1
|
Pramanik P, Bhattacharya S. Decoding the prospective of metal complexes in anti-cancer therapeutics by targeting of G-quadruplex DNA. J Inorg Biochem 2025; 270:112947. [PMID: 40408850 DOI: 10.1016/j.jinorgbio.2025.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025]
Abstract
The use of metallodrugs in cancer therapy received widespread interest after the successful application of cisplatin and its analogous compounds as chemotherapeutic medications. Despite the development of various metallodrugs in past years, platinum-based chemotherapeutic agents are the only clinically approved metallodrugs that primarily interact with genomic DNA and trigger severe dose-limiting adverse side effects in cancer patients. As a consequence, the advancement of new risk-free metallodrugs has become a topmost concern in cancer research to minimize toxicity and improve therapeutic outcomes. G-quadruplex (G4) DNA structures have recently come to light as an attractive drug target in cancer therapy because of their gene regulation ability and role in maintaining genomic stability. Their presence in telomere and promoter region of oncogenes has the potential to induce apoptosis in cancer cells through the inhibition of telomerase activity and gene expression. Therefore, the development of new G4 DNA targeting small molecular entities including metal complexes came out as a viable approach for uprooting cancer disease. Beyond organic small molecules, innumerable metal complexes have been developed in past years to target G4 DNA structures in the context of cancer therapy. This review primarily aims to highlight these metal complexes through a comprehensive discussion about their structural properties, their binding interactions with G4 DNA, their cancer cell growth inhibition mechanisms, and their efficacy in both cellular and in vivo systems, to decode their potential as anti-cancer drugs. Additionally, the potential of these metal complexes in the field of bio-imaging and photodynamic therapy is also explored.
Collapse
Affiliation(s)
- Pulakesh Pramanik
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517619, India.
| |
Collapse
|
2
|
Mohanty M, Lima S, Das Pattanayak P, Das S, Buchholz A, Görls H, Plass W, Kaminsky W, Dinda R. Hydrazonate-Based Copper(II) Metallodrugs: Insights into Solution Behavior, G-Quadruplex DNA Interaction, and Anticancer Potential. Chem Asian J 2025; 20:e202401628. [PMID: 40079907 DOI: 10.1002/asia.202401628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/15/2025]
Abstract
Here, two mixed-ligand mononuclear [Cu(L1)py] (1), [Cu(L2)Him] (2) and one dinuclear copper(II) complex [Cu2(L3)2(DMSO)(MeOH)] (3) were isolated in solid state and characterized through single-crystal X-ray diffraction. Herein, we highlight the solution behavior of these complexes in solution medium through HRMS and ESR. Though the complexes maintain their integrity with respect to the ligand coordination, there is solvent or co-ligand exchange and generation of both [Cu(L)(py/Him)] or [Cu(L)(H2O)] species. G-quadruplex (G4-DNA) structures in the human telomeric DNA (hTelo) and promoter regions of oncogenes (c-MYC) can behave as potential therapeutic targets for the cancer treatment. Hence, the interaction of these complexes with G4-DNA and also duplex DNA was investigated through spectroscopy and molecular docking studies. The results reveal that the copper complexes show higher affinity for G4-DNA over duplex DNA, with 3 demonstrating the strongest binding among them. The complexes have also been tested for DNA nuclease activity against pUC19 plasmid DNA. Finally, the complexes showed significant cytotoxicity towards cancerous cell lines, namely HeLa and MCF-7 in comparison to the noncancerous cell line NIH-3T3. Annexin V/PI double staining assay demonstrated the apoptotic mode of cell death caused by the complexes. Overall, the results of G4-DNA interaction and anticancer activity are consistent, suggesting G4-DNA is the target for their biological activity.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
3
|
Stitch M, Avagliano D, Graczyk D, Clark IP, González L, Towrie M, Quinn SJ. Good Vibrations Report on the DNA Quadruplex Binding of an Excited State Amplified Ruthenium Polypyridyl IR Probe. J Am Chem Soc 2023; 145:21344-21360. [PMID: 37736878 PMCID: PMC10557146 DOI: 10.1021/jacs.3c06099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/23/2023]
Abstract
The nitrile containing Ru(II)polypyridyl complex [Ru(phen)2(11,12-dCN-dppz)]2+ (1) is shown to act as a sensitive infrared probe of G-quadruplex (G4) structures. UV-visible absorption spectroscopy reveals enantiomer sensitive binding for the hybrid htel(K) and antiparallel htel(Na) G4s formed by the human telomer sequence d[AG3(TTAG3)3]. Time-resolved infrared (TRIR) of 1 upon 400 nm excitation indicates dominant interactions with the guanine bases in the case of Λ-1/htel(K), Δ-1/htel(K), and Λ-1/htel(Na) binding, whereas Δ-1/htel(Na) binding is associated with interactions with thymine and adenine bases in the loop. The intense nitrile transient at 2232 cm-1 undergoes a linear shift to lower frequency as the solution hydrogen bonding environment decreases in DMSO/water mixtures. This shift is used as a sensitive reporter of the nitrile environment within the binding pocket. The lifetime of 1 in D2O (ca. 100 ps) is found to increase upon DNA binding, and monitoring of the nitrile and ligand transients as well as the diagnostic DNA bleach bands shows that this increase is related to greater protection from the solvent environment. Molecular dynamics simulations together with binding energy calculations identify the most favorable binding site for each system, which are in excellent agreement with the observed TRIR solution study. This study shows the power of combining the environmental sensitivity of an infrared (IR) probe in its excited state with the TRIR DNA "site effect" to gain important information about the binding site of photoactive agents and points to the potential of such amplified IR probes as sensitive reporters of biological environments.
Collapse
Affiliation(s)
- Mark Stitch
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Davide Avagliano
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
- Department
of Chemistry, Chemical Physics Theory Group, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
| | - Daniel Graczyk
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ian P. Clark
- Central
Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| | - Michael Towrie
- Central
Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Susan J Quinn
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
4
|
Peterková K, Stitch M, Boota RZ, Scattergood PA, Elliott PIP, Towrie M, Podbevšek P, Plavec J, Quinn SJ. G-Quadruplex Binding of an NIR Emitting Osmium Polypyridyl Probe Revealed by Solution NMR and Time-Resolved Infrared Studies. Chemistry 2023; 29:e202203250. [PMID: 36398697 DOI: 10.1002/chem.202203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
G-quadruplexes are emerging targets in cancer research and understanding how diagnostic probes bind to DNA G-quadruplexes in solution is critical to the development of new molecular tools. In this study the binding of an enantiopure NIR emitting [Os(TAP)2 (dppz)]2+ complex to different G-quadruplex structures formed by human telomer (hTel) and cMYC sequences in solution is reported. The combination of NMR and time-resolved infrared spectroscopic techniques reveals the sensitivity of the emission response to subtle changes in the binding environment of the complex. Similar behaviour is also observed for the related complex [Os(TAP)2 (dppp2)]2+ upon quadruplex binding.
