1
|
Elzein A, Al Jomeh GAS, Tizzard GJ, Coles SJ, Banti CN, Hadjikakou SK, Kostakis GE. Investigating the antimicrobial activity of 1-heteroaryl benzotriazole silver compounds. RSC Adv 2025; 15:11431-11440. [PMID: 40225772 PMCID: PMC11987083 DOI: 10.1039/d5ra01072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Five (1-5) Ag(i) compounds, derived from different N,N'-bidentate 1-heteroaryl benzotriazole ligands, were synthesised and characterised using SXRD, IR, UV-Vis, elemental analysis, ESI-MS, and NMR. Variations in ligands and counter-anions produced distinct structures and morphologies. Preliminary antimicrobial testing at the micromolar level, in DMSO, revealed that only compound 2, based on 1-(2-pyridyl)benzotriazole and triflate anion, exhibited interesting antimicrobial properties, thus marking the introduction of a new class of Ag(i) compounds in medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Ahmed Elzein
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| | | | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton UK
| | - Christina N Banti
- Biological Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina 45110 Ioannina Greece
| | - Sotiris K Hadjikakou
- Biological Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina 45110 Ioannina Greece
- University Research Centre of Ioannina (URCI), Institute of Materials Science and Computing Ioannina Greece
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex Brighton BN1 9QJ UK
| |
Collapse
|
2
|
Fan S, Liu X, Yao S, Xing G, Xu X, Shi G, Song Z, Feng G. Organic Luminescent Cocrystals Based on Benzotriazole Derivatives: Synthesis, Characterization, Crystal Structure and Fluorescence Behavior. Chemistry 2025; 31:e202403889. [PMID: 39821355 DOI: 10.1002/chem.202403889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives. The resulting cocrystals exhibit bright green and yellow fluorescence under 365 nm light. To elucidate the microstructure of the obtained cocrystals, systematic characterization techniques such as solid-state fluorescence emission spectroscopy, Single-crystal X-ray diffraction (SCXRD), Power X-ray diffraction (PXRD) and density functional theory (DFT) were performed. These benzotriazole-based cocrystals demonstrate distinct fluorescent responses to alkaline and acidic environments, respectively. Additionally, preliminary tests for fingerprint recognition yielded satisfactory results. These findings suggest that the two cocrystals hold potential applications in acid-alkali sensing, anti-counterfeiting labels, and smart material development, while also providing valuable insights for the design and optimization of solid-state luminescent materials.
Collapse
Affiliation(s)
- Shengyu Fan
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Liu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shuzhi Yao
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guangnan Xing
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaohui Xu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guanyu Shi
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
3
|
Inthanon K, Wong-A-Nan N, Dheeranupattana S, Guerra AG, Davies NM, Kesornpun C, Sangher S, Kittakoop P. Regulation of adipocyte differentiation and lipid metabolism by novel synthetic chromenes exploring anti-obesity and broader therapeutic potential. Sci Rep 2025; 15:4051. [PMID: 39900791 PMCID: PMC11790873 DOI: 10.1038/s41598-025-87945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Obesity poses a significant global health challenge, necessitating the search for novel therapeutic agents to address this epidemic. Chromenes, known for their diverse bioactivities, hold promise as potential anti-obesity compounds, yet research in this area remains limited. This pioneering study represents the first exploration of synthetic chromenes as potential anti-obesity agents, unveiling the underlying molecular pathways governing adipogenesis and lipolysis. Twenty-nine chromenes were synthesized using green chemistry approaches, resulting in five novel compounds: 1, 2, 3, 4, and 5. Among them, 14 chromenes demonstrated a lack of toxicity to pre-adipocytes (PAs) and mature adipocytes (MAs) of 3T3-L1 cells. The anti-adipogenesis and lipolysis enhancement potential of these non-toxic 14 chromenes were comprehensively evaluated using Oil Red O staining technique, LDH activity measurement, and glycerol release assays. Notably, 4, 5, 21 and 25 exhibited remarkable efficacy in reducing intracellular lipid accumulation without inducing cellular stress or cell death. Molecular analysis revealed significant alterations in the expression of key transcription factors involved in adipogenesis and lipid metabolism, including PPARγ, C/EBPα, ADD-1, Pref-1, IRS-1, GLUT-4, adiponectin, FAS, aP2, ATGL, and HSL. This suggests their potential role in anti-adipogenesis. Additionally, the treatments with 4 and 25 showed potential for enhancing lipolysis, providing further evidence of their anti-obesity properties. This study presents several promising prospects for the development of synthetic chromenes as potential anti-obesity agents, opening new avenues for drug discovery and benefitting individuals worldwide in addressing obesity-related challenges to human health. In addition, predictive in silico modeling was performed on the identified candidate chromenes. This modeling provides prospective anti-HIV activity, pharmacokinetic, metabolism, and permeability data, setting the groundwork for further investigation into these potential new chemical entities.
Collapse
Affiliation(s)
- Kewalin Inthanon
- Department of Biotechnology, Faculty Science and Technology, Thammasat University Lampang Campus, Lampang, 52190, Thailand.
| | - Natthawut Wong-A-Nan
- Department of Clinical Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Andres Garcia Guerra
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chatchai Kesornpun
- Future Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Science, The University of Manchester, Manchester, M1 7DN, UK
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Sasithorn Sangher
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand.
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Lladó J, Díaz AM, Lopez-Vinent N, Pérez S, Montemurro N, Cruz-Alcalde A, Lao C, Fuente E, Ruiz B. Lignocellulosic pruning waste adsorbents to remove emerging contaminants from tyre wear and pharmaceuticals present in wastewater in circular economy scenario. BIORESOURCE TECHNOLOGY 2025; 418:131847. [PMID: 39581476 DOI: 10.1016/j.biortech.2024.131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The following work explores a sustainable approach to repurpose organic waste from poplar pruning into lignocellulosic waste-based activated carbons (LPWACs) through environmentally friendly thermochemical processes and in line with circular economy principles. The developed LPWACs, activated by potassium hydroxide (KOH) at two different temperatures and weight ratios, exhibited promising textural properties with BET surface area (SBET) and total pore volume (VTOT) reaching up to 1336 m2·g-1 and 0.588 cm3·g-1, respectively. In addition, they displayed a developed microporous structure with a significant oxygen content (up to 11 %). These activated carbons were used to remove five emerging organic pollutants from the leaching of tyre wear particles (TWPs) and pharmaceuticals present in water. The increase in oxygen groups had a negative effect on the adsorption capacity of 1H-benzotriazole (BZTL), while electrostatic influences hindered diatrizoic acid (DZT) adsorption. LPWACs effectively remove pharmaceutical and tyre contaminants, supporting the circular economy in water treatment.
