1
|
Bruno F, Aceto MA, Paparazzo E, Arcuri D, Vozzo F, Mirante S, Greco BM, Serra Cassano T, Abondio P, Canterini S, Malvaso A, Grecucci A, Citrigno L, Geracitano S, Spadafora P, Puccio G, Frangipane F, Curcio SM, Ferrise F, Laganà V, Colao R, Passarino G, Bruni AC, Maletta R, Cavalcanti F, Montesanto A. Genetic variability in ADAM17/TACE is associated with sporadic Alzheimer's disease risk, neuropsychiatric symptoms and cognitive performance on the Rey Auditory Verbal Learning and Clock Drawing Tests. PLoS One 2025; 20:e0309631. [PMID: 40327644 PMCID: PMC12054869 DOI: 10.1371/journal.pone.0309631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Recent studies have highlighted the significant role of ADAM17/TACE (encoded by ADAM17/TACE) in the pathogenesis of Alzheimer's disease (AD). Yet, the relationship between ADAM17/TACE gene polymorphisms and AD was less studied. This study aims to analyse the relationship of ADAM17/TACE gene polymorphism with the risk, age of onset, neuropsychiatric manifestations, cognitive impairment, and medial temporal lobe atrophy in sporadic AD (sAD). This case-control association study was conducted in an Italian cohort consisting of 297 sAD patients and 316 controls. Seven tag-SNPs were selected and genotyped. Linear and logistic regression analyses were used to assess the association between parameters of interest and the genetic variability of ADAM17/TACE. After Bonferroni correction, our findings underscore the complexity of genetic influences of ADAM17/TACE on sAD, particularly the roles of rs12692385 in modulating sAD risk and the performance on the Rey Auditory Verbal Learning Test - delayed recall. In addition, rs13008101 significantly affected the performance on the Clock Drawing Test. Moreover, rs10179642 and rs35280016 were associated with a higher frequency and severity of hallucinations and agitation/aggression, respectively. These results contribute to a deeper understanding of the genetic underpinnings of sAD and may be useful for examining the risk of developing sAD, assessing cognitive deficits, neuropsychiatric symptoms, and informing new therapeutic strategies and future research targeting ADAM17/TACE.
Collapse
Affiliation(s)
- Francesco Bruno
- Department of Human and Social Sciences, Faculty of Social and Communication Sciences, Universitas Mercatorum, Rome, Italy
| | - Mirella A. Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Domenico Arcuri
- Student at Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Vozzo
- Student at Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Serena Mirante
- Student at School of Psychology, University of Florence, Firenze, Italy
| | - Beatrice M. Greco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), Mangone, Italy
| | - Teresa Serra Cassano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Paolo Abondio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Malvaso
- Neurology Resident at Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
| | - Luigi Citrigno
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), Mangone, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), Mangone, Italy
| | - Gianfranco Puccio
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Francesca Frangipane
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Sabrina M. Curcio
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Francesca Ferrise
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Valentina Laganà
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, CZ, Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), Mangone, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
2
|
Suresh D, Mukherjee S, Zambre A, Ghoshdastidar S, Yadavilli S, Rekha KR, Upendran A, Kannan R. Nanoparticle-Mediated Cosilencing of Drug Resistance and Compensatory Genes Enhances Lung Cancer Therapy. ACS NANO 2025; 19:15256-15271. [PMID: 40239042 DOI: 10.1021/acsnano.4c12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Non-small cell lung cancer (NSCLC) is challenging to treat due to acquired drug resistance, leading to high mortality rates. NSCLC patients with mutations in the epidermal growth factor receptor (EGFR) region are treated with tyrosine kinase inhibitors (TKI) as a first-line treatment, but many develop resistance within 1-2 years. AXL overexpression contributes to drug resistance in over 25% of patients, as shown by tumor analyses, prompting efforts to develop small-molecule inhibitors targeting AXL. However, we found that AXL repression increases compensatory FN14 signaling that could affect the therapeutic efficacy. Therefore, we chose to evaluate therapeutic efficacy after silencing both AXL and FN14 genes using short interfering RNA (siRNA) therapy. While siRNAs are more selective than small-molecule inhibitors, they are prone to in vivo degradation. To address this, we developed gelatin nanoparticles carrying siRNAs targeting AXL and FN14 (GsiAF). These nanoparticles were designed to protect siRNA from serum degradation and to allow antibody functionalization on their surface. We demonstrate that GsiAF selectively and effectively silences the respective genes under both in vitro and in vivo conditions, thereby overcoming compensatory FN14 signaling. Results indicate that GsiAF was successful in delivering siRNAs to tumors and downregulating both AXL and FN14 genes. We show that coinhibition of AXL and FN14 has effectively decreased TKI resistance in cancer cells and significantly reduced tumor growth in mice bearing lung cancer. The gelatin-siRNA nanoconstruct combined with TKI represents a promising strategy for overcoming drug resistance in NSCLC and other cancers, with potential for future clinical translation.
Collapse
MESH Headings
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Humans
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Nanoparticles/chemistry
- Mice
- Axl Receptor Tyrosine Kinase
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/chemistry
- Cell Line, Tumor
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Mice, Nude
Collapse
Affiliation(s)
- Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Soumavo Mukherjee
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Ajit Zambre
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Shreya Ghoshdastidar
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Sairam Yadavilli
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Karamkolly R Rekha
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Anandhi Upendran
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Raghuraman Kannan
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| |
Collapse
|
3
|
Olety B, Usami Y, Peters P, Wu Y, Göttlinger H. The ectodomain sheddase ADAM10 restricts HIV-1 propagation and is counteracted by Nef. SCIENCE ADVANCES 2025; 11:eadt1836. [PMID: 40249826 PMCID: PMC12007588 DOI: 10.1126/sciadv.adt1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
HIV-1 Nef enhances virus propagation by down-regulating CD4 and SERINC5. However, recent evidence points to the existence of an additional Nef-sensitive restriction mechanism. We now show that Nef suppresses the aberrant cleavage of HIV-1 gp41 by ADAM10, a virion-associated cellular ectodomain sheddase, and thus increases the amount of HIV-1 envelope glycoprotein (Env) on virions. Additionally, Nef inhibits the shedding of at least some cellular ADAM10 substrates, resulting in their accumulation on HIV-1 virions. Whereas Nef+ HIV-1 replicated only marginally better in the absence of ADAM10, the propagation of Nef- HIV-1 was notably rescued in ADAM10- T cell lines. Crucially, Nef- HIV-1 also benefited from the absence of ADAM10 in primary CD4+ T cells. Collectively, our results indicate that ADAM10 negatively affects both laboratory-adapted and primary HIV-1 strains by shedding the ectodomains of viral and cellular transmembrane proteins from virions and that Nef rescues virus replication by counteracting ADAM10.
Collapse
Affiliation(s)
| | - Yoshiko Usami
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Paul Peters
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yuanfei Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Lospinoso Severini F, Falco G, Notarangelo T. Role of Soluble Cytokine Receptors in Gastric Cancer Development and Chemoresistance. Int J Mol Sci 2025; 26:2534. [PMID: 40141175 PMCID: PMC11942508 DOI: 10.3390/ijms26062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Gastric cancer is among the top five most important malignancies in the world due to the high burden of the disease and its lethality. Indeed, it is the fourth most common cause of death worldwide, characterized by a poor prognosis and low responsiveness to chemotherapy. Multidrug resistance limits the clinical management of the patient. Among these, the role of chronic activation of inflammatory pathways underlying gastric tumorigenesis should be highlighted. Furthermore, the gastric immunosuppressive TME influences the response to therapy. This review discusses the role of soluble cytokine receptors in the development and chemoresistance of gastric cancer, considered as a molecular marker and target of strategies to overcome resistance.
Collapse
Affiliation(s)
- Francesca Lospinoso Severini
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Napoli, NA, Italy
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, AV, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| |
Collapse
|
5
|
Tapia G, Fuenzalida S, Rivera C, Apablaza P, Silva M, Jaimovich E, Juretić N. L-Arginine Activates the Neuregulin-1/ErbB Receptor Signaling Pathway and Increases Utrophin mRNA Levels in C2C12 Cells. Biochem Res Int 2025; 2025:2171745. [PMID: 40224962 PMCID: PMC11991828 DOI: 10.1155/bri/2171745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025] Open
Abstract
L-arginine induces the expression of utrophin in skeletal muscle cells, so it has been proposed as a pharmacological treatment to attenuate the symptoms of Duchenne muscular dystrophy (DMD). On the other hand, it has been described that one of the pathways that participates in the expression of utrophin in muscle is the Neuregulin-1 (NRG-1)/ErbB receptors pathway. Several studies have postulated that disintegrin and metalloprotease-17 (ADAM17) causes the proteolytic processing of NRG of transmembrane, allowing the release of NRG to the medium, which when joining its ErbB receptor activates the signaling pathway that triggers utrophin transcription. The aim of this study was to evaluate the effect of L-arginine in the activation of NRG-1/ErbB pathway and utrophin mRNA levels in C2C12 cells, and the participation of ADAM17 in this process. Our results indicate that L-arginine induces phosphorylation of ErbB2 and increases utrophin mRNA levels in C2C12 myotubes, with a maximum increase of 2-fold at 4 h post-stimulation. This effect is not observed when the myotubes are stimulated in the presence of GM6001 (general metalloprotease inhibitor) or PD-158780 (specific inhibitor of ErbB receptor phosphorylation). Experiments performed by flow cytometry suggest that L-arginine stimulates ADAM17 activation in our study model. Furthermore, immunofluorescence analysis supports our findings that L-arginine stimulates ADAM17 increase in treated myotubes. However, our results using pharmacological inhibitors suggest that ADAM17 does not participate in utrophin expression in C2C12 cells treated with L-arginine. The results obtained help to clarify the mechanism of action of L-arginine in the expression of utrophin in muscle cells, which will contribute to the design of new therapeutic strategies in pathologies such as DMD.