Collapse
Affiliation(s)
- Kateřina Peterková
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- National Centre for Biomolecular Research Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czechia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Mark Stitch
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| | - Rayhaan Z Boota
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Paul A Scattergood
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Paul I P Elliott
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Michael Towrie
- Rutherford Appleton Laboratory, STFC, Harwell Campus, OX11 0FA, UK
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
- EN-FIST Centre of Excellence Trg OF 13, 1000, Ljubljana, Slovenia
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
5
|
Wang Z, Liu W, Li G, Wang J, Zhao B, Huang P, Mei W. Ruthenium(II) Complexes Coupled by Erianin via a Flexible Carbon Chain as a Potential Stabilizer of c-myc G-Quadruplex DNA. Molecules 2023; 28:molecules28041529. [PMID: 36838516 PMCID: PMC9958891 DOI: 10.3390/molecules28041529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Herein, two novel ruthenium(II) complexes coupled by erianin via a flexible carbon chain, [Ru(phen)2(L1-(CH2)4-erianin)](ClO4)2 (L1 = 2-(2-(tri-fluoromethyphenyl))-imidazo [4,5f][1-10]phenanthroline (1) and [Ru(phen)2(L2-(CH2)4-eria)](ClO4)2 (L2 = 2-(4-(tri-fluoromethyphenyl))-imidazo [4,5f][1,10]phenanthroline (2), have been synthesized and investigated as a potential G-quadruplex(G4) DNA stabilizer. Both complexes, especially 2, can bind to c-myc G4 DNA with high affinity by electronic spectra, and the binding constant calculated for 1 and 2 is about 15.1 and 2.05 × 107 M-1, respectively. This was further confirmed by the increase in fluorescence intensity for both complexes. Moreover, the positive band at 265 nm in the CD spectra of c-myc G4 DNA decreased treated with 2, indicating that 2 may bind to c-myc G4 DNA through extern groove binding mode. Furthermore, fluorescence resonance energy transfer (FRET) assay indicated that the melting point of c-myc G4 DNA treated with 1 and 2 increased 15.5 and 16.5 °C, respectively. Finally, molecular docking showed that 1 can bind to c-myc G4 DNA in the extern groove formed by base pairs G7-G9 and G22-A24, and 2 inserts into the small groove of c-myc G4 DNA formed by base pairs T19-A24. In summary, these ruthenium(II) complexes, especially 2, can be developed as potential c-myc G4 DNA stabilizers and will be exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Zhixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wentao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guohu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiacheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Zhao
- Department of Southern Pharmacy, Guangdong Jiangmen Chinese Medical, Jiangmen 510047, China
- Correspondence: (B.Z.); (W.M.)
| | - Peishan Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China
- Correspondence: (B.Z.); (W.M.)
| |
Collapse
|
6
|
Yuan C, Wang Z, Wang Z, Liu W, Li G, Meng J, Wu R, Wu Q, Wang J, Mei W. Novel Chiral Ru(II) Complexes as Potential c-myc G-quadruplex DNA Stabilizers Inducing DNA Damage to Suppress Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 24:ijms24010203. [PMID: 36613647 PMCID: PMC9820592 DOI: 10.3390/ijms24010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, effective drugs for triple-negative breast cancer (TNBC) are lacking in clinics. c-myc is one of the core members during TNBC tumorigenesis, and G-rich sequences in the promoter region can form a G-quadruplex conformation, indicating that the c-myc inhibitor is a possible strategy to fight cancer. Herein, a series of chiral ruthenium(II) complexes ([Ru(bpy)2(DPPZ-R)](ClO4)2, Λ/Δ-1: R = -H, Λ/Δ-2: R = -Br, Λ/Δ-3: R = -C≡C(C6H4)NH2) were researched based on their interaction with c-myc G-quadruplex DNA. Λ-3 and Δ-3 show high affinity and stability to decrease their replication. Additional studies showed that Λ-3 and Δ-3 exhibit higher inhibition against different tumor cells than other molecules. Δ-3 decreases the viability of MDA-MB-231 cells with an IC50 of 25.51 μM, which is comparable with that of cisplatin, with an IC50 of 25.9 μM. Moreover, Δ-3 exhibits acceptable cytotoxic activity against MDA-MB-231 cells in a zebrafish xenograft breast cancer model. Further studies suggested that Δ-3 decreases the viability of MDA-MB-231 cells predominantly through DNA-damage-mediated apoptosis, which may be because Δ-3 can induce DNA damage. In summary, the results indicate that Ru(II) complexes containing alkinyl groups can be developed as c-myc G-quadruplex DNA binders to block TNBC progression.
Collapse
Affiliation(s)
- Chanling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zongtao Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wentao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guohu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlan Meng
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruzhen Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 530316, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| | - Jiacheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| |
Collapse
|
7
|
Exploring the Parallel G-Quadruplex Nucleic Acid World: A Spectroscopic and Computational Investigation on the Binding of the c-myc Oncogene NHE III1 Region by the Phytochemical Polydatin. Molecules 2022; 27:molecules27092997. [PMID: 35566347 PMCID: PMC9099682 DOI: 10.3390/molecules27092997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Trans-polydatin (tPD), the 3-β-D-glucoside of the well-known nutraceutical trans-resveratrol, is a natural polyphenol with documented anti-cancer, anti-inflammatory, cardioprotective, and immunoregulatory effects. Considering the anticancer activity of tPD, in this work, we aimed to explore the binding properties of this natural compound with the G-quadruplex (G4) structure formed by the Pu22 [d(TGAGGGTGGGTAGGGTGGGTAA)] DNA sequence by exploiting CD spectroscopy and molecular docking simulations. Pu22 is a mutated and shorter analog of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, whose overexpression triggers the metabolic changes responsible for cancer cells transformation. The binding of tPD with the parallel Pu22 G4 was confirmed by CD spectroscopy, which showed significant changes in the CD spectrum of the DNA and a slight thermal stabilization of the G4 structure. To gain a deeper insight into the structural features of the tPD-Pu22 complex, we performed an in silico molecular docking study, which indicated that the interaction of tPD with Pu22 G4 may involve partial end-stacking to the terminal G-quartet and H-bonding interactions between the sugar moiety of the ligand and deoxynucleotides not included in the G-tetrads. Finally, we compared the experimental CD profiles of Pu22 G4 with the corresponding theoretical output obtained using DichroCalc, a web-based server normally used for the prediction of proteins’ CD spectra starting from their “.pdb” file. The results indicated a good agreement between the predicted and the experimental CD spectra in terms of the spectral bands’ profile even if with a slight bathochromic shift in the positive band, suggesting the utility of this predictive tool for G4 DNA CD investigations.