Collapse
Affiliation(s)
- J Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - A M Díaz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - N Lopez-Vinent
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - S Pérez
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - N Montemurro
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - A Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona (UB), Barcelona, Spain
| | - C Lao
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - E Fuente
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - B Ruiz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain.
| |
Collapse
|
5
|
Mongalo NI, Raletsena MV. Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Peltophorum africanum Sond (Fabaceae): Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:239. [PMID: 39861592 PMCID: PMC11768249 DOI: 10.3390/plants14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Peltophorum africanum Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on P. africanum, using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others. Further data was obtained from several scholarly theses, dissertations, and books on general plant sciences, ethnomedicine, and other pertinent ethnobotanical topics. The plant species possess very important pharmacological activities in vitro, which includes antimicrobial, anti-HIV, antioxidant, anticancer, antidiabetic, and other activities. Phytochemically, the plant possesses various classes of compounds, dominated by flavonols, which may well explain its wider range of pharmacological activities. Although the plant is promising anti-HIV activity, the mode of action and safety profiles of the plant also need to be explored as its extracts exerted some degree of mutagenicity. It is also important to further explore its ethnoveterinary use against a plethora of nematodes that infects both wild and domestic animals. Given its potent pharmacological activity, the further in vivo studies need to be explored to ascertain the comprehensive toxicology of the plant species, thereby developing possible medications. The plant species may further be elevated to a potent pharmaceutical product against plethora of infections.
Collapse
Affiliation(s)
- Nkoana I. Mongalo
- College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa;
| | | |
Collapse
|
6
|
Farkas E, McKay GA, Hu LT, Nekouei M, Ho P, Moreira W, Chan CC, Dam LC, Auclair K, Gruenheid S, Whyte L, Dedon P, Nguyen D. Bioluminescent Pseudomonas aeruginosa and Escherichia coli for whole-cell screening of antibacterial and adjuvant compounds. Sci Rep 2024; 14:31039. [PMID: 39730767 DOI: 10.1038/s41598-024-81926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli. We show that the bioluminescent strains have a large dynamic range that closely correlates with cell viability and is superior to conventional optical density (OD600) measurements, can detect dose-dependent antibacterial activity and be used for different drug discovery applications. We evaluated the assays' performance characteristics (signal to background ratio, signal window, Z' robust) and demonstrated their potential utility for antibiotic drug discovery in two examples. The P. aeruginosa bioluminescent reporter was used in a pilot screen of 960 repurposed compound libraries to identify adjuvants that potentiate the fluoroquinolone antibiotic ofloxacin. The E. coli bioluminescent reporter was used to test the antibacterial activity of bioactive bacterial supernatants and assist with bioassay-guided fractionation of the crude extracts.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Geoffrey A McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Lin Tao Hu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mina Nekouei
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Peying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
| | - Chia Ching Chan
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Peter Dedon
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Aziz M, Ejaz SA, Channar PA, Alkhathami AG, Qadri T, Hussain Z, Hussaain M, Ujan R. Identification of dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4) as antagonist of NEK-Family: a future for potential drug discovery. BMC Cancer 2024; 24:1521. [PMID: 39696038 DOI: 10.1186/s12885-024-13269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
The purpose of the current study was to analyze and validate the existing gap in knowledge, by conducting a differential expression analysis and validation of NEK6, NEK7, and NEK9 in breast, cervical, and glioblastoma cancer and targeting these proteins through development of novel site specific inhibitor with favorable pharmacokinetic and safety profile, using open-source databases. The analysis revealed that the targeted kinases were overexpressed in all three types of cancer. Their expression was significantly linked to overall survival rates, which suggests that they play a major role in the development and progression of these cancers. After, having the prognostic importance of These findings provided a rationale for synthesizing novel compound i.e., dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4)), capable of effectively targeting these proteins using in-vitro cytotoxicity assays and comprehensive computational approaches. Then the inhibitory potential of TAJ4 was evaluated against cell lines of the respective cancers (HeLa cells, MCF-7 cells, and Vero cells). The growth inhibitory values (GI50) suggested that TAJ4 exhibited strong inhibitory potential towards MCF-7 cells (GI50 = 3.18 ± 0.11 µM) in comparison to the HeLa cell line (GI50 = 8.12 ± 0.43 µM), surpassing that of standard drugs. Furthermore, in-silico investigations, including density functional theory (DFT) calculations and molecular docking studies, revealed a substantial reactivity profile of TAJ4, with promising molecular interactions against NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins. Further investigation using in-vitro and in-vivo approaches is recommended to fully establish the therapeutic efficacy and safety profile of TAJ4.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O.Box 61413, Abha, 9088, Saudi Arabia
| | - Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mumtaz Hussaain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
8
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Tonelli M, Sparatore A, Bassanini I, Francesconi V, Sparatore F, Maina KK, Delbue S, D’Alessandro S, Parapini S, Basilico N. In Vitro Screening of an In-House Library of Structurally Distinct Chemotypes Towards the Identification of Novel SARS-CoV-2 Inhibitors. Pharmaceuticals (Basel) 2024; 17:1668. [PMID: 39770510 PMCID: PMC11676875 DOI: 10.3390/ph17121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (1-13 and 16-20) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (14, 15 and 21-25), which showed some analogy to miscellaneous anti-coronavirus agents. Methods: Twenty-five structurally assorted compounds were evaluated in vitro for cytotoxicity against Vero E6 and for their ability to inhibit SARS-CoV-2 replication. Results: Several compounds (2, 3, 10, 11, 13-15, 18-20) demonstrated antiviral activity (IC50 range 1.5-28 µM) and six of them exhibited an interesting selectivity index in the range 4.5-20. The chloroquine analogs 10 and 11 were more potent than the reference chloroquine itself and doubled its SI value (20 versus 11). Also, the benzimidazole ring emerged as a valuable scaffold, originating several compounds (13-15 and 18-20) endowed with anti-SARS-CoV-2 activity. Despite the modest activity, the cytisine and the arylamino enone derivatives 23 and 25, respectively, also deserve further consideration as model compounds. Conclusions: The investigated chemotypes may represent valuable hit compounds, deserving further in-depth biological studies to define their mechanisms of action. The derived information will guide the subsequent chemical optimization towards the development of more efficient anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