Collapse
Affiliation(s)
- Gladys Tapia
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Sebastián Fuenzalida
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Constanza Rivera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Pía Apablaza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Mónica Silva
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Jaimovich
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Nevenka Juretić
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
6
|
Nemoto W, Yamagata R, Nakagawasai O, Hoshi T, Kobayashi R, Watanabe M, Tan-No K. Spinal ADAM17 contributes to the pathogenesis of painful diabetic neuropathy in leptin receptor-deficient mice. Biochem Pharmacol 2025; 233:116780. [PMID: 39880314 DOI: 10.1016/j.bcp.2025.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/10/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined. Thus, we studied the role of spinal ADAM17 in PDN. Leptin receptor-deficient db/db mice were used as a mouse model of type 2 diabetes. To inhibit ADAM17, we used DNA-modified siRNA against ADAM17 (siADAM17) or TAPI-1, an ADAM17 inhibitor. The number of ADAM17-positive neurons was increased in the spinal dorsal horn (lamina I-V) in db/db mice, while ADAM17-positive microglia were increased only in lamina I-II. Inhibition of spinal ADAM17 by siADAM17 or TAPI-1 significantly attenuated PDN observed in db/db mice. Among several substrates of ADAM17, angiotensin (Ang)-converting enzyme 2 (ACE2) expression was significantly decreased in the spinal plasma membrane of db/db mice. Intrathecal administration of Ang (1-7), a peptide generated by ACE2, to db/db mice produced an anti-hyperalgesic effect, which was abolished by the MAS1 receptor antagonist A779. Our findings reveal a critical role for spinal ADAM17 in the pathogenesis of PDN mediated by the degradation of ACE2, and suggest a novel pain control mechanism acting through the degradation of plasma membrane proteins in the cause of pathological pain.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan.
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Tomohiro Hoshi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Ruka Kobayashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Mizuki Watanabe
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| |
Collapse
|
7
|
Gozdz A, Maksym RB, Ścieżyńska A, Götte M, Kieda C, Włodarski PK, Malejczyk J. Expression of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs ( RECK) Gene and Its Regulation by miR200b in Ovarian Endometriosis. Int J Mol Sci 2024; 25:11594. [PMID: 39519143 PMCID: PMC11547164 DOI: 10.3390/ijms252111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Endometriosis is a common chronic disorder characterized by the growth of endometrium-like tissue outside the uterine cavity. The disease is associated with chronic inflammation and pelvic pain and may have an impact on the patient's fertility. The causative factors and pathophysiology of the disease are still poorly recognized. The dysregulation of the immune system, aberrant tissue remodeling, and angiogenesis contribute to the disease progression. In endometriosis patients, the proteins regulating the breakdown and reorganization of the connective tissue, e.g., collagenases, and other proteases, as well as their inhibitors, show an incorrect pattern of expression. Here, we report that the expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK), one of the inhibitors of connective tissue proteases, is elevated in endometrioma cysts as compared to normal endometrium from unaffected women. We also demonstrate a reduced level of miR200b in endometriotic tissue that correlates with RECK mRNA levels. Furthermore, we employ the 12Z cell line, derived from a peritoneal endometriotic lesion, and the Ishikawa cell line, originating from endometrial adenocarcinoma to identify RECK as a direct target of miR200b. The described effect of miR200b on RECK, together with the aberrant expression of both genes in endometrioma, may help to understand the role played by the tissue remodeling system in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Agata Gozdz
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Radosław B. Maksym
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 01-004 Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Claudine Kieda
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| |
Collapse
|
8
|
Murter BM, Robinson SC, Banerjee H, Lau L, Uche UN, Szymczak-Workman AL, Kane LP. Downregulation of PIK3IP1/TrIP on T cells is controlled by TCR signal strength, PKC, and metalloprotease-mediated cleavage. J Biol Chem 2024; 300:107930. [PMID: 39454954 PMCID: PMC11615590 DOI: 10.1016/j.jbc.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The protein known as PI3K-interacting protein (PIK3IP1), or transmembrane inhibitor of PI3K (TrIP), is highly expressed by T cells and can modulate PI3K activity in these cells. Several studies have also revealed that TrIP is rapidly downregulated following T cell activation. However, it is unclear how this downregulation is controlled. Using a novel monoclonal antibody that robustly stains cell-surface TrIP, we demonstrate that TrIP is lost from the surface of activated T cells in a manner dependent on the strength of signaling through the T cell receptor and specific downstream signaling pathways, in particular classical PKC isoforms. TrIP expression returns by 24 h after stimulation, suggesting that it may play a role in resetting T cell receptor signaling at later time points. We also provide evidence that ADAM family proteases are required for both constitutive and stimulation-induced downregulation of TrIP in T cells. Finally, by expressing truncated forms of TrIP in cells, we identify the region in the extracellular stalk domain of TrIP that is targeted for proteolytic cleavage.
Collapse
Affiliation(s)
- Benjamin M Murter
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sean C Robinson
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Louis Lau
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Uzodinma N Uche
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Webers M, Yu Y, Eyll J, Vanderliek-Kox J, Schun K, Michely A, Schumertl T, Garbers C, Dietrich J, Jonigk DD, Krüger I, Kühnel MP, Martin C, Ludwig A, Düsterhöft S. The metalloproteinase ADAM10 sheds angiotensin-converting enzyme (ACE) from the pulmonary endothelium as a soluble, functionally active convertase. FASEB J 2024; 38:e70105. [PMID: 39387631 DOI: 10.1096/fj.202402069r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a critical role in the regulation of blood pressure and fluid balance, with angiotensin-converting enzyme (ACE) being a key transmembrane enzyme that converts angiotensin I to angiotensin II. Hence, ACE activity is an important drug target in cardiovascular pathologies such as hypertension. Our study demonstrates that human pulmonary microvascular endothelial cells (HPMECs) are an important source of proteolytically released ACE. The proteolytic release of transmembrane proteins, a process known as ectodomain shedding, is facilitated by membrane proteases called sheddases. By knockout and inhibition studies, we identified ADAM10 (A disintegrin and metalloprotease 10) as a primary sheddase responsible for ACE release in HEK293 cells. The function of ADAM10 as primary, constitutive sheddase of ACE was confirmed in HPMECs. Moreover, we demonstrated the physiological relevance of ADAM10 for ACE shedding in ex vivo precision cut lung slices (PCLS) from human and mouse lungs. Notably, ADAM17 activity is not directly involved in ACE shedding but indirectly by regulating ACE mRNA and protein levels, leading to increased ADAM10-mediated ACE shedding. Importantly, soluble ACE generated by shedding is enzymatically active and can thereby participate in systemic RAAS functions. Taken together, our findings highlight the critical role of ADAM10 (directly) and ADAM17 (indirectly) in ACE shedding and RAAS modulation.