Collapse
|
8
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
9
|
He SF, Liao JX, Huang MY, Zhang YQ, Zou YM, Wu CL, Lin WY, Chen JX, Sun J. Rhenium-guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated and cell cycle arrest pathways. Metallomics 2022; 14:6527583. [PMID: 35150263 DOI: 10.1093/mtomcs/mfac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
During the last decades, growing evidence indicates that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy (PDT). This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 μM in the dark to 1.3 ± 0.7 μM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the ROS level, and decreasing MMP and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell-cycle arrest and eventually cell death.
Collapse
Affiliation(s)
- Shu-Fen He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.,Department of Pharmacy, Dongguan Peaple's Hospital, Dongguan, 523059, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yi-Min Zou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ci-Ling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wen-Yuan Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
10
|
Chen L, Wang J, Cai X, Chen S, Zhang J, Li B, Chen W, Guo X, Luo H, Chen J. Cyclometalated Ru(II)-isoquinoline complexes overcome cisplatin resistance of A549/DDP cells by downregulation of Nrf2 via Akt/GSK-3β/Fyn pathway. Bioorg Chem 2021; 119:105516. [PMID: 34856444 DOI: 10.1016/j.bioorg.2021.105516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/03/2023]
Abstract
Both ruthenium (Ru) and isoquinoline (IQ) compounds are regarded as potential anticancer drug candidates. Here, we report the synthesis and characterization of three novel cyclometalated Ru(II)-isoquinoline complexes: RuIQ-3, RuIQ-4, and RuIQ-5, and evaluation of their in vitro cytotoxicities against a panel of cell lines including A549/DDP, a cisplatin-resistant human lung cancer cell line. A549/DDP 3D multicellular tumor spheroids (MCTSs) were also used to detect the drug resistance reversal effect of Ru(II)-IQ complexes. Our results indicated that the cytotoxic activities against cancer cells of Ru(II)-IQ complexes, especially RuIQ-5, were superior compared with cisplatin. In addition, RuIQ-5 exhibited low toxicity towards both normal HBE cells in vitro and zebrafish embryos in vivo. Further investigation on cellular mechanism of action indicated that after absorption by A549/DDP cells, RuIQ-5 was mainly distributed in the nucleus, which is different from cisplatin. Besides, RuIQ-5 could induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, ROS-mediated DNA damage, and cycle arrest at both S and G2/M phases. Moreover, RuIQ-5 could inhibit the overexpression of Nrf2 through regulation of Akt/GSK-3β/Fyn signaling pathway and hindering the nuclear translocation of Nrf2. Based on these findings, we firmly believe that the studied Ru(II)-IQ complexes hold great promise as anticancer therapeutics with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Jie Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Xianhong Cai
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Baojun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Weigang Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| | - Jincan Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
11
|
Preferential interaction with c-MYC quadruplex DNA mediates the cytotoxic activity of a nitro-flavone derivative in A375 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Liu R, Yuan C, Feng Y, Qian J, Huang X, Chen Q, Zhou S, Ding Y, Zhai B, Mei W, Yao L. Microwave-assisted synthesis of ruthenium(ii) complexes containing levofloxacin-induced G2/M phase arrest by triggering DNA damage. RSC Adv 2021; 11:4444-4453. [PMID: 35424377 PMCID: PMC8694345 DOI: 10.1039/d0ra09418h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Ru(ii) complexes have attracted increasing attention as promising antitumor agents for their relatively low toxicity, high affinity to DNA molecules, and correlation with multiple targets. Meanwhile, quinolones are synthetic antibacterial agents widely used in the clinical practice. In this paper, two novel Ru(ii) complexes coordinated by levofloxacin (LOFLX), [Ru(bpy)2(LOFLX)]·2ClO4 (1), and [Ru(dmbpy)2(LOFLX)]·2ClO4 (2) (bpy = 2,2′-bipyridine, dmbpy = 4,4′-dimethyl-2,2′-bipyridine) were synthesized with high efficiency under microwave irradiation and characterized by ESI-MS, 1H NMR, and 13C NMR. The binding behavior of these complexes with double-strand calf thymus DNA(CT-DNA) was investigated using spectroscopy, molecular docking, and density functional theory calculations. Results showed that 2 exhibited higher binding affinity than 1 and LOFLX. Further studies showed that 2 could induce the G2/M phase arrest of A549 cells via DNA damage. In summary, these results indicated that 2 could be developed as a potential anticancer agent in treatment of lung cancer through the induction of cell cycle arrest at G2/M phase by triggering DNA damage. This study showed that levofloxacin-based ruthenium(ii) complex 2 effectively inhibited the growth of A549 cells by inducing G2/M phase arrest through triggering DNA damage.![]()
Collapse
Affiliation(s)
- Ruotong Liu
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
- School of Pharmacy
- Guangdong Pharmaceutical University
| | - Chanling Yuan
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Yin Feng
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| | - Jiayi Qian
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Xiaoting Huang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Qiutong Chen
- School of Politics and Public Administration
- South China Normal University
- Guangzhou
- China
| | - Shuyuan Zhou
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging
- Guangzhou 510006
- China
| | - Yin Ding
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| | - Bingbing Zhai
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging
| | - Liangzhong Yao
- The First Affiliation Hospital of Guangdong Pharmaceutical University
- Guangzhou 510062
- China
| |
Collapse
|
13
|
Devereux SJ, Poynton FE, Baptista FR, Gunnlaugsson T, Cardin CJ, Sazanovich IV, Towrie M, Kelly JM, Quinn SJ. Caught in the Loop: Binding of the [Ru(phen) 2 (dppz)] 2+ Light-Switch Compound to Quadruplex DNA in Solution Informed by Time-Resolved Infrared Spectroscopy. Chemistry 2020; 26:17103-17109. [PMID: 32725823 DOI: 10.1002/chem.202002165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/05/2023]
Abstract
Ultrafast time-resolved infrared (TRIR) is used to report on the binding site of the [Ru(phen)2 (dppz)]2+ "light-switch" complex with both bimolecular (Oxytricha nova telomere) and intramolecular (human telomere) guanine-quadruplex structures in both K+ and Na+ containing solutions. TRIR permits the simultaneous monitoring both of the "dark" and "bright" states of the complex and of the quadruplex nucleobase bases, the latter via a Stark effect induced by the excited state of the complex. These data are used to establish the contribution of guanine base stacking and loop interactions to the binding site of this biologically relevant DNA structure in solution. A particularly striking observation is the strong thymine signal observed for the Na+ form of the human telomere sequence, which is expected to be in the anti-parallel conformation.