| | - Valeria Francesconi
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Fabio Sparatore
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Kevin K. Maina
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| | - Serena Delbue
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy;
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| |
Collapse
|
10
|
Struk-Sokołowska J, Kotowska U, Gwoździej-Mazur J, Polińska W, Canales FA, Kaźmierczak B. Benzotriazoles and bisphenols in wastewater from the food processing industry and the quantitative changes during mechanical/biochemical treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175387. [PMID: 39127214 DOI: 10.1016/j.scitotenv.2024.175387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Benzotriazoles (BTRs) and bisphenols (BPs), categorized as contaminants of emerging concern (CECs), pose significant risks to human health and ecosystems due to their endocrine-disrupting properties and environmental persistence. This study investigates the occurrence and behavior of nine BTRs and ten BPs in wastewater generated in a large-scale meat processing plant, evaluating the effectiveness of a modern mechanical-biological industrial on-site treatment plant in removing these contaminants, and based on the concentration levels from eleven sampling points at different stages of the treatment process. The method used to determine these micropollutants' concentration was ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). The results indicate that the rigorous quality control processes in the meat processing facility effectively limit the presence of these micropollutants, especially concerning BPs, which are absent or below detection limits in raw wastewater. While the concentrations of some of these micropollutants increased at different points in the treatment process, these values were relatively low, typically below one microgram per liter. Among the compounds analyzed, the only one present after completing the treatment was 5Cl-BTR (maximum concentration: 3007 ng/L), and these contamination levels are around seven times lower than the reference value associated with non-cancer health risk for drinking water. This study contributes to understanding these CECs in industrial wastewater and highlights the importance of effective treatment systems for environmental protection.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, 15-245 Bialystok, Poland
| | - Joanna Gwoździej-Mazur
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland
| | - Fausto A Canales
- Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlantico, Colombia; Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| | - Bartosz Kaźmierczak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| |
Collapse
|
11
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
12
|
Sharma M, Thakur D, Nidhi, Verma AK. Harnessing benzotriazole as a sustainable ligand in metal-catalyzed coupling reactions. Chem Commun (Camb) 2024; 60:12840-12851. [PMID: 39380493 DOI: 10.1039/d4cc04450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Coupling reactions play a crucial role in drug development enabling the rapid expansion of structure-activity relationships (SARs) during drug discovery programs to identify a clinical candidate and simplify subsequent drug development processes. In particular, their relevance in clinical medicine and drug discovery has increased significantly in the last two decades. To facilitate these metal-catalyzed coupling reactions, suitably designed ligands are necessary and from the industrial point of view, sustainable and cost-effective ligands are of current need. Benzotriazole, a non-toxic, thermally stable, and inexpensive bidentate ligand, exhibits strong electron donating and electron accepting properties, along with excellent solubility in various organic solvents. It has been extensively explored as a synthetic auxiliary in the past; in recent years, benzotriazole and its derivatives have been used as ligands in metal-catalyzed coupling reactions. The facile construction of carbon-carbon and carbon-heteroatom bonds in the presence of versatile benzotriazole ligands makes it an indispensable ligand for catalytic transformations. The present feature article mainly emphasizes the advances in the utilization of benzotriazole as a ligand in a diverse range of C-C, C-N, C-O, and C-S coupling reactions.
Collapse
Affiliation(s)
- Manvi Sharma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Deepika Thakur
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Nidhi
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Liu YH, Mei YX, Wang JY, Chen SS, Chen JL, Li N, Liu WR, Zhao JL, Zhang QQ, Ying GG. Precipitation contributes to alleviating pollution of rubber-derived chemicals in receiving watersheds: Combining confluent stormwater runoff from different functional areas. WATER RESEARCH 2024; 264:122240. [PMID: 39146854 DOI: 10.1016/j.watres.2024.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The release of rubber-derived chemicals (RDCs) in road surface runoff has received significant attention. Urban surface runoff is often the confluence of stormwater runoff from specific areas. However, the impact of precipitation on RDCs contamination in confluent stormwater runoff and receiving watersheds remains poorly understood. Herein, we investigated the profiles of RDCs and their transformation products in confluent stormwater runoff and receiving rivers affected by precipitation events. The results showed that 34 RDCs are ubiquitously present in confluent stormwater runoff and surface water, with mean concentrations of 1.03-2749 and 0.28-436 ng/L, respectively. The most dominant target compounds in each category were N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, 2-benzothiazolol, and 1,3-diphenylguanidine. Total RDCs concentrations in confluent stormwater runoff decreased spatially from industrial areas to business districts to college towns. A significant decrease in RDCs levels in surface water after rainfall was observed (P < 0.01), indicating that precipitation contributes to alleviating RDCs pollution in receiving watersheds. To our knowledge, this is the first report of N,N'-ditolyl-p-phenylenediamine quinone (DTPD-Q) levels in surface waters in China. The annual mass load of ∑RDCs reached 72,818 kg/y in confluent stormwater runoff, while 38,799 kg/y in surface water. The monitoring of confluent stormwater runoff is an efficient measure for predicting contamination loads from RDCs in rivers. Risk assessment suggested that most RDCs posed at least medium risks to aquatic organisms, especially 6PPD-quinone. The findings help to understand the environmental fate and risks of RDCs in the confluent stormwater runoff and receiving environments after precipitation events.