Collapse
Affiliation(s)
- Maria Webers
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yan Yu
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johanna Eyll
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julia Vanderliek-Kox
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katharina Schun
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Michely
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Hannover, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Dietrich
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Ingo Krüger
- Clinic for Thoracic Surgery, Luisenhospital Aachen, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
11
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
12
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
13
|
Ireland J, Segura J, Shi G, Buchwald J, Roth G, Shen TJ, Wang R, Ji X, Fischer ER, Moir S, Chun TW, Sun PD. Inhibition of HIV-1 release by ADAM metalloproteinase inhibitors. Front Microbiol 2024; 15:1385775. [PMID: 38572241 PMCID: PMC10987949 DOI: 10.3389/fmicb.2024.1385775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
HIV-1 gp120 glycan binding to C-type lectin adhesion receptor L-selectin/CD62L on CD4 T cells facilitates viral attachment and entry. Paradoxically, the adhesion receptor impedes HIV-1 budding from infected T cells and the viral release requires the shedding of CD62L. To systematically investigate CD62L-shedding mediated viral release and its potential inhibition, we screened compounds specific for serine-, cysteine-, aspartyl-, and Zn-dependent proteases for CD62L shedding inhibition and found that a subclass of Zn-metalloproteinase inhibitors, including BB-94, TAPI, prinomastat, GM6001, and GI25423X, suppressed CD62L shedding. Their inhibition of HIV-1 infections correlated with enzymatic suppression of both ADAM10 and 17 activities and expressions of these ADAMs were transiently induced during the viral infection. These metalloproteinase inhibitors are distinct from the current antiretroviral drug compounds. Using immunogold labeling of CD62L, we observed association between budding HIV-1 virions and CD62L by transmission electron microscope, and the extent of CD62L-tethering of budding virions increased when the receptor shedding is inhibited. Finally, these CD62L shedding inhibitors suppressed the release of HIV-1 virions by CD4 T cells of infected individuals and their virion release inhibitions correlated with their CD62L shedding inhibitions. Our finding reveals a new therapeutic approach targeted at HIV-1 viral release.
Collapse
Affiliation(s)
- Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Genbin Shi
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Thomas Juncheng Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ruipeng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Xinhua Ji
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Elizabeth R. Fischer
- Electron Microscopy Unit, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
14
|
Park EJ, Lee CW. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp Mol Med 2024; 56:100-109. [PMID: 38182653 PMCID: PMC10834419 DOI: 10.1038/s12276-023-01150-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
Soluble receptors are soluble forms of receptors found in the extracellular space. They have emerged as pivotal regulators of cellular signaling and disease pathogenesis. This review emphasizes their significance in cancer as diagnostic/prognostic markers and potential therapeutic targets. We provide an overview of the mechanisms by which soluble receptors are generated along with their functions. By exploring their involvement in cancer progression, metastasis, and immune evasion, we highlight the importance of soluble receptors, particularly soluble cytokine receptors and immune checkpoints, in the tumor microenvironment. Although current research has illustrated the emerging clinical relevance of soluble receptors, their therapeutic applications remain underexplored. As the landscape of cancer treatment evolves, understanding and targeting soluble receptors might pave the way for novel strategies for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Eun-Ji Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Medali T, Couchie D, Mougenot N, Mihoc M, Bergmann O, Derks W, Szweda LI, Yacoub M, Soliman S, Aguib Y, Wagdy K, Ibrahim AM, Friguet B, Rouis M. Thioredoxin-1 and its mimetic peptide improve systolic cardiac function and remodeling after myocardial infarction. FASEB J 2024; 38:e23291. [PMID: 38095283 DOI: 10.1096/fj.202300792rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI.
Collapse
Affiliation(s)
- Tania Medali
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Dominique Couchie
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Nathalie Mougenot
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Maria Mihoc
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Wouter Derks
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | - Bertrand Friguet
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Mustapha Rouis
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Eltaib L, Alzain AA. Discovery of dual-target natural inhibitors of meprins α and β metalloproteases for inflammation regulation: pharmacophore modelling, molecular docking, ADME prediction, and molecular dynamics studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37955603 DOI: 10.1080/1062936x.2023.2277425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Meprins, zinc-dependent metalloproteinases belonging to the metzincin family, have been associated with various inflammatory diseases due to their abnormal expression and activity. In this study, we utilized pharmacophore modelling to identify crucial features for discovering potential dual inhibitors targeting meprins α and β. We screened four pharmacophoric features against a library of 270,540 natural compounds from the Zinc database, resulting in 84,092 matching compounds. Molecular docking was then performed on these compounds, targeting the active sites of meprins α and β. Docking results revealed six compounds capable of interacting with both isoforms, with binding affinities ranging from -10.0 to -10.5 kcal/mol and -6.9 to -9.9 kcal/mol for meprin α and β, respectively. Among these compounds, ZINC000008790788 and ZINC000095099469 displayed superior docking scores and MM-GBSA binding free energy compared to reference ligands. Furthermore, these two compounds exhibited acceptable predicted pharmacokinetic properties and stable interactions with meprins α and β during molecular dynamics simulations. This study presents a comprehensive approach for identifying potential dual inhibitors of meprin α and β, offering insights into the development of therapeutic interventions for inflammatory diseases associated with meprin dysregulation.
Collapse
Affiliation(s)
- L Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
17
|
Carriquí-Madroñal B, Sheldon J, Duven M, Stegmann C, Cirksena K, Wyler E, Zapatero-Belinchón FJ, Vondran FWR, Gerold G. The matrix metalloproteinase ADAM10 supports hepatitis C virus entry and cell-to-cell spread via its sheddase activity. PLoS Pathog 2023; 19:e1011759. [PMID: 37967063 PMCID: PMC10650992 DOI: 10.1371/journal.ppat.1011759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Mara Duven
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karsten Cirksena
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Gladstone Institutes, San Francisco, California, United States of America
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Regenerative Medicine and Experimental Surgery, Hannover Medical School, Hannover, Germany
- German Center for Infection Research Partner Site Hannover-Braunschweig Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K, Dimitrov DS, Nikolov DB. Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Biomed Pharmacother 2023; 161:114494. [PMID: 36917886 PMCID: PMC10499537 DOI: 10.1016/j.biopha.2023.114494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Du-San Baek
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Rachelle P Mendoza
- Department of Pathology, University of Chicago, Chicago, IL 60637, United States
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yan Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - M Jason De La Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Peter W Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, United States
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
19
|
Wu K, Xu J, Jia Z, Wang J, Wang Z, Feng J, Zhu X, Liu Q, Wang B, Li M, Pang Y, Zou J. Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:321-334. [PMID: 36964830 DOI: 10.1007/s10695-023-01184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) play regulatory roles in cell adhesion, migration and proteolysis. To explore the origin and evolution of ADAMs, this study identified the homologs of adam10 and adam17 in Lampetra morii and Lampetra japonica. Sequence analysis revealed that they share the same genomic structures with their counterparts in jawed vertebrates. The putative proteins possess conserved motifs, including a furin cut site (RXXR) for precursor processing, an enzyme catalytic motif (HEXGEHXXGXXH) for hydrolysis, and a Ca2+-binding motif (CGNXXXEXGEXCD) for stabilizing protein structure. In addition, a substrate recognition domain is present at the membrane-proximal region of lamprey ADAM17. The cytoplasmic region of lamprey ADAM10 contains a potential threonine phosphorylation site which has been shown to be activated by protein kinase C (PKC) in mammals. Both the adam10 and adam17 genes were constitutively expressed in the brain, kidney, and gills and were differentially regulated in the primary blood leukocytes by lipopolysaccharide (LPS) and pokeweed mitogen (PWM). Adam10 was induced by LPS but not PWM; conversely, adam17 was induced by PWM but not LPS. Taken together, our results suggest that the activation pathways and functions of ADAM10 and ADAM17 are conserved in agnathans.
Collapse
Affiliation(s)
- Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Sharafeddin F, Ghaly M, Simon TB, Ontiveros-Ángel P, Figueroa JD. Prefrontal cortical protease TACE/ADAM17 is involved in neuroinflammation and stress-related eating alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525269. [PMID: 36747666 PMCID: PMC9900811 DOI: 10.1101/2023.01.23.525269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Childhood traumatic stress profoundly affects prefrontal cortical networks regulating top-down control of eating and body weight. However, the neurobiological mechanisms contributing to trauma-induced aberrant eating behaviors remain largely unknown. Traumatic stress influences brain immune responses, which may, in turn, disrupt prefrontal cortical networks and behaviors. The tumor necrosis factor alpha-converting enzyme / a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and neuroinflammation. This study aimed to determine the role of TACE/ADAM17 on traumatic stress-induced disruption of eating patterns. We demonstrate a novel mechanistic connection between prefrontal cortical TACE/ADAM17 and trauma-induced eating behaviors. Fifty-two (52) adolescent Lewis rats (postnatal day, PND, 15) were injected intracerebrally either with a novel Accell™ SMARTpool ADAM17 siRNA or a corresponding siRNA vehicle. The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Observation cages were used to monitor ethological behaviors in a more naturalistic environment over long periods. We found that traumatic stress blunts startle reactivity and alter eating behaviors (increased intake and disrupted eating patterns). We also found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited decreased eating and increased grooming behaviors compared to controls. These changes were associated with decreased AIF-1 expression (a typical marker of microglia and neuroinflammation). This study demonstrates that prefrontal cortical TACE/ADAM17 is involved in neuroinflammation and may play essential roles in regulating feeding patterns under stress conditions. TACE/ADAM17 represents a promising target to ameliorate inflammation-induced brain and behavior alterations.
