in arthritic FLS and CIA joints. Our findings provide a potential target to prevent cartilage degradation in RA.
Collapse
|
34
|
Jayo A, Parsons M. Imaging of cell adhesion events in 3D matrix environments. Eur J Cell Biol 2012; 91:824-33. [PMID: 22705211 DOI: 10.1016/j.ejcb.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023] Open
Abstract
Cell adhesion plays an essential role in development and homeostasis, but is also a key regulator of many diseases such as cancer and immune dysfunction. Numerous studies over the past three decades have revealed a wealth of information detailing signalling molecules required for cell adhesion to two-dimensional surfaces. However, in vivo many cells are completely surrounded by matrix and this will very likely influence the size, composition and dynamics of adhesive structures. The study of adhesion in cells within three-dimensional environments is still in its infancy, thus the role and regulation of adhesions in these complex environments remains unclear. The recent development of new experimental models coupled with significant advances in cell imaging approaches have provided platforms for researchers to begin to dissect adhesion signalling in cells in 3D matrices. Here we summarise the recent insights in cell adhesion formation and regulation in 3D model systems and the imaging approaches used to analyse these events.
Collapse
Affiliation(s)
- Asier Jayo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, UK
| | | |
Collapse
|
35
|
Baldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. J Cell Sci 2012; 125:3858-69. [PMID: 22595522 DOI: 10.1242/jcs.104018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filamins are an important family of actin-binding proteins that, in addition to bundling actin filaments, link cell surface adhesion proteins, signaling receptors and channels to the actin cytoskeleton, and serve as scaffolds for an array of intracellular signaling proteins. Filamins are known to regulate the actin cytoskeleton, act as mechanosensors that modulate tissue responses to matrix density, control cell motility and inhibit activation of integrin adhesion receptors. In this study, we extend the repertoire of filamin activities to include control of extracellular matrix (ECM) degradation. We show that knockdown of filamin increases matrix metalloproteinase (MMP) activity and induces MMP2 activation, enhancing the ability of cells to remodel the ECM and increasing their invasive potential, without significantly altering two-dimensional random cell migration. We further show that within filamin A, the actin-binding domain is necessary, but not sufficient, to suppress the ECM degradation seen in filamin-A-knockdown cells and that dimerization and integrin binding are not required. Filamin mutations are associated with neuronal migration disorders and a range of congenital malformations characterized by skeletal dysplasia and various combinations of cardiac, craniofacial and intestinal anomalies. Furthermore, in breast cancers loss of filamin A has been correlated with increased metastatic potential. Our data suggest that effects on ECM remodeling and cell invasion should be considered when attempting to provide cellular explanations for the physiological and pathological effects of altered filamin expression or filamin mutations.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Pharmacology, Department of Cell Biology and Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | | | | | | | |
Collapse
|
36
|
Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, Seiki M, Ichikawa K. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS Comput Biol 2012; 8:e1002479. [PMID: 22511862 PMCID: PMC3325185 DOI: 10.1371/journal.pcbi.1002479] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/01/2012] [Indexed: 11/18/2022] Open
Abstract
MT1-MMP is a potent invasion-promoting membrane protease employed by aggressive cancer cells. MT1-MMP localizes preferentially at membrane protrusions called invadopodia where it plays a central role in degradation of the surrounding extracellular matrix (ECM). Previous reports suggested a role for a continuous supply of MT1-MMP in ECM degradation. However, the turnover rate of MT1-MMP and the extent to which the turnover contributes to the ECM degradation at invadopodia have not been clarified. To approach this problem, we first performed FRAP (Fluorescence Recovery after Photobleaching) experiments with fluorescence-tagged MT1-MMP focusing on a single invadopodium and found very rapid recovery in FRAP signals, approximated by double-exponential plots with time constants of 26 s and 259 s. The recovery depended primarily on vesicle transport, but negligibly on lateral diffusion. Next we constructed a computational model employing the observed kinetics of the FRAP experiments. The simulations successfully reproduced our FRAP experiments. Next we inhibited the vesicle transport both experimentally, and in simulation. Addition of drugs inhibiting vesicle transport blocked ECM degradation experimentally, and the simulation showed no appreciable ECM degradation under conditions inhibiting vesicle transport. In addition, the degree of the reduction in ECM degradation depended on the degree of the reduction in the MT1-MMP turnover. Thus, our experiments and simulations have established the role of the rapid turnover of MT1-MMP in ECM degradation at