Collapse
Affiliation(s)
- Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu-Xian Mei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing-Yi Wang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shan-Shan Chen
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jia-Li Chen
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Nan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Köntös Z. The synthesis and characterisation of derivatives of o-phenylenediamine and assessing their effectiveness in inhibiting corrosion for rust prevention. Sci Prog 2024; 107:368504241305571. [PMID: 39704139 DOI: 10.1177/00368504241305571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The corrosion of metals, particularly rust on iron and its alloys, poses significant challenges across industries, with notable economic and environmental consequences. Traditional rust prevention methods, reliant on chemical inhibitors and coatings, often raise concerns regarding their environmental and health impacts. In response, advancements in corrosion science have emphasized the potential of o-phenylenediamine (OPD) derivatives and vaseline-based mixtures as innovative, eco-friendly solutions. This article reviews the efficacy of OPD derivatives in mitigating anodic and cathodic reactions, thereby preventing rust formation by creating robust protective layers on metal surfaces. These derivatives act as physical barriers, impeding corrosive agents and offering versatile applications, including integration into protective coatings for new and existing metal structures. The synergistic combination of OPD with other inhibitors enhances protection, supporting sustainable practices by reducing resource consumption and environmental impact. Vaseline-based layers, while providing satisfactory initial hydrophobicity and ease of application, face challenges such as achieving uniform coverage on polar metal surfaces and preventing pore formation. Integrating Fe(III)(BTA)3 into vaseline coatings represents a paradigm shift in sustainable corrosion prevention, with a 30% concentration identified as optimal for maximum protection. This development marks a pivotal advancement in materials science, offering robust corrosion protection aligned with sustainability principles. The use of OPD derivatives introduces a novel, environmentally benign approach, leveraging their ability to adsorb onto metal surfaces and create protective layers against moisture and oxygen. This innovation aligns with global initiatives to reduce industrial environmental footprints, promoting sustainable, effective corrosion prevention strategies.
Collapse
|
15
|
Koch N, Förster S, Mazik M. Synthesis and crystal structure of 1,3,5-tris-[(1 H-benzotriazol-1-yl)meth-yl]-2,4,6-tri-ethyl-benzene. Acta Crystallogr E Crystallogr Commun 2024; 80:1240-1243. [PMID: 39712155 PMCID: PMC11660467 DOI: 10.1107/s2056989024009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/12/2024] [Indexed: 12/24/2024]
Abstract
In the crystal structure of the title compound, C33H33N9, the tripodal mol-ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The three benzotriazolyl moieties are inclined at angles of 88.3 (1), 85.7 (1) and 82.1 (1)° with respect to the mean plane of the benzene ring. In the crystal, only weak mol-ecular cross-linking involving C-H⋯N hydrogen bonds is observed.
Collapse
Affiliation(s)
- Niklas Koch
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| | - Sebastian Förster
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| | - Monika Mazik
- Institut für Organische Chemie Technische Universität Bergakademie, Freiberg, Leipziger Str 29 09599 Freiberg/SachsenGermany
| |
Collapse
|
16
|
Grzegorzek M, Struk-Sokołowska J, Canales FA, Kotowska U, Kaźmierczak B. Monitoring studies on contamination of urban runoff with hazardous benzotriazoles and bisphenols in one of the least polluted places worldwide. CHEMOSPHERE 2024; 366:143444. [PMID: 39362380 DOI: 10.1016/j.chemosphere.2024.143444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Benzotriazoles (BTR) and bisphenols (BP) are artificial contaminants of emerging concern (CECs) commonly found in everyday products. This study focuses on urban runoff to investigate the occurrence of BTRs and BPs in Iceland, regarded as one of the least polluted places in the world, which made it reasonable to confirm or deny the presence of these micropollutants in its environment. Samples collected in February 2023 (SC1) and August 2024 (SC2) from seven locations along Iceland's Ring Road were evaluated to determine the occurrence of seven BTRs (1H-BTR, 4Me-BTR, 5Me-BTR, 5Cl-BTR, UV-P, UV-326, UV-329) and six BPs (BPF, BPE, BPA, BPZ, BPAP, BPM) in the runoff, using the ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). All locations showed detectable and varying levels of BTRs and BPs, with 5Cl-BTR (11.6 μg/L) and BPF (56.3 μg/L), both in SC1, demonstrating the highest concentrations, providing valuable insights into their prevalence and distribution. A correlational analysis investigated the connection between these pollutants and various characteristics associated with the locations along the Ring Road. This study contributes to the essential comprehension of these CECs, serving as input for future strategies for monitoring and mitigating their impact.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370, Wroclaw, Poland.
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351, Bialystok, Poland.
| | - Fausto A Canales
- Universidad de la Costa, Department of Civil and Environmental, 080002, Barranquilla, Atlantico, Colombia.
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, 15-245, Bialystok, Poland.
| | - Bartosz Kaźmierczak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370, Wroclaw, Poland.
| |
Collapse
|
17
|
Guo Z, Li H, Yu W, Ren Y, Zhu Z. Insights into the effect of benzotriazoles in liver using integrated metabolomic and transcriptomic analysis. ENVIRONMENT INTERNATIONAL 2024; 187:108716. [PMID: 38723456 DOI: 10.1016/j.envint.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Benzotriazoles (BTRs) are a class of benzoheterocyclic chemicals that are frequently used as metal-corrosive inhibitors, both in industry and daily use. However, the exposure effect information on BTRs remains relatively limited. In this study, an integrated metabolomic and transcriptomic approach was utilized to evaluate the effect of three BTRs, benzotriazole, 6-chloro-1-hydroxi-benzotriazole, and 1-hydroxy-benzotriazole, in the mouse liver with results showing disrupted basal metabolic processes and vitamin and cofactor metabolism after 28 days. The expression of several genes that are related to the inflammatory response and aryl hydrocarbon receptor pathways, such as Gstt2 and Arntl, was altered by the exposure to BTRs. Exposure to BTRs also affected metabolites and genes that are involved in the immune system and xenobiotic responses. The altered expression of several cytochrome P450 family genes reveal a potential detoxification mechanism in the mouse liver. Taken together, our findings provide new insights into the multilayer response of the mouse liver to BTRs exposure as well as a resource for further exploration of the molecular mechanisms by which the response occurs.