Collapse
Affiliation(s)
- Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mina Ghaly
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Timothy B Simon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
21
|
Shoykhet M, Waschke J, Yeruva S. Cardiomyocyte cohesion is increased after ADAM17 inhibition. Front Cell Dev Biol 2023; 11:1021595. [PMID: 36733457 PMCID: PMC9887658 DOI: 10.3389/fcell.2023.1021595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
A Disintegrin And Metalloprotease (ADAM) family proteins are involved in several cardiac diseases, and some ADAMs have been associated with cardiomyopathies. ADAM17 is known to cleave desmoglein 2 (DSG2), one of the proteins involved in the pathogenesis of arrhythmogenic cardiomyopathy (AC). Desmosomal stability is impaired in AC, an inheritable genetic disease, the underlying causes of which can be mutations in genes coding for proteins of the desmosome, such as DSG2, desmoplakin (DP), plakoglobin (PG), plakophilin 2 or desmocollin 2. Stabilizing desmosomal contacts can therefore be a treatment option. In the heart of the murine Jup -/- AC model, (Jup being the gene coding for PG) mice, elevated levels of p38MAPK, an activator of ADAM17, were found. However, ADAM17 levels were unaltered in Jup -/- mice hearts. Nonetheless, inhibition of ADAM17 led to enhanced cardiomyocyte cohesion in both Jup +/+ and Jup -/- mice, and in HL-1 cardiomyocytes. Further, enhanced cohesion in HL-1 cardiomyocytes after acute inhibition of ADAM17 was paralleled by enhanced localization of DSG2 and DP at the membrane, whereas no changes in desmosomal assembly or the desmosomal complex were observed. In conclusion, acute inhibition of ADAM17 might lead to reduced cleavage of DSG2, thereby stabilizing the desmosomal adhesion, evidenced by increased DSG2 and DP localization at cell borders and eventually cardiomyocyte cohesion. We believe that similar mechanisms exist in AC.
Collapse
Affiliation(s)
| | | | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University (LMU), Munich, Germany
| |
Collapse
|
22
|
Zatovicova M, Kajanova I, Takacova M, Jelenska L, Sedlakova O, Labudova M, Pastorekova S. ADAM10 mediates shedding of carbonic anhydrase IX ectodomain non‑redundantly to ADAM17. Oncol Rep 2022; 49:27. [PMID: 36524367 PMCID: PMC9813547 DOI: 10.3892/or.2022.8464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane enzyme participating in adaptive responses of tumors to hypoxia and acidosis. CA IX regulates pH, facilitates metabolic reprogramming, and supports migration, invasion and metastasis of cancer cells. Extracellular domain (ECD) of CA IX can be shed to medium and body fluids by a disintegrin and metalloproteinase (ADAM) 17. Here we show for the first time that CA IX ECD shedding can be also executed by ADAM10, a close relative of ADAM17, via an overlapping cleavage site in the stalk region of CA IX connecting its exofacial catalytic site with the transmembrane region. This finding is supported by biochemical evidence using recombinant human ADAM10 protein, colocalization of ADAM10 with CA IX, ectopic expression of a dominant‑negative mutant of ADAM10 and RNA interference‑mediated suppression of ADAM10. Induction of the CA IX ECD cleavage with ADAM17 and/or ADAM10 activators revealed their additive effect. Similarly, additive effect was observed with an ADAM17‑inhibiting antibody and an ADAM10‑preferential inhibitor GI254023X. These data indicated that ADAM10 is a CA IX sheddase acting on CA IX non‑redundantly to ADAM17.
Collapse
Affiliation(s)
- Miriam Zatovicova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Ivana Kajanova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Martina Takacova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Olga Sedlakova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Martina Labudova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, 84505 Bratislava, Slovakia,Correspondence to: Professor Silvia Pastorekova, Biomedical Research Center of The Slovak Academy of Sciences, Institute of Virology, Department of Tumor Biology, Dubravska cesta 9, 84505 Bratislava, Slovakia, E-mail:
| |
Collapse
|
23
|
Hsiao YT, Huang YT, Yu HJ, Fang PC, Kuo MT. Tear Proteomics Approach to Distinguishing Primary from Secondary Sjögren's Syndrome for Dry Eye Patients with Long-Term Instillation of Eyedrops. Int J Mol Sci 2022; 23:15239. [PMID: 36499565 PMCID: PMC9737549 DOI: 10.3390/ijms232315239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The diagnosis and monitoring of Sjögren syndrome (SS) is often difficult, requiring a multidisciplinary approach with invasive procedures. Our aim is to elucidate the tear protein alterations of dry eye disease (DED) with primary SS (pSS) and secondary SS (sSS) with the long-term instillation of eyedrops. We collected clinical demographics and tear fluid (TF) samples from DED patients with no autoimmune diseases (non-SS-DED), pSS-DED, and sSS-DED patients, followed by TF screening with tandem mass tagging-labeling gel-free proteomics assay. Bioinformatic analysis via Ingenuity Pathway Analysis was used to identify functional pathways and interacting networks. Validation of candidate proteins with enzyme-linked immunosorbent assay on the tear samples was done. The top functional pathways of the two comparisons (sSS-DED vs. pSS-DED and sSS-DED vs. non-SS-DED) were both associated with inflammation and stress-related signaling. After constructing an interaction network model with the selected candidate proteins, five proteins were identified. A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) was found to be an important candidate biomarker in all groups, followed by epidermal growth factor (EGF) in TF. This study revealed novel DED markers, ADAM10 and EGF, in differentiating between primary and secondary SS patients from tears by in-depth proteomic analysis.
Collapse
Affiliation(s)
- Yu-Ting Hsiao
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yu-Ting Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hun-Ju Yu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Po-Chiung Fang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ming-Tse Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
24
|
Nectin-4 as Blood-Based Biomarker Enables Detection of Early Ovarian Cancer Stages. Cancers (Basel) 2022; 14:cancers14235867. [PMID: 36497350 PMCID: PMC9739558 DOI: 10.3390/cancers14235867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy and has the highest mortality rate. Owing to unspecific symptoms, ovarian cancer is not detected until an advanced stage in about two-thirds of cases. Therefore, it is crucial to establish reliable biomarkers for the early stages to improve the patients’ prognosis. The aim of this study is to investigate whether the ADAM17 substrates Nectin-4, Heparin-binding EGF-like growth factor (HB-EGF) and Amphiregulin (AREG) could function as potential tumor markers for ovarian cancer. In this study a set of 231 sera consisting of 131 ovarian cancer patients and 100 healthy age-matched controls were assembled. Nectin-4, HB-EGF and AREG levels of preoperatively collected sera were determined by enzyme-linked immunosorbent assay (ELISA). Our analysis revealed that Nectin-4 and HB-EGF were significantly increased compared to the age-matched control group (p < 0.0001, p = 0.016). Strikingly, significantly higher Nectin-4 and HB-EGF levels were detected in early-stage FIGO I/II (p <0.001; p = 0.025) compared to healthy controls. Eighty-four percent (16/19) of patients with low Ca-125 levels showed increased Nectin-4 levels. Our study proposes Nectin-4 and HB-EGF as promising blood-based biomarkers for the detection of early stages of ovarian cancer patients that would not have been detected by Ca-125.
Collapse
|
25
|
Fang L, Nikfarjam N, Gharagozlou M, Huang T, Song Y, Islambulchilar Z, Esmaeilzadeh A, Jafari D, Athari SS. Pulmonary Delivery of Levamisole Nanoparticles as an Immunomodulator Affecting Th and a Potential ADAM10 Inhibitor to Ameliorate Severe Allergic Asthma. ACS Biomater Sci Eng 2022; 8:4566-4576. [PMID: 36054652 DOI: 10.1021/acsbiomaterials.2c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a common chronic lung disease without absolute treatment, and hypersensitivity reactions and type 2 immune responses are responsible for asthma pathophysiology. ADAM10 as a metalloproteinase transmembrane protein is critical for development of Th2 responses, and levamisole as an anthelmintic drug has immunomodulatory effects, which not only regulates ADAM10 activity but also can suppress the bone marrow and neutrophil production. Therefore, in the present study, nanoparticles were used as a levamisole delivery system to reduce bone marrow suppression, and the immunomodulatory and ADAM10 inhibitory effects of levamisole were studied in allergic asthma. Asthmatic mice were treated with PLGA-levamisole nanoparticles. Then, AHR, BALF, and blood cell counts, levels of the IgG1 subclass, total and OVA-specific IgE, IL2, IL-4, IL-5, IL-10, IL-13, IL-17, IL-25, IL-33, INF-γ, and TNF-α, gene expression of FoxP3, T-bet, RORγt, PU.1, GATA3, FcεRII, CysLT1R, eotaxin, and ADAM10, and lung histopathology were evaluated. PLGA-LMHCl with considered characteristics could control airway hyper-responsiveness, eosinophils in the BALF, levels of immunoglobulins, Th2-, Th9-, and Th17-derived cytokines and pivotal genes, eosinophilic inflammation, hyperplasia of the goblet cell, and hyperproduction of mucus and could increase Th1- and Treg-derived cytokines and also pivotal genes. It could also modulate the ADAM10 activity and had no effect on the number of neutrophils in the bloodstream. The novel safe nanodrug had no side effect on the bone marrow to produce neutrophils and could control the allegro-immuno-inflammatory response of asthma.