invadopodia. Furthermore, our simulations suggested synergetic contributions of proteolytic activity and the MT1-MMP turnover to ECM degradation because there was a nonlinear and marked reduction in ECM degradation if both factors were reduced simultaneously. Thus our computational model provides a new in silico tool to design and evaluate intervention strategies in cancer cell invasion. Prevention of invasion is important in cancer therapy. MT1-MMP is a membrane protein involved in degradation of ECM (extracellular matrix) that is highly expressed at invadopodia, which are small protrusions of cancer cells. ECM degradation by MT1-MMP at invadopodia is hypothesized as the initial step of cancer cell invasion. However, MT1-MMP is inhibited by the endogenous inhibitor TIMP-2, so continuous turnover of MT1-MMP at the surface of invadopodia would be required. In agreement, it has been reported that the blockade of vesicle transport, which is one mechanism involved in the turnover, blocked the ECM degradation. However, the turnover rate of MT1-MMP at invadopodia and the extent to which the turnover is critical for the degradation of ECM have not been clarified. In this report we measured the turnover rate of MT1-MMP at a single invadopodium and found rapid turnover rates with time constants of 26 s and 259 s, which primarily depended on the vesicle transport. A computational model was constructed based on the observed kinetics. If we blocked the rapid turnover, the ECM degradation was blocked both experimentally and in simulations. These results established the role of the rapid turnover of MT1-MMP in the ECM degradation at invadopodia.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takashi Suzuki
- Division of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alissa M. Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| | - Kazuhisa Ichikawa
- JST, CREST, Chiyoda-ku, Tokyo, Japan
- Division of Mathematical Oncology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
37
|
Mathematical modeling of invadopodia formation. J Theor Biol 2011; 298:138-46. [PMID: 22212912 DOI: 10.1016/j.jtbi.2011.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/25/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022]
Abstract
In invasive cancer cells, specialized sub-cellular membrane structures which carry out a pivotal process in cancer invasion, termed invadopodia, are observed. Invadopodia appear irregularly within the cytoplasm and their general shape is small punctuated finger-like protrusions with dimension up to several μm long. They may exist and persist on a timescale between several tens of minutes to one hour. The formation of invadopodia requires the integration of several processes that include actin reorganization, extracellular matrix (ECM) degradation, signaling processes through receptors such as the epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) synthesis and delivery to the location of the invading front. In this paper, we consider a mathematical model investigating the coupling of these fundamental processes, and we investigate how invadopodia appear in this model. We investigate the spatio-temporal dynamics of the model in two spatial dimensions by using numerical computational simulations. We show that in a special parameter region of the model, random fluctuations of ECM degradation and a positive feedback loop regarding the up-regulation of MMPs allow us to reproduce finger-like protrusions which have similar size and lifetime as invadopodia. This study provides a new insight into how invadopodia appear in cancer cells and why space and time scales exist for invadopodia.
Collapse
|
38
|
Scales TME, Parsons M. Spatial and temporal regulation of integrin signalling during cell migration. Curr Opin Cell Biol 2011; 23:562-8. [DOI: 10.1016/j.ceb.2011.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 11/26/2022]
|
39
|
Abstract
Tumor cell invadopodia mediate degradation of matrix barriers. A new study now demonstrates that a ring of active RhoC focuses invadopodial protrusion and degradation by regulating cofilin activity.
Collapse
|
40
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
41
|
p140Cap suppresses the invasive properties of highly metastatic MTLn3-EGFR cells via impaired cortactin phosphorylation. Oncogene 2011; 31:624-33. [DOI: 10.1038/onc.2011.257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12:413-26. [PMID: 21697900 DOI: 10.1038/nrm3141] [Citation(s) in RCA: 824] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Podosomes and invadopodia are actin-based dynamic protrusions of the plasma membrane of metazoan cells that represent sites of attachment to - and degradation of - the extracellular matrix. The key proteins in these structures include the actin regulators cortactin and neural Wiskott-Aldrich syndrome protein (N-WASP), the adaptor proteins Tyr kinase substrate with four SH3 domains (TKS4) and Tyr kinase substrate with five SH3 domains (TKS5), and the metalloprotease membrane type 1 matrix metalloprotease (MT1MMP; also known as MMP14). Many cell types can produce these structures, including invasive cancer cells, vascular smooth muscle and endothelial cells, and immune cells such as macrophages and dendritic cells. Recently, progress has been made in our understanding of the regulatory and functional aspects of podosome and invadopodium biology and their role in human disease.