Collapse
Affiliation(s)
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | | | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland.,Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, 2, Ireland
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | | | - Michael Towrie
- Rutherford Appleton Laboratory, STFC, Harwell Campus, OX11 0FA, UK
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
14
|
Feng Y, Shu J, Yao L, Lan Y, Ye L, Mei W, Ding Y. Recognizing and stabilizing miR-21 by chiral ruthenium(II) complexes. BMC Chem 2020; 14:26. [PMID: 32266333 PMCID: PMC7119291 DOI: 10.1186/s13065-020-00672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
MiR-21, a non-coding miRNA with 22 nucleotides, plays an important part in the proliferation, invasion, and metastasis of tumor cells. The present study demonstrates that isomers of chiral ruthenium(II) complexes with alkynes (Λ-1 and Δ-1) were synthesized by Songogashira coupling reaction by using microwave-assisted synthetic technology. The isomers can recognize and stabilize miR-21, with the Λ-isomer showing a stronger binding capacity than the Δ-isomer. Further studies showed that both isomers can be uptaken by MDA-MB-231 cells and enriched in the nucleus. Treatment with the Λ-/Δ-isomer downregulated the expression of miR-21. In a word, the development of chiral ruthenium(II) complexes act as potential inhibitors against tumor cells by recognizing, stabilizing, and regulating the expression of miR-21.
Collapse
Affiliation(s)
- Yin Feng
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
| | - Jing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
| | - Liangzhong Yao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
| | - Yutao Lan
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006 China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model System, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model System, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Ying Ding
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062 China
- Guangdong Province Engineering Center for Molecular Probe & Biomedical Imaging, Guangzhou, 510006 China
| |
Collapse
|
15
|
Huang C, Ma Z, Lin J, Gong X, Zhang F, Wu X, Wang F, Zheng W, Zhao Y, Wu K. Tandem Mass Spectrometry Reveals Preferential Ruthenation of Thymines in Human Telomeric G-Quadruplex DNA by an Organometallic Ruthenium Anticancer Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fengfeng Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Zheng
- Peking University Health Science Center, Beijing 100191, People’s Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| |
Collapse
|
16
|
Chen J, Wang J, Deng Y, Li B, Li C, Lin Y, Yang D, Zhang H, Chen L, Wang T. Novel cyclometalated Ru(II) complexes containing isoquinoline ligands: Synthesis, characterization, cellular uptake and in vitro cytotoxicity. Eur J Med Chem 2020; 203:112562. [PMID: 32698112 DOI: 10.1016/j.ejmech.2020.112562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 01/25/2023]
Abstract
Two novel cyclometalated Ru(II) complexes containing isoquinoline ligand, [Ru(bpy)2(1-Ph-IQ)](PF6), (bpy = 2,2'-bipyridine; 1-Ph-IQ = 1-phenylisoquinoline; RuIQ-1) and [Ru(phen)2(1-Ph-IQ)](PF6) (phen = 1,10-phenanthroline; RuIQ-2) were found to show high cytotoxic activity against NCI-H460, A549, HeLa and MCF-7 cell lines. Notably, both of them exhibited IC50 values that were an order of magnitude lower than those of clinical cisplatin and two structurally similar Ru(II)-isoquinoline complexes [Ru(bpy)2(1-Py-IQ)](PF6)2 (Ru3) and [Ru(phen)2(1-Py-IQ)](PF6)2 (Ru4) (1-Py-IQ = 1-pyridine-2-yl). The cellular uptake and intracellular localization displayed that the two cyclometalated Ru(II) complexes entered NCI-H460 cancer cells dominantly via endocytosis pathway, and preferentially distributed in the nucleus. Further investigations on the apoptosis-inducing mechanisms of RuIQ-1 and RuIQ-2 revealed that the two complexes could cause S, G2/M double-cycle arrest by regulating cell cycle related proteins. The two complexes also could reduce the mitochondrial membrane potential (MMP), promote the generation of intracellular ROS and trigger DNA damage, and then lead to apoptosis-mediated cell death. More importantly, RuIQ-2 exhibits low toxicity both towards normal HBE cells in vitro and zebrafish embryos in vivo. Accordingly, the developed complexes hold great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.