Collapse
Affiliation(s)
- Liping Fang
- Department of Respiratory and Critical Care Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), 155 East Aerospace Road, Xi'an 710100, Shaanxi, China
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Gharagozlou
- Department of Pediatrics, School of Medicine, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Tao Huang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Medical University, 48 West Fengho Road, Lianhu District, Xi'an 710000, Shaanxi, China
| | - Yu Song
- Department of Respiratory and Critical Care Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), 155 East Aerospace Road, Xi'an 710100, Shaanxi, China
| | - Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45371-38111, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45371-38111, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45371-38111, Iran
| |
Collapse
|
26
|
Shin Y, Jo KS, Shin M, Lee D, Yeo H, Song Y, Kang SW. Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein. Redox Biol 2022; 56:102456. [PMID: 36041363 PMCID: PMC9440079 DOI: 10.1016/j.redox.2022.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Misfolded glycosylphosphatidylinositol-anchored prion protein (PrP) is primarily degraded in lysosomes but is often rapidly removed from the cell surface before endocytosis in a preemptive manner. However, this mechanism is poorly understood. In this study, we discovered a disease-causing prion mutation (Q212P) that exceptionally promoted the extracellular release of PrP. Spatiotemporal analyses combined with genome editing identified the role of sheddase ADAM10 in Q212P shedding from the cell surface. ADAM10 was observed to catalytically interacts with Q212P but non-catalytically with wild-type PrP (wtPrP). This intrinsic difference in the interaction of ADAM10 between Q212P and wtPrP allowed Q212P to selectively access the sheddase activity of ADAM10 in a redox-sensitive manner. In addition, redox perturbation instigated the latent misfolding propensity of Q212P and disrupted the catalytic interaction between PrP and ADAM10, resulting in the accumulation of misfolded PrP on the cell surface. Upon recovery, active ADAM10 was able to reversibly release the surface Q212P. However, it might prove detrimental if unregulated resulting in unexpected proteotoxicity. This study provides a molecular basis of the mutant-selective shedding of PrP by demonstrating the catalytic interaction of ADAM10 with Q212P. Pathogenic Q212P mutation provides a unique pattern of PrP metabolism. Q212P mutation promotes the extracellular release of surface PrP. Q212P shedding is catalyzed by ADAM10. ADAM10-mediated Q212P shedding is redox-sensitive.
Collapse
Affiliation(s)
- Yejin Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Kang-Sug Jo
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Minseok Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Hyejin Yeo
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea; Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea; Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
28
|
Kilic T, Okuno K, Eguchi S, Kassiri Z. Disintegrin and Metalloproteinases (ADAMs [A Disintegrin and Metalloproteinase] and ADAMTSs [ADAMs With a Thrombospondin Motif]) in Aortic Aneurysm. Hypertension 2022; 79:1327-1338. [PMID: 35543145 DOI: 10.1161/hypertensionaha.122.17963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysm is a complex pathology that can be lethal if not detected in time. Although several molecular mechanisms and pathways have been identified to be involved in aortic aneurysm development and growth, the current lack of an effective pharmacological treatment highlights the need for a more thorough understanding of the factors that regulate the remodeling of the aortic wall in response to triggers that lead to aneurysm formation. This task is further complicated by the regional heterogeneity of the aorta and that thoracic and abdominal aortic aneurysm are distinct pathologies with different risk factors and distinct course of progression. ADAMs (a disintegrin and metalloproteinases) and ADAMTS (ADAMs with a thrombospondin motif) are proteinases that share similarities with other proteinases but possess unique and diverse properties that place them in a category of their own. In this review, we discuss what is known on how ADAMs and ADAMTSs are altered in abdominal aortic aneurysm and thoracic aortic aneurysm in patients, in different animal models, and their role in regulating the function of different vascular and inflammatory cell types. A full understanding of the role of ADAMs and ADAMTSs in aortic aneurysm will help reveal a more complete understanding of the underlying mechanism driving aneurysm formation, which will help towards developing an effective treatment in preventing or limiting the growth of aortic aneurysm.
Collapse
Affiliation(s)
- Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| | - Keisuke Okuno
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Satoru Eguchi
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| |
Collapse
|
29
|
Gül C, Kilic S, Şehitoğlu MH. The importance of ADAM10 and ADAM17 metalloproteinases in the pathogenesis of psoriasis. Clin Exp Dermatol 2022; 47:1673-1678. [PMID: 35474465 DOI: 10.1111/ced.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disorder characterized by inflammation, hyperproliferation, andneoangiogenesis. The disease pathogenesis has not been fully elucidated. ADAM17 and ADAM10 are important proteases serving as regulators of inflammation. OBJECTIVES This study aimed to determine the role of ADAM17 and ADAM10 in the pathogenesis of Psoriasis through the comparison of serum ADAM17 and ADAM10 levels between Psoriasis patients and healthy controls. METHODS A total of 179 subjects, including 90 psoriasis patients and 89 healthy controls, were included in the study. Serum ADAM17 and serum ADAM10 levels were measured by the ELISA method for each participant from the patient and control groups. The statistical data analysis was performed using the SPSS 19.0 program. P-value < 0.05 was considered statistically significant. RESULTS The mean values for serum ADAM10 and ADAM17 were respectively 3.1±2.2 and 76.5±31.1 in the patient group, whereas 8.6±3.7 and 29.5±22.4 in the control group. A statistically significant difference was detected between the patient and control groups regarding ADAM10 and ADAM17 levels (p=0.0001). CONCLUSIONS Considering the high levels of ADAM17 in Psoriasis patient group, ADAM17 protease might have a crucial role in the pathogenesis of psoriasis, while the low levels of ADAM10 might be attributed to its regulatory effect on keratinocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Ceren Gül
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sevilay Kilic
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Müşerref H Şehitoğlu
- Departments of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
30
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
31
|
Pece R, Tavella S, Costa D, Varesano S, Camodeca C, Cuffaro D, Nuti E, Rossello A, Alfano M, D'Arrigo C, Galante D, Ravetti JL, Gobbi M, Tosetti F, Poggi A, Zocchi MR. Inhibitors of ADAM10 reduce Hodgkin lymphoma cell growth in 3D microenvironments and enhance brentuximab-vedotin effect. Haematologica 2022; 107:909-920. [PMID: 34109776 PMCID: PMC8968898 DOI: 10.3324/haematol.2021.278469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Shedding of ADAM10 substrates, like TNFa or CD30, can affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. We have published two new ADAM10 inhibitors, LT4 and MN8 able to prevent such shedding in Hodgkin lymphoma (HL). Since tumor tissue architecture deeply influences the outcome of anti-cancer treatments, we set up a new threedimensional (3D) culture systems to verify whether ADAM10 inhibitors can contribute to, or enhance, the anti-lymphoma effects of the ADC brentuximab-vedotin (BtxVed). In order to recapitulate some aspects of lymphoma structure and architecture, we assembled two 3D culture models: mixed spheroids made of HL lymph node (LN) mesenchymal stromal cells (MSC) and Reed Sternberg/Hodgkin lymphoma cells (HL cells) or collagen scaffolds repopulated with LN-MSC and HL cells. In these 3D systems we found that: i) the ADAM10 inhibitors LT4 and MN8 reduce ATP content or glucose consumption, related to cell proliferation, increasing lactate dehydrogenase release as a cell damage hallmark; ii) these events are paralleled by mixed spheroids size reduction and inhibition of CD30 and TNFa shedding; iii) the effects observed can be reproduced in repopulated HL LN-derived matrix or collagen scaffolds; iv) ADAM10 inhibitors enhance the anti-lymphoma effect of the anti-CD30 ADC BtxVed both in conventional cultures and in repopulated scaffolds. Thus, we provide evidence for a direct and combined antilymphoma effect of ADAM10 inhibitors with BtxVed, leading to the improvement of ADC effects; this is documented in 3D models recapitulating features of the LN microenvironment, that can be proposed as a reliable tool for anti-lymphoma drug testing.