Collapse
Affiliation(s)
- Zeqin Guo
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| | - Huimin Li
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Wenmin Yu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Yaguang Ren
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Zhiguo Zhu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| |
Collapse
|
18
|
Li L, Zhang J, Li B, Yi G, Wang T, Peng Y. Theoretical exploration of the stabilities and detonation parameters of nitro-substituted 1H-benzotriazole. J Mol Model 2024; 30:104. [PMID: 38483705 DOI: 10.1007/s00894-024-05899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT The nitro group was introduced into the nitrogen heterocycle of 1H-benzotriazole to design a total of 31 derivatives. To estimate the thermal stability of these derivatives, the heat of formation (HOF) is calculated based on the isodesmic reaction. The bond dissociation energy (BDE) was also predicted based on the homolytic reaction to further evaluate the dynamic stability. To evaluate the possibility of utilizing as high energy density compounds (HEDCs), the detonation parameters including the detonation pressure (P), detonation velocity (D), and explosive heat (Q) are predicted by taking advantage of the Kamlet-Jacobs empirical equation. To measure the sensitivity to impact, both the characteristic height (H50) and free space in crystal (∆V) are considered in this paper. Based on our calculations, D-series and E are found to be the candidates for HEDCs. METHODS The Gaussian 09 software package was used in this paper. The B3PW91 hybrid function with the 6-311 + G(d,p) basis set was chosen to perform the structural optimization, frequency analysis, heat of formation, and bond dissociation energy. The detonation parameters were calculated following the Kamlet-Jacobs equation.
Collapse
Affiliation(s)
- Lulin Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, 051008, China
| | - Jiawei Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| | - Butong Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China.
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China.
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, 051008, China.
| | - Guobin Yi
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China.
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China.
| | - Taoyu Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| | - Yanhong Peng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| |
Collapse
|
19
|
Aye M, Jarrahpour A, Haghighijoo Z, Heiran R, Pournejati R, Karbalaei-Heidari HR, Sinou V, Brunel JM, Akkurt M, Özdemir N, Turos E. Novel Benzotriazole-β-lactam Derivatives as Antimalarial Agents: Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Chem Biodivers 2024; 21:e202301745. [PMID: 38192127 DOI: 10.1002/cbdv.202301745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Many people around the world suffer from malaria, especially in tropical or subtropical regions. While malaria medications have shown success in treating malaria, there is still a problem with resistance to these drugs. Herein, we designed and synthesized some structurally novel benzotriazole-β-lactams using 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid as a key intermediate. To synthesize the target molecules, the ketene-imine cycloaddition reaction was employed. First, The reaction of 1H-benzo[d][1,2,3]triazole with 2-bromoacetic acid in aqueous sodium hydroxide yielded 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid. Then, the treatment of 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid with tosyl chloride, triethyl amine, and Schiff base provided new β-lactams in good to moderate yields.The formation of all cycloadducts was confirmed by elemental analysis, FT-IR, NMR and mass spectral data. Moreover, X-ray crystallography was used to determine the relative stereochemistry of 4a compound. The in vitro antimalarial activity test was conducted for each compound against P. falciparum K1. The IC50 values ranged from 5.56 to 25.65 μM. A cytotoxicity profile of the compounds at 200 μM final concentration revealed suitable selectivity of the compounds for malaria treatment. Furthermore, the docking study was carried out for each compound into the P. falciparum dihydrofolate reductase enzyme (PfDHFR) binding site to analyze their possible binding orientation in the active site.
Collapse
Affiliation(s)
- Malihe Aye
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
| | - Zahra Haghighijoo
- Department of pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Roya Pournejati
- Department of Biology, College of Sciences, Shiraz University, PO Box: 71467-13565, Shiraz, 71454, Iran
| | | | - Veronique Sinou
- Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385, Marseille, France
| | - Jean Michel Brunel
- Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385, Marseille, France
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
| | - Namık Özdemir
- Division of Physics Education, Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of Chemistry, CHE 207, 4202 East Fowler Avenue, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
20
|
Liu Q, Chu H, Mai J, Yang H, Shen MH, Xu HD. Molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes: a novel strategy for catalytic synthesis of 2-aryl-2 H-benzo[ d][1,2,3]triazoles. Org Biomol Chem 2024; 22:954-958. [PMID: 38205622 DOI: 10.1039/d3ob01969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A novel strategy for the catalytic synthesis of 2-aryl-2H-benzo[d][1,2,3]triazoles bearing a wide range of functional groups in good to excellent yields by non-noble molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes is described. The salient features of the transformation include the use of readily available substrates, valuable products and ease of scale-up. The mechanistic study indicates that the reaction occurred via double deoxygenation by the Mo(VI)/Mo(IV) catalytic cycle from 2-nitroazobenzene, through the formation of 2-aryl-2H-benzo[d][1,2,3]triazole-N1-oxide or nitrene intermediates.