Collapse
|
43
|
Lauzier A, Charbonneau M, Harper K, Jilaveanu-Pelmus M, Dubois CM. Formation of invadopodia-like structures by synovial cells promotes cartilage breakdown in collagen-induced arthritis: Involvement of the protein tyrosine kinase Src. ACTA ACUST UNITED AC 2011; 63:1591-602. [DOI: 10.1002/art.30305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Hu J, Mukhopadhyay A, Truesdell P, Chander H, Mukhopadhyay UK, Mak AS, Craig AWB. Cdc42-interacting protein 4 is a Src substrate that regulates invadopodia and invasiveness of breast tumors by promoting MT1-MMP endocytosis. J Cell Sci 2011; 124:1739-51. [PMID: 21525036 DOI: 10.1242/jcs.078014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are actin-rich membrane protrusions that promote extracellular matrix degradation and invasiveness of tumor cells. Src protein-tyrosine kinase is a potent inducer of invadopodia and tumor metastases. Cdc42-interacting protein 4 (CIP4) adaptor protein interacts with actin regulatory proteins and regulates endocytosis. Here, we show that CIP4 is a Src substrate that localizes to invadopodia in MDA-MB-231 breast tumor cells expressing activated Src (MDA-SrcYF). To probe the function of CIP4 in invadopodia, we established stable CIP4 knockdown in MDA-SrcYF cell lines by RNA interference. Compared with control cells, CIP4 knockdown cells degrade more extracellular matrix (ECM), have increased numbers of mature invadopodia and are more invasive through matrigel. Similar results are observed with knockdown of CIP4 in EGF-treated MDA-MB-231 cells. This inhibitory role of CIP4 is explained by our finding that CIP4 limits surface expression of transmembrane type I matrix metalloprotease (MT1-MMP), by promoting MT1-MMP internalization. Ectopic expression of CIP4 reduces ECM digestion by MDA-SrcYF cells, and this activity is enhanced by mutation of the major Src phosphorylation site in CIP4 (Y471). Overall, our results identify CIP4 as a suppressor of Src-induced invadopodia and invasion in breast tumor cells by promoting endocytosis of MT1-MMP.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6 Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Mader CC, Oser M, Magalhaes MAO, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 2011; 71:1730-41. [PMID: 21257711 PMCID: PMC3057139 DOI: 10.1158/0008-5472.can-10-1432] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invasive carcinoma cells use specialized actin polymerization-driven protrusions called invadopodia to degrade and possibly invade through the extracellular matrix (ECM) during metastasis. Phosphorylation of the invadopodium protein cortactin is a master switch that activates invadopodium maturation and function. Cortactin was originally identified as a hyperphosphorylated protein in v-Src-transformed cells, but the kinase or kinases that are directly responsible for cortactin phosphorylation in invadopodia remain unknown. In this study, we provide evidence that the Abl-related nonreceptor tyrosine kinase Arg mediates epidermal growth factor (EGF)-induced cortactin phosphorylation, triggering actin polymerization in invadopodia, ECM degradation, and matrix proteolysis-dependent tumor cell invasion. Both Src and Arg localize to invadopodia and are required for EGF-induced actin polymerization. Notably, Arg overexpression in Src knockdown cells can partially rescue actin polymerization in invadopodia while Src overexpression cannot compensate for loss of Arg, arguing that Src indirectly regulates invadopodium maturation through Arg activation. Our findings suggest a novel mechanism by which an EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Furthermore, they identify Arg as a novel mediator of invadopodia function and a candidate therapeutic target to inhibit tumor invasion in vivo.