Collapse
Affiliation(s)
- Roberta Pece
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino and Department of Experimental Medicine, University of Genoa
| | - Sara Tavella
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino and Department of Experimental Medicine, University of Genoa
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | | | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa
| | | | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele
| | | | | | | | - Marco Gobbi
- Clinical Oncohematology, University of Genoa
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute.
| |
Collapse
|
32
|
Janjic BM, Kulkarni A, Ferris RL, Vujanovic L, Vujanovic NL. Human B Cells Mediate Innate Anti-Cancer Cytotoxicity Through Concurrent Engagement of Multiple TNF Superfamily Ligands. Front Immunol 2022; 13:837842. [PMID: 35392082 PMCID: PMC8983021 DOI: 10.3389/fimmu.2022.837842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 01/23/2023] Open
Abstract
The essential innate immunity effector cells, natural killer and dendritic cells, express multiple plasma membrane-associated tumor necrosis factor (TNF) superfamily (TNFSF) ligands that, through simultaneous and synergistic engagement, mediate anti-cancer cytotoxicity. Here, we report that circulating B cells, mediators of adaptive humoral immunity, also mediate this innate anti-cancer immune mechanism. We show that resting human B cells isolated from peripheral blood induce apoptosis of, and efficiently kill a large variety of leukemia and solid tumor cell types. Single-cell RNA sequencing analyses indicate, and flow cytometry data confirm that B cells from circulation express transmembrane TNF, Fas ligand (FasL), lymphotoxin (LT) α1β2 and TNF-related apoptosis-inducing ligand (TRAIL). The cytotoxic activity can be inhibited by individual and, especially, combined blockade of the four transmembrane TNFSF ligands. B cells from tumor-bearing head and neck squamous cell carcinoma patients express lower levels of TNFSF ligands and are less cytotoxic than those isolated from healthy individuals. In conclusion, we demonstrate that B cells have the innate capacity to mediate anti-cancer cytotoxicity through concurrent activity of multiple plasma membrane-associated TNFSF ligands, that this mechanism is deficient in cancer patients and that it may be part of a general cancer immunosurveillance mechanism.
Collapse
Affiliation(s)
- Bratislav M. Janjic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert L. Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikola L. Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A, Düsterhöft S. The collectrin-like part of the SARS-CoV-1 and -2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 2022; 36:e22234. [PMID: 35199397 PMCID: PMC9111296 DOI: 10.1096/fj.202101521r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS‐CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS‐CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9‐derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10‐ or ADAM17‐mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro‐inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10‐ and ADAM17‐mediated shedding is mediated by the collectrin‐like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.
Collapse
Affiliation(s)
- Rabea Victoria Niehues
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Wiersch
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lilienthal
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Scramblases as Regulators of Proteolytic ADAM Function. MEMBRANES 2022; 12:membranes12020185. [PMID: 35207106 PMCID: PMC8880048 DOI: 10.3390/membranes12020185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scramblases as central players during these events. We propose that scramblase-dependent externalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane proteases as well as the potential consequences in the context of immune response, infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface.
Collapse
|
35
|
ADAM17-A Potential Blood-Based Biomarker for Detection of Early-Stage Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215563. [PMID: 34771725 PMCID: PMC8583642 DOI: 10.3390/cancers13215563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ovarian cancer has the highest lethality among gynecological tumors. Therefore, it is essential to find reliable biomarkers to improve early detection. This is the first report describing ADAM17 detection in serum and ascites fluid of ovarian cancer patients. A high ADAM17 concentration in serum at primary diagnosis is associated with early FIGO stages and predicts complete resection of the tumor mass. In addition, ADAM17 and CA-125 complement each other, especially in the diagnosis of early stages. In summary, ADAM17 appears to be a promising screening marker for detecting early-stage ovarian cancer. Abstract Ovarian cancer has the highest mortality rate among gynecological tumors. This is based on late diagnosis and the lack of early symptoms. To improve early detection, it is essential to find reliable biomarkers. The metalloprotease ADAM17 could be a potential marker, as it is highly expressed in many solid tumors, including ovarian and breast cancer. The aim of this work is to evaluate the relevance of ADAM17 as a potential diagnostic blood-based biomarker in ovarian cancer. Ovarian cancer cell lines IGROV-1 and A2780, as well as primary patient-derived tumor cells obtained from tumor tissue and ascitic fluid, were cultured to analyze ADAM17 abundance in the culture supernatant. In a translational approach, a cohort of 117 well-characterized ovarian cancer patients was assembled and ADAM17 levels in serum and corresponding ascitic fluid were determined at primary diagnosis. ADAM17 was quantified by enzyme-linked immunosorbent assay (ELISA). In the present study, ADAM17 was detected in the culture supernatant of ovarian cancer cell lines and primary cells. In addition, ADAM17 was found in serum and ascites of ovarian cancer patients. ADAM17 level was significantly increased in ovarian cancer patients compared to an age-matched control group (p < 0.0001). Importantly early FIGO I/II stages, which would not have been detected by CA-125, were associated with higher ADAM17 concentrations (p = 0.007). This is the first study proposing ADAM17 as a serum tumor marker in the setting of a gynecological tumor disease. Usage of ADAM17 in combination with CA-125 and other markers could help detect early stages of ovarian cancer.
Collapse
|
36
|
Okamori S, Ishii M, Asakura T, Suzuki S, Namkoong H, Kagawa S, Hegab AE, Yagi K, Kamata H, Kusumoto T, Ogawa T, Takahashi H, Yoda M, Horiuchi K, Hasegawa N, Fukunaga K. ADAM10 partially protects mice against influenza pneumonia by suppressing specific myeloid cell population. Am J Physiol Lung Cell Mol Physiol 2021; 321:L872-L884. [PMID: 34523355 DOI: 10.1152/ajplung.00619.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influenza virus infection poses a serious health threat worldwide. Myeloid cells play pivotal roles in regulating innate and adaptive immune defense. A disintegrin and metalloproteinase (ADAM) family of proteins contributes to various immune responses; however, the role of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) in influenza virus infection remains largely unknown. Herein, we investigated its role, focusing on myeloid cells, during influenza virus infection in mice. ADAM10 gene (Adam10)flox/flox/Lyz2-Cre (Adam10ΔLyz2) and control Adam10flox/flox mice were intranasally infected with 200 plaque-forming units of influenza virus A/H1N1/PR8/34. Adam10ΔLyz2 mice exhibited a significantly higher mortality rate, stronger lung inflammation, and a higher virus titer in the lungs than control mice. Macrophages and inflammatory cytokines, such as TNF-α, IL-1β, and CCL2, were increased in bronchoalveolar lavage fluid from Adam10ΔLyz2 mice following infection. CD11b+Ly6G-F4/80+ myeloid cells, which had an inflammatory monocyte/macrophage-like phenotype, were significantly increased in the lungs of Adam10ΔLyz2 mice. Adoptive transfer experiments suggested that these cells likely contributed to the poorer prognosis in Adam10ΔLyz2 mice. Seven days after infection, CD11b+Ly6G-F4/80+ lung cells exhibited significantly higher arginase-1 expression levels in Adam10ΔLyz2 mice than in control mice, whereas an arginase-1 inhibitor improved the prognosis of Adam10ΔLyz2 mice. Enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF)/GM-CSF receptor signaling likely contributed to this process. Collectively, these results indicate that myeloid ADAM10 protects against influenza virus pneumonia and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Medical Education Center, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takunori Ogawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Yoda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defence Medical College, Saitama, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
38
|
Renfeng Q, Shuxiao C, Peixian G, Kun L, Xuedong F, Hai Y, Xuejun W, Gang L. ADAM10 attenuates the development of abdominal aortic aneurysms in a mouse model. Mol Med Rep 2021; 24:774. [PMID: 34490486 PMCID: PMC8456315 DOI: 10.3892/mmr.2021.12414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/23/2021] [Indexed: 01/24/2023] Open
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening disease associated with a high mortality rate. At present, surgery or minimally invasive interventions are used in clinical treatment, especially for small aneurysms. However, the benefits of surgical repair are not obvious, and AAA ruptures can be prevented by aneurysm therapy to inhibit the growth of small aneurysms. Therefore, evaluating effective drugs to treat small AAAs is urgently required. Chronic inflammation is the main pathological feature of aneurysmal tissues. The aim of the present study was to investigate the protective role and underlying mechanism of ADAM metallopeptidase domain 10 (ADAM10). In the present study, a mouse model of AAA was established via porcine pancreatic elastase perfusion for 5 min per day for 14 days. ADAM10 (6 mg/kg) was injected intraperitoneally following 3 days of porcine pancreatic elastase perfusion in the ADAM10 group and the treatment continued for 10 days. The maximum inner luminal diameters of the infrarenal abdominal aortas were measured using an animal ultrasound system. The levels of high mobility group box 1 (HMGB1) and soluble receptor for advanced glycosylation end products in serum samples were measured by ELISA. Hematoxylin and eosin and elastin van Gieson staining were performed to observe morphology, integrity of the elastin layers and elastin degradation. CD68 expression was detected by immunohistochemical staining. Reverse transcription-quantitative PCR and western blotting were used for detection of mRNA and protein levels. The gelatinolytic activities of MMP-2 and MMP-9 were quantified via gelatin zymography analysis. These results showed that ADAM10 inhibited HMGB1/RAGE/NF-κB signaling and MMP activity in the pathogenesis of pancreatic elastase-induced AAA, which provide insight into the molecular mechanism of AAA and suggested that ADAM10 may be a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Qiu Renfeng
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Shuxiao
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gao Peixian
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Luo Kun
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Feng Xuedong
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuan Hai
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wu Xuejun
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Li Gang
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
39
|
Koch L, Kespohl B, Agthe M, Schumertl T, Düsterhöft S, Lemberg MK, Lokau J, Garbers C. Interleukin-11 (IL-11) receptor cleavage by the rhomboid protease RHBDL2 induces IL-11 trans-signaling. FASEB J 2021; 35:e21380. [PMID: 33566379 DOI: 10.1096/fj.202002087r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-11 (IL-11) is a pleiotropic cytokine with both pro- and anti-inflammatory properties. It activates its target cells via binding to the membrane-bound IL-11 receptor (IL-11R), which then recruits a homodimer of the ubiquitously expressed, signal-transducing receptor gp130. Besides this classic signaling pathway, IL-11 can also bind to soluble forms of the IL-11R (sIL-11R), and IL-11/sIL-11R complexes activate cells via the induction of gp130 homodimerization (trans-signaling). We have previously reported that the metalloprotease ADAM10 cleaves the membrane-bound IL-11R and thereby generates sIL-11R. In this study, we identify the rhomboid intramembrane protease RHBDL2 as a so far unrecognized alternative sheddase that can efficiently trigger IL-11R secretion. We determine the cleavage site used by RHBDL2, which is located in the extracellular part of the receptor in close proximity to the plasma membrane, between Ala-370 and Ser-371. Furthermore, we identify critical amino acid residues within the transmembrane helix that are required for IL-11R proteolysis. We also show that ectopically expressed RHBDL2 is able to cleave the IL-11R within the early secretory pathway and not only at the plasma membrane, indicating that its subcellular localization plays a central role in controlling its activity. Moreover, RHBDL2-derived sIL-11R is biologically active and able to perform IL-11 trans-signaling. Finally, we show that the human mutation IL-11R-A370V does not impede IL-11 classic signaling, but prevents RHBDL2-mediated IL-11R cleavage.