Collapse
Affiliation(s)
- Quanyun Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haoke Chu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Junju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haobing Yang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
21
|
da Rosa E, Stopiglia CDO, Machado MM, Filho ACD, Soci UPR, Mendez ASL, Fernandes T, de Oliveira EM, Moreira CM. Phytochemistry Profile, Antimicrobial and Antitumor Potential of the Methanolic Extract of Tabernaemontana catharinensis A DC and Eragrostis plana NEES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5513141. [PMID: 38213844 PMCID: PMC10781527 DOI: 10.1155/2024/5513141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Natural compounds that have the potential to act as antimicrobials and antitumors are a constant search in the field of pharmacotherapy. Eragrostis plana NEES (Poaceae) is a grass with high allelopathic potential. Allelopathy is associated with compounds generated in the primary and secondary metabolism of the plant, which act to protect it from phytopathogens. Tabernaemontana catharinensis A DC (Apocynaceae), a tree in which its leaves and bark are used for the preparation of extracts and infusions that have anti-inflammatory and antinociceptive effects, is attributed to its phytochemical constitution. The objective of this study was to elucidate the phytochemical constitution, the antibacterial potential, the toxicity against immune system cells, hemolytic potential, and antitumor effect of methanolic extracts of E. plana and T. catharinensis. The phytochemical investigation was carried out using the UHPLC-QTOF MS equipment. The antibacterial activity was tested using the broth microdilution plate assay, against Gram-negative and Gram-positive strains, and cytotoxicity assays were performed on human peripheral blood mononuclear cells (PBMC) and in vitro hemolysis. Antitumor activity was performed against the colon cancer cell line (CT26). Results were expressed as mean and standard deviation and analyzed by ANOVA. p < 0.05 was considered significant. More than 19 possible phytochemical constituents were identified for each plant, with emphasis on phenolic compounds (acids: vanillic, caffeic, and quinic) and alkaloids (alstovenine, rhyncophylline, amezepine, voacangine, and coronaridine). Both extracts showed antibacterial activity at concentrations below 500 µg/mL and were able to decrease the viability of CT26 at concentrations below 2000 µg/mL, without showing cytotoxic effect on PBMCs and in vitro hemolysis at the highest concentration tested. This is the first report of the activity of E. plana and T. catharinensis extracts against colon cancer cell line (CT26). Studies should be carried out to verify possible molecular targets involved in the antitumor effect in vivo.
Collapse
Affiliation(s)
- Emanoeli da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa-UNIPAMPA, Uruguaiana, RS, Brazil
| | | | - Michel Mansur Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa-UNIPAMPA, Uruguaiana, RS, Brazil
| | - Augusto Cezar Dotta Filho
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa-UNIPAMPA, Uruguaiana, RS, Brazil
| | - Ursula Paula Reno Soci
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esporte, Universidade de São Paulo-USP, São Paulo, SP, Brazil
| | | | - Tiago Fernandes
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esporte, Universidade de São Paulo-USP, São Paulo, SP, Brazil
| | - Edilamar Menezes de Oliveira
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esporte, Universidade de São Paulo-USP, São Paulo, SP, Brazil
| | - Cleci Menezes Moreira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa-UNIPAMPA, Uruguaiana, RS, Brazil
| |
Collapse
|
22
|
Sharique M, Matsuo B, Granados A, Kim S, Arshad M, Oh H, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. On-DNA hydroalkylation of N-vinyl heterocycles via photoinduced EDA-complex activation. Chem Sci 2023; 14:14193-14199. [PMID: 38098729 PMCID: PMC10717525 DOI: 10.1039/d3sc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/17/2023] Open
Abstract
The emergence of DNA-encoded library (DEL) technology has provided a considerable advantage to the pharmaceutical industry in the pursuit of discovering novel therapeutic candidates for their drug development initiatives. This combinatorial technique not only offers a more economical, spatially efficient, and time-saving alternative to the existing ligand discovery methods, but also enables the exploration of additional chemical space by utilizing novel DNA-compatible synthetic transformations to leverage multifunctional building blocks from readily available substructures. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated N-vinyl heterocycles enabled by single-electron transfer (SET) and subsequent hydrogen atom transfer through electron-donor/electron-acceptor (EDA) complex activation is detailed. The simplicity and robustness of this method permits inclusion of a broad array of alkyl radical precursors and DNA-tethered nitrogenous heterocyles to generate medicinally relevant substituted heterocycles with pendant functional groups. Moreover, a successful telescoped route provides the opportunity to access a broad range of intricate structural scaffolds by employing basic carboxylic acid feedstocks.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mahwish Arshad
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
23
|
Qadri T, Aziz M, Channar PA, Ejaz SA, Hussain M, Attaullah HM, Ujan R, Hussain Z, Zehra T, Saeed A, Shah MR, Ogaly HA, Al-Zahrani FAM. Synthesis, biological evaluation and in silico investigations of benzotriazole derivatives as potential inhibitors of NIMA related kinase. RSC Adv 2023; 13:33826-33843. [PMID: 38020022 PMCID: PMC10655664 DOI: 10.1039/d3ra06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.
Collapse
Affiliation(s)
- Tahir Qadri
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Rabail Ujan
- Dr M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Tasneem Zehra
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - M R Shah
- H.E.J.Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 7527 Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Fatimah A M Al-Zahrani
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| |
Collapse
|
24
|
Singh N, Abrol V, Parihar S, Kumar S, Khanum G, Mir JM, Dar AA, Jaglan S, Sillanpää M, Al-Farraj S. Design, Synthesis, Molecular Docking, and In Vitro Antibacterial Evaluation of Benzotriazole-Based β-Amino Alcohols and Their Corresponding 1,3-Oxazolidines. ACS OMEGA 2023; 8:41960-41968. [PMID: 37969976 PMCID: PMC10634288 DOI: 10.1021/acsomega.3c07315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
In the present study, a series of benzotriazole-based β-amino alcohols were efficiently synthesized in excellent yields via aminolysis of benzotriazolated epoxides under catalyst- and solvent-free conditions. Further these β-amino alcohols were successfully utilized to synthesize the corresponding benzotriazole-based oxazolidine heterocyclic derivatives. All the synthesized compounds were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy for structure elucidation. The compounds were subjected to a microtiter plate-based antimicrobial assay. The antimicrobial activity results reveal that the compounds 4a, 4e, and 5f were found to be active against Staphylococcus aureus (ATCC-25923) with minimum inhibitory concentrations (MICs) of 32, 8, and 64 μM, respectively. Also, the compounds 4a, 4e, 4k, 4i, 4m, 4n, 4o, 5d, 5e, 5f, 5g, and 5h showed effective activity against Bacillus subtilis (ATCC 6633) with MICs of 64, 16, 16, 16, 64, 16, 64, 64, 32, 64, 8, and 16 μM, respectively. A biological investigation was conducted, including molecular docking of two compounds with several receptors to identify and confirm the best ligand-protein interactions. Hence, this study found a significant strategy to diversify the chemical molecules. The synthesized compounds play a potential role as an antibacterial intensifier against some pathogenic bacteria for the development of antibacterial substances.