Collapse
Affiliation(s)
- Jincan Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jie Wang
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuanyuan Deng
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baojun Li
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengpeng Li
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuxue Lin
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Dongbin Yang
- The Affiliated People's Hospital of Hebi of Henan University, Hebi, 456030, China
| | - Huanyun Zhang
- The Affiliated People's Hospital of Hebi of Henan University, Hebi, 456030, China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Tao Wang
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, 450001, China; Centre for Comparative Genomics, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
17
|
Guan S, Pan T, Zhang Y, Zeng Z, Mu L, Zhu D, Chang B, Zheng K, Qian J, Xie Q, Mei W, Tang W, Bai M. Synthesis, DNA-binding, and antitumor activity of polypyridyl-ruthenium(II) complexes [Ru(L)2(DClPIP)] (L = bpy, phen; DClPIP = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1630614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shouhai Guan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Pan
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyang Zhang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolin Zeng
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luwen Mu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duo Zhu
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyang Chang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangdi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiesheng Qian
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xie
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Tang
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingjun Bai
- Department of Vascular Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Wang XN, Su XX, Cheng SQ, Sun ZY, Huang ZS, Ou TM. MYC modulators in cancer: a patent review. Expert Opin Ther Pat 2019; 29:353-367. [PMID: 31068032 DOI: 10.1080/13543776.2019.1612878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The important role of MYC in tumorigenesis makes it particularly important to design MYC modulators. Over the past decade, researchers have raised a number of strategies for designing MYC modulators, some of which are already in clinical trials. This paper aims to review the patents of MYC modulators. AREAS COVERED The important biological relevance of c-MYC and the regulation pathways related to c-MYC are briefly introduced. Base on that, the MYC modulators reported in published patents and references primarily for cancer treatment are outlined, highlighting the structures and biological activities. EXPERT OPINION There has been a growing awareness of finding and designing MYC modulators as novel anticancer drugs over recent years. Patents involving the discovery, synthesis, and application of MYC modulators are particularly important for further development in this field. Although finding direct MYC inhibitors or binders is challenging, MYC cannot be simply defined as an undruggable target. There is still substantial evidence proving the concept that MYC modulators can benefit to the treatment of both human hematological malignancies and solid tumors. More efforts should be taken to improve the activity and specificity of MYC modulators.
Collapse
Affiliation(s)
- Xiao-Na Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xiao-Xuan Su
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Sui-Qi Cheng
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Zhi-Yin Sun
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Zhi-Shu Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Tian-Miao Ou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
19
|
Bai M, Pan T, Yu G, Xie Q, Zeng Z, Zhang Y, Zhu D, Mu L, Qian J, Chang B, Mei WJ, Guan S. Chiral ruthenium(II) complex Δ-[Ru(bpy) 2(o-FMPIP)] (bpy = bipyridine, o-FMPIP = 2-(2'-trifluoromethyphenyl) imidazo[4,5-f][1,10]phenanthroline) as potential apoptosis inducer via DNA damage. Eur J Pharmacol 2019; 853:49-55. [PMID: 30880177 DOI: 10.1016/j.ejphar.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Chiral ruthenium(II) complexes have long been considered as potential anticancer agents. Herein, in vivo inhibitory activity of a chiral ruthenium(II) complex coordinated by ligand 2-(2'-trifluoromethyphenyl) imidazo [4,5-f][1,10]phenanthroline, Δ-[Ru(bpy)2(o-FMPIP)] (D0402) on Kunming(KM) mice bearing tumor (H22 hepatic cancer) has been evaluated, and the results showed that the tumor weight of mice treated with 0.22 mg/(kg·day) D0402 via i.v. administration for 7 days decreased about 31.79% compared to the control group, while the body weight, as well as the thymus, spleen, liver, lung, and kidney indices of mice treated with D0402 observed almost no loss compared to the control group. Furthermore, the mechanism studies on anti-angiogenic showed that D0402 could inhibit the formation of angiogenesis in the transgenic Tg(fli1a: EGFP) zebrafish. After treated with D0402, the sub-intestinal vessels(SIVs) of the zebrafish became disordered and chaotic, and was dosage dependent. Moreover, the TUNEL analysis and comet assays revealed that D0402 can induce apoptosis of HepG2 cell through DNA damage, and this was further demonstrated by immunofluorescence analysis with the number of γ-H2AX increased following the increasing amount of D0402. Besides, in vivo toxicity of D0402 has also been investigated on the development of zebrafish embryo, and the results showed that there were no death or development delay occurred for zebrafish embryo treated with D0402 up to concentration of 60 μM. All in together, this study suggested that D0402 can be developed as a potential inhibitor against liver cancer through co-junction of anti-angiogenesis and apoptosis-inducing via DNA damage in the near future.
Collapse
Affiliation(s)
- Mingjun Bai
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gengnan Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiang Xie
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhaolin Zeng
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanyang Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Duo Zhu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Luwen Mu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiesheng Qian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Boyang Chang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou 510006, China.
| | - Shouhai Guan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
20
|
Costa MS, Gonçalves YG, Teixeira SC, Nunes DCDO, Lopes DS, da Silva CV, da Silva MS, Borges BC, Silva MJB, Rodrigues RS, Rodrigues VDM, Von Poelhsitz G, Yoneyama KAG. Increased ROS generation causes apoptosis-like death: Mechanistic insights into the anti-Leishmania activity of a potent ruthenium(II) complex. J Inorg Biochem 2019; 195:1-12. [PMID: 30861423 DOI: 10.1016/j.jinorgbio.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuIICl2(dppm)2], where dppm = bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[RuII(η2-O2CC10H13)(dppm)2]PF6 (bbato), cis-[RuII(η2-O2CC7H7S)(dppm)2]PF6 (mtbato) and cis-[RuII(η2-O2CC7H7O2)(dppm)2]PF6 (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor. We report, for the first time, that hmxbato and precursor promoted an increase in reactive oxygen species production, depolarization of the mitochondrial membrane, DNA fragmentation, formation of a pre-apoptotic peak, alterations in parasite morphology and formation of autophagic vacuoles. Taken together, our results suggest that these ruthenium complexes cause parasite death by apoptosis. Thus, this work provides relevant knowledge on the activity of ruthenium(II) complexes against L. (L.) amazonensis. Such information will be essential for the exploitation of these complexes as future candidates for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Mônica Soares Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Débora Cristina de Oliveira Nunes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Daiana Silva Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil; Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular (LECC), Centro de Toxinas, Resposta imune e Sinalização Celular (CeTICS), Instituto Butantan, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Bruna Cristina Borges
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Renata Santos Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Gustavo Von Poelhsitz
- Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
21
|
Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, Mei W. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem 2019; 164:282-291. [DOI: 10.1016/j.ejmech.2018.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
|
22
|
Wang SL, Wang ZF, Qin QP, Tan MX, Luo DM, Zou BQ, Liu YC. A 9‑chloro‑5,6,7,8‑tetrahydroacridine Pt(II) complex induces apoptosis of Hep‑G2 cells via inhibiting telomerase activity and disrupting mitochondrial pathway. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Liu X, Zhao X, Li Y, Zheng K, Wu Q, Mei W. Microwave-Assisted Synthesis, Characterisation, and DNA-Binding Properties of RuII Complexes Coordinated by Norfloxacin as Potential Tumour Inhibitors. Aust J Chem 2019. [DOI: 10.1071/ch18637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three novel norfloxacin-based ruthenium(ii) complexes, [Ru(bpy)2(NFLX)]Cl·2H2O (1), [Ru(phen)2(NFLX)]Cl·2H2O (2), and [Ru(dmbpy)2(NFLX)]Cl·2H2O (3) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline, dmbpy=4,4′-dimethyl-2,2′-bipyridine, and NFLX=norfloxacin), were synthesised and characterised with electrospray ionisation mass spectrometry and 1H and 13C NMR spectroscopy. The antitumour properties were evaluated by MTT assay, and the data revealed that 2 can inhibit the growth of human lung adenocarcinoma A549 efficiently. Furthermore, the DNA-binding behaviours of these complexes were investigated by a multiple spectroscopy assay and viscosity study. The results indicated that these complexes interact with calf thymus DNA through electrostatic interactions with a strong binding affinity in the order 2>3>1. Therefore, these results suggested that 2 might be a suitable anticancer agent due to its excellent DNA-binding abilities.