Collapse
Affiliation(s)
- Christopher C. Mader
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
- Department of Cell Biology, Yale University, 333 Cedar Street, New Haven, CT 06520
| | - Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Marco A. O. Magalhaes
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
| | - Hava Gil-Henn
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
46
|
Cytoskeleton networks in basement membrane transmigration. Eur J Cell Biol 2011; 90:93-9. [DOI: 10.1016/j.ejcb.2010.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022] Open
|
47
|
Artym VV, Matsumoto K, Mueller SC, Yamada KM. Dynamic membrane remodeling at invadopodia differentiates invadopodia from podosomes. Eur J Cell Biol 2011; 90:172-80. [PMID: 20656375 PMCID: PMC3153956 DOI: 10.1016/j.ejcb.2010.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/01/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022] Open
Abstract
Invadopodia are specialized actin-rich protrusions of metastatic tumor and transformed cells with crucial functions in ECM degradation and invasion. Although early electron microscopy studies described invadopodia as long filament-like protrusions of the cell membrane adherent to the matrix, fluorescence microscopy studies have focused on invadopodia as actin-cortactin aggregates localized to areas of ECM degradation. The absence of a clear conceptual integration of these two descriptions of invadopodial structure has impeded understanding of the regulatory mechanisms that govern invadopodia. To determine the relationship between the membrane filaments identified by electron microscopy and the actin-cortactin aggregates of invadopodia, we applied rapid live-cell high-resolution TIRF microscopy to examine cell membrane dynamics at the cortactin core of the invadopodia of human carcinoma cells. We found that cortactin docking to the cell membrane adherent to 2D fibronectin matrix initiates invadopodium assembly associated with the formation of an invadopodial membrane process that extends from a ventral cell membrane lacuna toward the ECM. The tip of the invadopodial process flattens as it interacts with the 2D matrix, and it undergoes constant rapid ruffling and dynamic formation of filament-like protrusions as the invadopodium matures. To describe this newly discovered dynamic relationship between the actin-cortactin core and invadopodial membranes, we propose a model of the invadopodial complex. Using TIRF microscopy, we also established that - in striking contrast to the invadopodium - membrane at the podosome of a macrophage fails to form any process- or filament-like membrane protrusions. Thus, the undulation and ruffling of the invadopodial membrane together with the formation of dynamic filament-like extensions from the invadopodial cortactin core defines invadopodia as invasive superstructures that are distinct from the podosomes.
Collapse
Affiliation(s)
- Vira V Artym
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
48
|
Secretory and endo/exocytic trafficking in invadopodia formation: The MT1-MMP paradigm. Eur J Cell Biol 2011; 90:108-14. [DOI: 10.1016/j.ejcb.2010.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022] Open
|
49
|
Le Dévédec SE, Yan K, de Bont H, Ghotra V, Truong H, Danen EH, Verbeek F, van de Water B. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 2010; 67:3219-40. [PMID: 20556632 PMCID: PMC2933849 DOI: 10.1007/s00018-010-0419-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/21/2010] [Accepted: 05/14/2010] [Indexed: 01/15/2023]
Abstract
Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration.
Collapse
Affiliation(s)
- Sylvia E. Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kuan Yan
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Veerander Ghotra
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hoa Truong
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Erik H. Danen
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Fons Verbeek
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Leiden/Amsterdam Center for Drug Research, Gorleaus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
50
|
Novel invadopodia components revealed by differential proteomic analysis. Eur J Cell Biol 2010; 90:115-27. [PMID: 20609496 DOI: 10.1016/j.ejcb.2010.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/26/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022] Open
Abstract
When highly invasive cancer cells are cultured on an extracellular matrix substrate, they extend proteolytically active membrane protrusions, termed invadopodia, from their ventral surface into the underlying matrix. Our understanding of the molecular composition of invadopodia has rapidly advanced in the last few years, but is far from complete. To accelerate component discovery, we resorted to a proteomics approach by applying DIfference Gel Electrophoresis (DIGE) to compare invadopodia-enriched sub-cellular fractions with cytosol and cell body membrane fractions and the whole cell lysate. The fractionation procedure was validated through step-by-step monitoring of the enrichment in typical actin-related invadopodia-associated proteins. After statistical analysis, 129 protein spots were selected for peptide mass fingerprinting analysis; of these 76 were successfully identified and found to correspond to 58 proteins belonging to different functional classes including aerobic glycolysis and other metabolic pathways, protein synthesis, degradation and folding, cytoskeletal components and membrane-associated proteins. Finally, validation of a number of identified proteins was carried out by a combination of immuno-blotting on cell fractions and immunofluorescence localization at invadopodia. These results reveal newly identified components of invadopodia and open further avenues to the molecular study of invasive growth behavior of cancer cells.
Collapse
|