Collapse
Affiliation(s)
- Nasseb Singh
- Synthetic
Organic Chemistry Laboratory, School of Biotechnology, Faculty of
Sciences, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir 182320, India
- Department
of Chemistry, Govt. Degree College Udhampur, Jammu and Kashmir 182101, India
| | - Vidushi Abrol
- Fermentation
& Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, Jammu & Kashmir 180001, India
| | - Sarita Parihar
- Department
of Physics, Govt. Degree College Udhampur, Jammu and Kashmir 182101, India
| | - Satish Kumar
- Department
of Chemistry, Govt. Degree College Udhampur, Jammu and Kashmir 182101, India
| | - Ghazala Khanum
- Department
of Chemistry, Govt. Degree College Udhampur, Jammu and Kashmir 182101, India
| | - Jan Mohammad Mir
- Department
of Chemistry, Islamic University of Science
and Technology (IUST)Awantipora, Pulwama, J&K 192301, India
| | - Alamgir Ahmad Dar
- Research
Centre for Residue and Quality Analysis, Sher-e-Kashmir University
of Agricultural Sciences and Technology (SKUAST-K), Shalimar Campus, Srinagar, Jammu & Kashmir 190025, India
| | - Sundeep Jaglan
- Fermentation
& Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, Jammu & Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mika Sillanpää
- Department
of Biological and Chemical Engineering, Aarhus University, Nørrebrogade
44, Aarhus 8000, Denmark
- Department
of Chemical Engineering, School of Mining, Metallurgy and Chemical
Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Saleh Al-Farraj
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Lv JF, Tan YF, Zhao YN, Yang D, He YH, Guan Z. Electrochemical C(sp 2)-H/N-H "formal" cross-dehydrogenative coupling of olefins with benzotriazoles for synthesis of N-vinyl benzotriazoles. Org Biomol Chem 2023; 21:8488-8493. [PMID: 37855422 DOI: 10.1039/d3ob01300f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The paper details an electrochemical method that couples olefins with benzotriazoles to form C(sp2)-N bonds, enabling the synthesis of N-vinyl benzotriazoles in moderate to good yields. nBu4NI functions as both an electrolyte and an iodine mediator, and the method does not require oxidants or metals. It is a highly atom-economical and clean reaction, with hydrogen as the sole byproduct.
Collapse
Affiliation(s)
- Jin-Feng Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yu-Fang Tan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Ya-Nan Zhao
- Analytical and Testing Center, Southwest University, Chongqing, 400715, China
| | - Dan Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Jonkers TJH, Keizers PHJ, Béen F, Meijer J, Houtman CJ, Al Gharib I, Molenaar D, Hamers T, Lamoree MH. Identifying antimicrobials and their metabolites in wastewater and surface water with effect-directed analysis. CHEMOSPHERE 2023; 320:138093. [PMID: 36758810 DOI: 10.1016/j.chemosphere.2023.138093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to identify antimicrobial contaminants in the aquatic environment with effect-directed analysis. Wastewater influent, effluent, and surface water (up- and downstream of the discharge location) were sampled at two study sites. The samples were enriched, subjected to high-resolution fractionation, and the resulting 80 fractions were tested in an antibiotics bioassay. The resulting bioactive fractions guided the suspect and nontargeted identification strategy in the high-resolution mass spectrometry data that was recorded in parallel. Chemical features were annotated with reference databases, assessed on annotation quality, and assigned identification confidence levels. To identify antibiotic metabolites, Phase I metabolites were predicted in silico for over 500 antibiotics and included as a suspect list. Predicted retention times and fragmentation patterns reduced the number of annotations to consider for confirmation testing. Overall, the bioactivity of three fractions could be explained by the identified antibiotics (clarithromycin and azithromycin) and an antibiotic metabolite (14-OH(R) clarithromycin), explaining 78% of the bioactivity measured at one study site. The applied identification strategy successfully identified antibiotic metabolites in the aquatic environment, emphasizing the need to include the toxic effects of bioactive metabolites in environmental risk assessments.
Collapse
Affiliation(s)
- Tim J H Jonkers
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Peter H J Keizers
- National Institute for Public Health and the Environment RIVM, A. van Leeuwenhoeklaan 9, 3721MA, Bilthoven, the Netherlands.
| | - Frederic Béen
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, the Netherlands.
| | - Jeroen Meijer
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands.
| | - Corine J Houtman
- The Water Laboratory, J.W. Lucasweg 2, 2031 BE, Haarlem, the Netherlands.