Collapse
|
24
|
Cheng Y, Zeng W, Cheng Y, Zhang J, Zou T, Wu K, Wang F. Selective binding of an organoruthenium complex to G-rich human telomeric sequence by tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2152-2158. [PMID: 30252980 DOI: 10.1002/rcm.8292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Human telomeric DNA is reported to be a potential target for anticancer organometallic ruthenium(II) complexes, however, the interaction sites were not clearly discriminated and identified. METHODS In the current study, tandem mass spectrometry (MS/MS) using collision-induced dissociation (CID) was firstly introduced to identify the interaction sites of an organometallic ruthenium(II) complex [(η6 -biphenyl)Ru(en)Cl][PF6 ] (1; en = ethylenediamine) with 5'-T1 T2 A3 G4 G5 G6 -3' (I), the repeating unit of human telomeric DNA, in both positive- and negative-ion mode at a low reaction molar ratio (1/I = 0.2) which was applied to preserve the site selectivity. RESULTS Mass spectrometric results showed that mono-ruthenated I was the main product under the conditions. In positive-ion mode, MS/MS results indicated that ruthenium complex 1 binds to T2 or G6 in strand I. However, in negative-ion mode, no efficient information was obtained for exact identification of ruthenation sites which may be attributed to losses of fragment ions due to charge neutralization by the coordination of the positively charged ruthenium complex to the short MS/MS fragments. CONCLUSIONS This is the first report of using top-down MS to characterize the interactions of organometallic ruthenium(II) complexes and human telomeric DNA. Thymine can be thermodynamically competitive with guanine for binding to ruthenium complexes even at low reaction molar ratio, which inspired us to explore in greater depth the significance of thymine binding.
Collapse
Affiliation(s)
- Yiyu Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| | - Yang Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Jishuai Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Tao Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| |
Collapse
|
25
|
Nucleus-enriched Ruthenium Polypyridine Complex Acts as a Potent Inhibitor to Suppress Triple-negative Breast Cancer Metastasis In vivo. Comput Struct Biotechnol J 2018; 17:21-30. [PMID: 30581541 PMCID: PMC6297906 DOI: 10.1016/j.csbj.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Polypyridine Ru(II) complexes have long been deemed to excellent antitumor agents that inhibit the proliferation of breast cancer cells. Nevertheless, their effects on the metastatic potency of breast cancer cells need further research. Herein, a class of polypyridine Ru(II) complexes coordinated with phenazine derivates (DPPZ) ([Ru(bpy)2(DPPZ-R)](ClO4)2, Ru(bpy)2DPPZ: R = -H, Ru(bpy)2BrDPPZ: R = -Br, Ru(bpy)2MDPPZ: R = -CH3, Ru(bpy)2BnDPPZ: R = −acene, Ru(bpy)2BEDPPZ: R = -C ≡ C(C6H5)) was synthesized by introducing different substituent groups to regulate the electron cloud density and planarity of the main ligands. Results indicated that this class of DPPZ-based Ru(II) complexes exhibited promising inhibitory effect against MDA-MB-231 triple-negative breast cancer cells, especially for Ru(bpy)2BEDPPZ, which is comparable with that of cisplatin. In addition, Ru(bpy)2BEDPPZ effectively inhibited the migration and invasion of MDA-MB-231 cells in vitro and suppressed focal adhesion and stress fiber formation. Moreover, it effectively blocked MDA-MB-231 cell metastasis in blood vessels and restrained angiogenesis formation in a zebrafish xenograft breast cancer model. Further studies showed that the mechanisms may involve DNA damage-mediated apoptosis probably due to Ru(bpy)2BEDPPZ, which was enriched in the cell nucleus and induced DNA damage. All these results suggested that the DPPZ-based Ru(II) complexes can act as potent anti-metastasis agents.