Collapse
Affiliation(s)
- Lydia Koch
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Birte Kespohl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maria Agthe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
40
|
Wege AK, Dreyer TF, Teoman A, Ortmann O, Brockhoff G, Bronger H. CX3CL1 Overexpression Prevents the Formation of Lung Metastases in Trastuzumab-Treated MDA-MB-453-Based Humanized Tumor Mice (HTM). Cancers (Basel) 2021; 13:cancers13102459. [PMID: 34070094 PMCID: PMC8158361 DOI: 10.3390/cancers13102459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary In about 15–18% of breast cancers the HER2 gene is amplified, which allows an anti-HER2 treatment. However, about 50% of HER2-positive patients experience de novo or acquired resistance to the antibody-based therapy with trastuzumab. Therefore, the identification of predictive markers for therapy success and novel combination strategies is needed. Here we explored the impact of CX3CL1 on trastuzumab treatment efficiency and immunological mechanism involved in a humanized tumor mouse model. Trastuzumab treatment showed pronounced efficiency in CX3CL1 overexpressing cancer cells compared to low expressing cells preventing lung metastasis, while the administration of CX3CL1 shedding inhibition did not cause an enhanced treatment effect. Moreover, the application of shedding inhibitors to CX3CL1 overexpression tumors resulted in a slightly enhanced tumor growth. Therefore, the presence of CX3CL1 might predict a pronounced response to trastuzumab therapy in patients and should be investigated in a large cohort of HER2+ patients. Abstract CX3CL1 is a multifunctional chemokine that is involved in numerous biological processes, such as immune cell attraction and enhanced tumor immune cell interaction, but also in enhancing tumor cell proliferation and metastasis. The multifarious activity is partially determined by two CX3CL1 isoforms, a membrane-bound and a soluble version generated by proteolytic cleavage through proteases. Here, we investigated the impact of CX3CL1 overexpression in MDA-MB-453 and SK-BR-3 breast cancer cells. Moreover, we evaluated the therapeutic capacity of Matrix-Metalloproteinases-inhibitors TMI-1 and GI254023X in combination with the anti-HER2 antibody trastuzumab in vitro and in vivo. TMI-1 and GI254023X caused a reduced shedding of CX3CL1 and of HER2 in vitro but without effects on tumor cell proliferation or viability. In addition, trastuzumab treatment did not retard MDA-MB-453 cell expansion in vitro unless CX3CL1 was overexpressed upon transfection (MDA-MB-453CX3CL1). In humanized tumor mice, which show a coexistence of human tumor and human immune system, CX3CL1 overexpression resulted in a slightly enhanced tumor growth. However, trastuzumab treatment attenuated tumor growth of both MDA-MB-453CX3CL1 and empty vector transfected MDA-MB-453 transplanted mice but showed enhanced efficiency especially in preventing lung metastases in CX3CL1 overexpressing cancer cells. However, TMI-1 did not further enhance the trastuzumab treatment efficacy.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
- Correspondence: ; Tel.: +(49)-(0)941-944-8913
| | - Tobias F. Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| | - Attila Teoman
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Cancer Center Regensburg, 93053 Regensburg, Germany; (A.T.); (O.O.); (G.B.)
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; (T.F.D.); (H.B.)
| |
Collapse
|
41
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
42
|
Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med 2021; 7:594441. [PMID: 33553253 PMCID: PMC7856673 DOI: 10.3389/fcvm.2020.594441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Qu X, Guan P, Han L, Wang Z, Huang X. Levistolide A Attenuates Alzheimer's Pathology Through Activation of the PPARγ Pathway. Neurotherapeutics 2021; 18:326-339. [PMID: 33034847 PMCID: PMC8116477 DOI: 10.1007/s13311-020-00943-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) protein deposition, neurofibrillary tangle (NFT) formation, and neuronal loss in the brain. The current study was designed to investigate the potential mechanisms by which levistolide A affects the pathogenesis of AD in an amyloid precursor protein/presenilin 1 (APP/PS1) transgenic (Tg) mouse model of AD and N2a/APP695swe cells. Specifically, behavioral changes in levistolide A-treated APP/PS1 Tg mice were assessed by the nest-building and Morris water maze (MWM) tests. Levistolide A treatment clearly ameliorated memory deficits and cognitive decline in APP/PS1 Tg mice. Aβ generation and the inflammatory response in APP/PS1 Tg mouse brains were clearly reduced after long-term levistolide A application. Mechanistically, levistolide A concurrently stimulated the expression of α-secretase and decreased the generation of β- and γ-secretases. In addition, levistolide A inhibited the phosphorylation of tau in the brains of the Tg mice. Furthermore, in vitro and in vivo experiments suggested that peroxisome proliferator-activated receptor γ (PPARγ) is the key transcription factor that mediates the regulatory effects of levistolide A on the expression of α-, β-, and γ-secretases and phosphorylation of tau. Collectively, these findings show that levistolide A may be a candidate for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodan Qu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Zhanyou Wang
- Institute of Health Sciences, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China
| |
Collapse
|
44
|
Seifert A, Düsterhöft S, Wozniak J, Koo CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D, Ludwig A. The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cell Mol Life Sci 2021; 78:715-732. [PMID: 32372373 PMCID: PMC7873107 DOI: 10.1007/s00018-020-03507-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
The metalloproteinase ADAM10 critically contributes to development, inflammation, and cancer and can be controlled by endogenous or synthetic inhibitors. Here, we demonstrate for the first time that loss of proteolytic activity of ADAM10 by either inhibition or loss of function mutations induces removal of the protease from the cell surface and the whole cell. This process is temperature dependent, restricted to mature ADAM10, and associated with an increased internalization, lysosomal degradation, and release of mature ADAM10 in extracellular vesicles. Recovery from this depletion requires de novo synthesis. Functionally, this is reflected by loss and recovery of ADAM10 substrate shedding. Finally, ADAM10 inhibition in mice reduces systemic ADAM10 levels in different tissues. Thus, ADAM10 activity is critically required for its surface expression in vitro and in vivo. These findings are crucial for development of therapeutic ADAM10 inhibition strategies and may showcase a novel, physiologically relevant mechanism of protease removal due to activity loss.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Chek Z Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
45
|
Tateishi H, Tateishi M, Radwan MO, Masunaga T, Kawatashiro K, Oba Y, Oyama M, Inoue-Kitahashi N, Fujita M, Okamoto Y, Otsuka M. A New Inhibitor of ADAM17 Composed of a Zinc-Binding Dithiol Moiety and a Specificity Pocket-Binding Appendage. Chem Pharm Bull (Tokyo) 2021; 69:1123-1130. [PMID: 34719595 DOI: 10.1248/cpb.c21-00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is a zinc-dependent enzyme that catalyzes the cleavage of the extracellular domains of various transmembrane proteins. ADAM17 is regarded as a promising drug target for the suppression of various diseases, including cancer metastasis. We synthesized a new ADAM17 inhibitor, SN-4, composed of a zinc-binding dithiol moiety and an appendage that specifically binds to a pocket of ADAM17. We show that SN-4 inhibits the ability of ADAM17 to cleave tumor necrosis factor α (TNF-α) in vitro. This activity was reduced by the addition of zinc, indicating the importance of the zinc chelating dithiol moiety. Inhibition of TNF-α cleavage by SN-4 in cells was also observed, and with an IC50 of 3.22 µM, SN-4 showed slightly higher activity than the well-studied ADAM17 inhibitor marimastat. Furthermore, SN-4 was shown to inhibit cleavage of CD44 by ADAM17, but not by ADAM10, and to suppress cell invasion. Molecular docking showed good fitting of the specificity pocket-binding group and one SH of SN-4 and hinted at possible means of structural optimization. This study provides clues for the development of potent and selective ADAM17 inhibitors.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Mika Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre
| | - Takuya Masunaga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Kosuke Kawatashiro