Collapse
|
26
|
Qin QP, Zou BQ, Hu FL, Huang GB, Wang SL, Gu YQ, Tan MX. Platinum(ii) complexes with rutaecarpine and tryptanthrin derivatives induce apoptosis by inhibiting telomerase activity and disrupting mitochondrial function. MEDCHEMCOMM 2018; 9:1639-1648. [PMID: 30429969 PMCID: PMC6195000 DOI: 10.1039/c8md00247a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Four new platinum(ii) complexes, [Pt(Rut)(DMSO)Cl2] (Rut-Pt), [Pt(Try)(DMSO)Cl2] (Try-Pt), [Pt(ITry)(DMSO)Cl2] (ITry-Pt) and [Pt(BrTry)(DMSO)Cl2] (BrTry-Pt), with rutaecarpine (Rut), tryptanthrin (Try), 8-iodine-tryptanthrin (ITry) and 8-bromo-tryptanthrin (BrTry) as ligands were synthesized and fully characterized. In these complexes, the platinum(ii) adopts a four-coordinated square planar geometry. The inhibitory activity evaluated by the MTT assay showed that BrTry-Pt (IC50 = of 0.21 ± 0.25 μM) could inhibit the growth of T-24 tumor cells (human bladder cancer cell line) more so than the other three complexes. In addition, all of these Pt complexes exhibited low toxicity against non-cancerous HL-7702 cells. BrTry-Pt induced cell cycle arrest in the S phase, leading to the down-regulation of cyclin A and CDK2 proteins. BrTry-Pt acts as a telomerase inhibitor targeting the c-myc promoter. In addition, BrTry-Pt also caused mitochondrial dysfunction. Importantly, the in vitro anticancer activity of BrTry-Pt was higher than those of Rut-Pt, Try-Pt and ITry-Pt, and it was more selective for T-24 cells than for non-cancerous HL-7702 cells.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , 530006 , P. R. China
| | - Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yun-Qiong Gu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| |
Collapse
|
27
|
Comparative studies on DNA-binding and in vitro antitumor activity of enantiomeric ruthenium(II) complexes. J Inorg Biochem 2018; 180:54-60. [DOI: 10.1016/j.jinorgbio.2017.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
|
28
|
Bai M, Zeng Z, Li L, Wu Q, Zhang Y, Pan T, Mu L, Zhu D, Guan S, Xie Q, Mei W. Chiral ruthenium(ii) complex as potent radiosensitizer of 125I through DNA-damage-mediated apoptosis. RSC Adv 2018; 8:20612-20618. [PMID: 35542349 PMCID: PMC9080800 DOI: 10.1039/c8ra03383h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
A chiral ruthenium(ii) complex, Λ-[Ru(bpy)2(o-tFMPIP)] (ClO4)2 (o-tFMPIP = 2′-trifluoromethylphenyl) imidazo [4,5-f][1,10]phenanthroline, was prepared and evaluated for its enhancement of the radiosensitivity of 125I seeds. The synthetic Ru(ii) complex, LR042, effectively enhanced growth inhibition against HepG2 human hepatocellular liver carcinoma cells induced by 125I seeds and consequently effectively promoted the apoptosis of tumor cells with increasing level of cleave-caspase-3. Furthermore, the results of immunofluorescence indicated that LR042 enhanced the phosphorylation of H2AX by 125I seeds vigorously in response to damaged DNA. LR042 improved DNA damage induced by 125I seeds, which resulted in apoptosis through the activation of the p53/AKT signal. In conclusion, synthetic LR042 can be further developed as a potential radiosensitizer of 125I seed radiotherapy for cancer therapy. Synthetic LR042 can be further developed as a radiosensitizer of 125I by inducing DNA-damage-mediated apoptosis for cancer therapy.![]()
Collapse
|
29
|
Synthesis, DNA binding and cytotoxic activity of pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline with 9-hydroxy-4-(3-diethylaminopropylamino) and 8-methoxy-4-(3-diethylaminopropylamino) substitutions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:1-9. [DOI: 10.1016/j.jphotobiol.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/22/2022]
|
30
|
Zhang S, Wu Q, Zhang H, Wang Q, Wang X, Mei W, Wu X, Zheng W. Microwave-assisted synthesis of ruthenium(II) complexes with alkynes as potential inhibitor by selectively recognizing c-myc G-quadruplex DNA. J Inorg Biochem 2017; 176:113-122. [PMID: 28888786 DOI: 10.1016/j.jinorgbio.2017.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/11/2017] [Accepted: 08/05/2017] [Indexed: 11/20/2022]
Abstract
Herein, two polypyridyl ruthenium(II) complexes with alkynes, [Ru(bpy)2L](ClO4)2 (L=p-TEPIP (1) and p-BEPIP (2); bpy=2,2'-bipyridine; p-TEPIP=2-(4-trimethylsilylpropargyl)-1H-imidazo[4,5f][1,10]phenanthroline; p-BEPIP=2-(4-phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline) have been successfully achieved in yields of 32%-89% by a Sonogashira coupling reaction under microwave irradiation. We studied these complexes as potential stabilizers of c-myc G-quadruplex DNA. Observations revealed that both complexes could selectively bind to and stabilize c-myc G-quadruplex DNA with a constant of approximately 1.61±0.78 and 9.47±4.20×103M-1, respectively, as determined from ITC (isothermal ttitration calorimetry) experiments, FRET (fluorescence resonance energy ttransfer) assay and competitive FRET assay. Moreover, the melting point (Tm) of the c-myc G-quadruplex DNA increased in the presence of 1 and 2 ([Ru]=0.2μM) by approximately 9 and 19.9°C, respectively. It is noteworthy that the conformation of the c-myc G-quadruplex DNA appeared to change when titrated with 1 and 2, which was accompanied by a negative-induced CD (circular dichroism) signal that appeared at a wavelength of 295nm. Furthermore, the conformational change in c-myc G-quadruplex DNA induced by 1 and 2have also been confirmed by TEM (transmission electron microscopy) and AFM (atomic force microscopy). Consequently, the replication of c-myc DNA was blocked by 1 and 2, and especially by 2, as verified by PCR (polymerase chain reaction) -stop assay and Western-blot assay. Thus, these ruthenium(II) complexes can be developed as potential inhibitors in chemotherapy through their binding and stabilization of c-myc G-quadruplex DNA.
Collapse
Affiliation(s)
- Shuangyan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hao Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Qi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiaohui Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
D'Sousa Costa CO, Araujo Neto JH, Baliza IRS, Dias RB, Valverde LDF, Vidal MTA, Sales CBS, Rocha CAG, Moreira DRM, Soares MBP, Batista AA, Bezerra DP. Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells. Oncotarget 2017; 8:104367-104392. [PMID: 29262647 PMCID: PMC5732813 DOI: 10.18632/oncotarget.22248] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF6)2 (1) and [Ru(piplartine)(dppb)(bipy)](PF6)2 (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.