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Yasunori Oba
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Misato Oyama
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Natsuki Inoue-Kitahashi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Yoshinari Okamoto
- Department of Instrumental Analysis, Faculty of Life Sciences, Kumamoto University
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
- Department of Drug Discovery, Science Farm Ltd
| |
Collapse
|
46
|
Tobys D, Kowalski LM, Cziudaj E, Müller S, Zentis P, Pach E, Zigrino P, Blaeske T, Höning S. Inhibition of clathrin-mediated endocytosis by knockdown of AP-2 leads to alterations in the plasma membrane proteome. Traffic 2020; 22:6-22. [PMID: 33225555 DOI: 10.1111/tra.12770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, clathrin-mediated endocytosis (CME) is a central pathway for the internalization of proteins from the cell surface, thereby contributing to the maintenance of the plasma membrane protein composition. A key component for the formation of endocytic clathrin-coated vesicles (CCVs) is AP-2, as it sequesters cargo membrane proteins, recruits a multitude of other endocytic factors and initiates clathrin polymerization. Here, we inhibited CME by depletion of AP-2 and explored the consequences for the plasma membrane proteome. Quantitative analysis revealed accumulation of major constituents of the endosomal-lysosomal system reflecting a block in retrieval by compensatory CME. The noticeable enrichment of integrins and blockage of their turnover resulted in severely impaired cell migration. Rare proteins such as the anti-cancer drug target CA9 and tumor markers (CD73, CD164, CD302) were significantly enriched. The AP-2 knockdown attenuated the global endocytic capacity, but clathrin-independent entry pathways were still operating, as indicated by persistent internalization of specific membrane-spanning and GPI-anchored receptors (PVR, IGF1R, CD55, TNAP). We hypothesize that blocking AP-2 function and thus inhibiting CME may be a novel approach to identify new druggable targets, or to increase their residence time at the plasma membrane, thereby increasing the probability for efficient therapeutic intervention.
Collapse
Affiliation(s)
- David Tobys
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lisa Maria Kowalski
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Eva Cziudaj
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Peter Zentis
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Elke Pach
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tobias Blaeske
- Department of Plant Physiology and Biochemistry, University of Constance, Constance, Germany
| | - Stefan Höning
- Institute for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Ou SC, Bai KJ, Cheng WH, Chen JY, Lin CH, Wen HC, Chen BC. TGF-β Induced CTGF Expression in Human Lung Epithelial Cells through ERK, ADAM17, RSK1, and C/EBPβ Pathways. Int J Mol Sci 2020; 21:ijms21239084. [PMID: 33260349 PMCID: PMC7731197 DOI: 10.3390/ijms21239084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Lung epithelial cells play critical roles in idiopathic pulmonary fibrosis. Methods: In the present study, we investigated whether transforming growth factor-β (TGF-β)-induced expression of connective tissue growth factor (CTGF) was regulated by the extracellular signal-regulated kinase (ERK)/a disintegrin and metalloproteinase 17 (ADAM17)/ribosomal S6 kinases 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ) signaling pathway in human lung epithelial cells (A549). Results: Our results revealed that TGF-β-induced CTGF expression was weakened by ADAM17 small interfering RNA (ADAM17 siRNA), TNF-α processing inhibitor-0 (TAPI-0, an ADAM17 inhibitor), U0126 (an ERK inhibitor), RSK1 siRNA, and C/EBPβ siRNA. TGF-β-induced ERK phosphorylation as well as ADAM17 phosphorylation was attenuated by U0126. The TGF-β-induced increase in RSK1 phosphorylation was inhibited by TAPI-0 and U0126. TGF-β-induced C/EBPβ phosphorylation was weakened by U0126, ADAM17 siRNA, and RSK1 siRNA. In addition, TGF-β increased the recruitment of C/EBPβ to the CTGF promoter. Furthermore, TGF-β enhanced fibronectin (FN), an epithelial–mesenchymal transition (EMT) marker, and CTGF mRNA levels and reduced E-cadherin mRNA levels. Moreover, TGF-β-stimulated FN protein expression was reduced by ADAM17 siRNA and CTGF siRNA. Conclusion: The results suggested that TGF-β induces CTGF expression through the ERK/ADAM17/RSK1/C/EBPβ signaling pathway. Moreover, ADAM17 and CTGF participate in TGF-β-induced FN expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Shu-Ching Ou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Yun Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661; Fax: +886-2-27391143
| |
Collapse
|
48
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|
49
|
Tang C, Cao D, Wang L. The association between SNPs and hepatitis B virus related acute-on-chronic liver failure. INFECTION GENETICS AND EVOLUTION 2020; 86:104615. [PMID: 33152536 DOI: 10.1016/j.meegid.2020.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study intended to investigate the association between ten single nucleotide polymorphisms (rs1143623, rs12692386, rs1799983, rs2297518, rs2910164, rs3129859, rs4251961, rs4846085, rs641738, rs873457) with susceptibility and prognosis of hepatitis B related acute-on-chronic liver failure (HBV-ACLF). METHODS This is a hospital-based case-control study included 274 patients with HBV-ACLF and 534 patients with chronic hepatitis B. The patients who were successfully followed were divided into the survival group and the death group according to the clinical outcome during the hospitalization and 90 days after discharge. The ten SNPs were genotyped in all subjects by using imLDR. Genotype, allele frequency, dominant model, recessive model and codominant model were constructed to investigate the association between single nucleotide polymorphisms with susceptibility and prognosis of HBV-ACLF. RESULTS The genotype distribution of rs1143623 was statistically different between the two groups (P = 0.04), but the allele frequency was not statistically significant (P = 0.44). GC and GG + CG genotypes at rs1143623 reduced the risk of HBV-ACLF. There were only two GG and GT genotypes in rs1799983 in our study, and the genotype and allele frequency were statistically different between the death group and the survival group (P = 0.027, P = 0.023). Patients with T allele may reduce the risk of death in patients with HBV-ACLF. The genotype and allele frequency of rs2297518 showed no significant difference. In dominant models, patients with GA + AA genotypes at rs2297518 had a reduced risk of death.
Collapse
Affiliation(s)
- Congchen Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lichun Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Panday R, Abdalla AME, Miao Y, Li X, Neupane M, Ouyang C, Yang G. Polyethylenimine-coated gold-magnetic nanoparticles for ADAM10 siRNA delivery in prostate cancer cells. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520960507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For an effective medical application of therapeutic siRNA, a safe and an efficient delivery system are required. Herein, magnetic nanoparticles (MNPs) have been successfully used as siRNA delivery vehicles. Firstly, MNPs were coated with gold (Au) nanoparticles and then capped with PEI. To improve the biocompatibility of nanoparticles, hyaluronic acid (HA) was coated onto the surface of PEI-Au/Fe nanoparticles. The prepared HA-PEI-Au/Fe3O4 nanoparticles were characterized and found to be uniform and well segregated in TEM analysis. FTIR analysis confirmed that HA was successfully conjugated to PEI. The polymer content in these nanoparticles was relatively higher than PEG coated nanoparticles. Cell viability assay demonstrated that the nanoparticles were relatively biocompatible in nature. ADAM10 siRNA was loaded into the HA-PEI-Au/Fe3O4 nanoparticles and cytotoxicity to prostate cancer (PC3) cells was analyzed. The results indicate that ADAM10 siRNA loaded HA-PEI-Au/Fe3O4 suppress the PC3 cells growth in vitro. Clearly, it could be confirmed that HA-PEI coated Au/Fe3O4 nanoparticles with higher biocompatibility appear to be suitable for intracellular siRNA delivery.
Collapse
Affiliation(s)
- Raju Panday
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Biology Unit, National Forensic Science Laboratory, Kathmandu, Nepal
| | - Ahmed ME Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Manisha Neupane
- Department of Biotechnology, National Institute of Science and Technology, Kathmandu, Nepal
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|