Collapse
Affiliation(s)
- Cinara O D'Sousa Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - João H Araujo Neto
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901, Brazil
| | - Ingrid R S Baliza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Manuela T A Vidal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-902, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Diogo R M Moreira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.,Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia, 41253-190, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13561-901, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
32
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 759] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhao XL, Zhao HQ, Xu XX, Li ZS, Wang KZ. Inducement and stabilization of G-quadruplex DNA by a thiophene-containing dinuclear ruthenium(II) complex. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1322694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiao-Long Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Hua-Qian Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Xue-Xue Xu
- College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Zhen-Sheng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, PR China
| |
Collapse
|
34
|
Jiang G, Chen X, Xu L, Cao Y, Hong S, Liu M, Cao W, Pei R. Design and Synthesis of a Dimethylindole Red Trimer: A New Light-Up Red-Emitting Fluorescent Probe for G-Quadruplexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guimei Jiang
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Xing Chen
- Public Health of Guangxi Medical University; Nanning 530021 China
| | - Lijun Xu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Shanni Hong
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Weiguo Cao
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| |
Collapse
|
35
|
Wachter E, Moyá D, Glazer EC. Combining a Ru(II) "Building Block" and Rapid Screening Approach to Identify DNA Structure-Selective "Light Switch" Compounds. ACS COMBINATORIAL SCIENCE 2017; 19:85-95. [PMID: 28029775 DOI: 10.1021/acscombsci.6b00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chemically reactive Ru(II) "building block", able to undergo condensation reactions with substituted diamines, was utilized to create a small library of luminescent "light switch" dipyrido-[3,2-a:2',3'-c] phenazine (dppz) complexes. The impact of substituent identity, position, and the number of substituents on the light switch effect was investigated. An unbiased, parallel screening approach was used to evaluate the selectivity of the compounds for a variety of different biomolecules, including protein, nucleosides, single stranded DNA, duplex DNA, triplex DNA, and G-quadruplex DNA. Combining these two approaches allowed for the identification of hit molecules that showed different selectivities for biologically relevant DNA structures, particularly triplex and quadruplex DNA.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| |
Collapse
|
36
|
Notaro A, Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 2017; 46:7317-7337. [DOI: 10.1039/c7cs00356k] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes with anticancer properties are reviewed.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| |
Collapse
|
37
|
Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RKO, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00300a] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent development of G4 DNA targeted metal complexes and discusses their potential as anticancer drugs.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Eva Freisinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
38
|
Wu Q, Mei W, Zheng K, Ding Y. Self-assembly of c-myc DNA promoted by a single enantiomer ruthenium complex as a potential nuclear targeting gene carrier. Sci Rep 2016; 6:28582. [PMID: 27381008 PMCID: PMC4933878 DOI: 10.1038/srep28582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Gene therapy has long been limited in the clinic, due in part to the lack of safety and efficacy of the gene carrier. Herein, a single enantiomer ruthenium(II) complex, Λ-[Ru(bpy)2(p-BEPIP)](ClO4)2 (Λ-RM0627, bpy = 4,4'-bipyridine, p-BEPIP = 2-(4-phenylacetylenephenyl)imidazole [4,5f][1, 10] phenanthroline), has been synthesized and investigated as a potential gene carrier that targets the nucleus. In this report, it is shown that Λ-RM0627 promotes self-assembly of c-myc DNA to form a nanowire structure. Further studies showed that the nano-assembly of c-myc DNA that induced Λ-RM0627 could be efficiently taken up and enriched in the nuclei of HepG2 cells. After treatment of the nano-assembly of c-myc DNA with Λ-RM0627, over-expression of c-myc in HepG2 cells was observed. In summary, Λ-RM0627 played a key role in the transfer and release of c-myc into cells, which strongly indicates Λ-RM0627 as a potent carrier of c-myc DNA that targets the nucleus of tumor cells.
Collapse
Affiliation(s)
- Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kangdi Zheng
- Traditional Chinese Medicine College, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
39
|
Zeng ZP, Wu Q, Sun FY, Zheng KD, Mei WJ. Imaging Nuclei of MDA-MB-231 Breast Cancer Cells by Chiral Ruthenium(II) Complex Coordinated by 2-(4-Phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline. Inorg Chem 2016; 55:5710-8. [DOI: 10.1021/acs.inorgchem.6b00824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Fen-Yong Sun
- Department
of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, 301 Yanchang Road, 200072 Shanghai, People’s Republic of China
| | | | | |
Collapse
|
40
|
Wachter E, Moyá D, Parkin S, Glazer EC. Ruthenium Complex "Light Switches" that are Selective for Different G-Quadruplex Structures. Chemistry 2016; 22:550-9. [PMID: 26560887 PMCID: PMC4703525 DOI: 10.1002/chem.201503203] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/03/2023]
Abstract
Recognition and regulation of G-quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo-substituent to the dipyridylphenazine (dppz) ligands in the photophysical "light switch", [Ru(bpy)2 dppz](2+) , and the photochemical "light switch", [Ru(bpy)2 dmdppz](2+) , creates compounds with increased selectivity for an intermolecular parallel G-quadruplex and the mixed-hybrid G-quadruplex, respectively. When [Ru(bpy)2 dppz-Br](2+) and [Ru(bpy)2 dmdppz-Br](2+) are incubated with the G-quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2 dmdppz-Br](2+) with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of Ru(II) complexes can alter G-quadruplex selectivity, and could be useful for the rational design of in vivo G-quadruplex probes.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA).
| |
Collapse
|
41
|
Dragutan I, Dragutan V, Demonceau A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
Affiliation(s)
- Ileana Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Valerian Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Albert Demonceau
- Department of Chemistry, University of Liège, Sart-Tilman (B.6a), Liège 4000, Belgium.
| |
Collapse
|
42
|
Senthamarai Kannan B, Suresh Kumar D, Host Antony David R, Stalin A, Ignacimuthu S. Acid–base effects, light emission, DNA-binding and photocleavage studies of oligo-homonuclear ruthenium(II) complexes and their computational study. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wang C, Wu Q, Zeng Y, Huang D, Yu C, Wang X, Mei W. Synthesis, characterization and DNA-binding properties of Ru(II) complexes coordinated by ofloxacin as potential antitumor agents. J COORD CHEM 2015; 68:1489-1499. [DOI: 10.1080/00958972.2015.1020797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Chengxi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongchang Zeng
- Shenzhen Institute of Gerontology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Dongwei Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuqin Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
44
|
Zhang Z, Mei W, Wu X, Wang X, Wang B, Chen S. Synthesis and characterization of chiral ruthenium(II) complexes Λ /Δ-[Ru(bpy) 2(H 2iip)](ClO 4) 2 as stabilizers of c- myc G-quadruplex DNA. J COORD CHEM 2015; 68:1465-1475. [DOI: 10.1080/00958972.2015.1014352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Zhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wenjie Mei
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xiaohui Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Baoguo Wang
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Sidong Chen
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
45
|
Ding Y, Wu Q, Zheng K, An L, Hu X, Mei W. Imaging of the nuclei of living tumor cells by novel ruthenium(ii) complexes coordinated with 6-chloro-5-hydroxylpyrido[3,2-a]phenazine. RSC Adv 2015. [DOI: 10.1039/c5ra11127g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Novel ruthenium(ii) complex 1 can be developed as a low toxicity fluorescence probe for living cell nuclei in future.
Collapse
Affiliation(s)
- Yang Ding
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Kangdi Zheng
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Linkun An
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaoying Hu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| |
Collapse
|