| | - Imane Al Gharib
- Systems Biology Lab, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Douwe Molenaar
- Systems Biology Lab, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Timo Hamers
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Marja H Lamoree
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Ibba R, Corona P, Nonne F, Caria P, Serreli G, Palmas V, Riu F, Sestito S, Nieddu M, Loddo R, Sanna G, Piras S, Carta A. Design, Synthesis, and Antiviral Activities of New Benzotriazole-Based Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16030429. [PMID: 36986528 PMCID: PMC10054465 DOI: 10.3390/ph16030429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Paola Corona
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Francesca Nonne
- GSK Vaccine Institute for Global Health GSK, Via Fiorentina, 1, 53100 Siena, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Department of Chemistry, Biomedicinskt Centrum, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
- Correspondence: (G.S.); (S.P.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Correspondence: (G.S.); (S.P.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| |
Collapse
|
28
|
Melnikov IN, Kiselev VG, Dalinger IL, Starosotnikov AM, Muravyev NV, Pivkina AN. Thermochemistry, Tautomerism, and Thermal Stability of 5,7-Dinitrobenzotriazoles. Int J Mol Sci 2023; 24:ijms24065330. [PMID: 36982405 PMCID: PMC10049112 DOI: 10.3390/ijms24065330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Nitro derivatives of benzotriazoles are safe energetic materials with remarkable thermal stability. In the present study, we report on the kinetics and mechanism of thermal decomposition for 5,7-dinitrobenzotriazole (DBT) and 4-amino-5,7-dinitrobenzotriazole (ADBT). The pressure differential scanning calorimetry was employed to study the decomposition kinetics of DBT experimentally because the measurements under atmospheric pressure are disturbed by competing evaporation. The thermolysis of DBT in the melt is described by a kinetic scheme with two global reactions. The first stage is a strong autocatalytic process that includes the first-order reaction (Ea1I = 173.9 ± 0.9 kJ mol−1, log(A1I/s−1) = 12.82 ± 0.09) and the catalytic reaction of the second order with Ea2I = 136.5 ± 0.8 kJ mol−1, log(A2I/s−1) = 11.04 ± 0.07. The experimental study was complemented by predictive quantum chemical calculations (DLPNO-CCSD(T)). The calculations reveal that the 1H tautomer is the most energetically preferable form for both DBT and ADBT. Theory suggests the same decomposition mechanisms for DBT and ADBT, with the most favorable channels being nitro-nitrite isomerization and C–NO2 bond cleavage. The former channel has lower activation barriers (267 and 276 kJ mol−1 for DBT and ADBT, respectively) and dominates at lower temperatures. At the same time, due to the higher preexponential factor, the radical bond cleavage, with reaction enthalpies of 298 and 320 kJ mol−1, dominates in the experimental temperature range for both DBT and ADBT. In line with the theoretical predictions of C–NO2 bond energies, ADBT is more thermally stable than DBT. We also determined a reliable and mutually consistent set of thermochemical values for DBT and ADBT by combining the theoretically calculated (W1-F12 multilevel procedure) gas-phase enthalpies of formation and experimentally measured sublimation enthalpies.
Collapse
Affiliation(s)
- Igor N. Melnikov
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
| | - Vitaly G. Kiselev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
- Physics Department, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Igor L. Dalinger
- Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Ave., 119991 Moscow, Russia
| | | | - Nikita V. Muravyev
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-499-137-8203
| | - Alla N. Pivkina
- Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
| |
Collapse
|
29
|
Liu T, Wu H, Zhang Q, Wang C. Recent advances in the chemistry of aryltriazene. Org Biomol Chem 2023; 21:2059-2068. [PMID: 36779235 DOI: 10.1039/d2ob02267b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Triazene is one of the most versatile building blocks in organic synthesis. Generally, it is viewed as a safe equivalent of diazonium salt, thus immediately finding numerous applications in preparative chemistry and medicinal chemistry. Besides, it can be used as a removable directing group in C-H functionalization or play a smart role as a precursor for aryl cation/radical generation. In this review, we will highlight recent noteworthy developments in this field.
Collapse
Affiliation(s)
- Tinglan Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 511443, PR China.
| | - Haipeng Wu
- Shandong Zhiyong Chemical Industry Technology Research Institute Co. LTD, Weifang, Shandong 261108, PR China
| | - Qijing Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 511443, PR China.
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 511443, PR China.
| |
Collapse
|
30
|
Yu H, Xu F. Advances in the synthesis of nitrogen-containing heterocyclic compounds by in situ benzyne cycloaddition. RSC Adv 2023; 13:8238-8253. [PMID: 36922948 PMCID: PMC10010163 DOI: 10.1039/d3ra00400g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Nitrogen-containing heterocyclic compounds are prevalent in various natural products, medicines, agrochemicals, and organic functional materials. Among strategies to prepare nitrogen-containing heterocyclic compounds, pathways involving benzyne intermediates are attractive given that they can readily assemble highly diverse heterocyclic compounds in a step-economical manner under transition-metal-free conditions. The synthesis of nitrogen-containing heterocyclic compounds from benzyne intermediates offers an alternative strategy to the conventional metal-catalyzed activation approaches. In the past years, chemists have witnessed the revival of benzyne chemistry, mainly attributed to the wide application of various novel benzyne precursors. The cycloaddition of benzynes is a powerful tool for the synthesis of nitrogen-containing heterocyclic compounds, which can be constructed by [n + 2] cyclization of benzyne intermediates in situ generated from benzyne precursors under mild reaction conditions. This review focuses on the application of cycloaddition reactions involving in situ benzynes in the construction of various nitrogen-containing heterocyclic compounds.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine Guiyang Guizhou 550200 China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University Guiyang Guizhou 550005 P. R. China
| |
Collapse
|
31
|
Design, synthesis, anticancer activity of new amide derivatives derived from 1,2,3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023; 28:molecules28031359. [PMID: 36771026 PMCID: PMC9921063 DOI: 10.3390/molecules28031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
A series of [RuCl2(p-cymene)(NHC)] complexes were obtained by reacting [RuCl2(p-cymene)]2 with in situ generated Ag-N-heterocyclic carbene (NHC) complexes. The structure of the obtained complexes was determined by the appropriate spectroscopy and elemental analysis. In addition, we evaluated the biological activities of these compounds as antienzymatic, antioxidant, antibacterial, anticancer, and antiparasitic agents. The results revealed that complexes 3b and 3d were the most potent inhibitors against AchE with IC50 values of 2.52 and 5.06 μM mL-1. Additionally, 3d proved very good antimicrobial activity against all examined microorganisms with IZ (inhibition zone) over 25 mm and MIC (minimum inhibitory concentration) < 4 µM. Additionally, the ligand 2a and its corresponding ruthenium (II) complex 3a had good cytotoxic activity against both cancer cells HCT-116 and HepG-2, with IC50 values of (7.76 and 11.76) and (4.12 and 9.21) μM mL-1, respectively. Evaluation of the antiparasitic activity of these complexes against Leishmania major promastigotes and Toxoplasma gondii showed that ruthenium complexes were more potent than the free ligand, with an IC50 values less than 1.5 μM mL-1. However, 3d was found the best one with SI (selectivity index) values greater than 5 so it seems to be the best candidate for antileishmanial drug discovery program, and much future research are recommended for mode of action and in vivo evaluation. In general, Ru-NHC complexes are the most effective against L. major promastigotes.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: ; Tel.: +966-556394839
| |
Collapse
|
33
|
Wang Z, Chen Y, Dong Z, Tang Y. Natural Product-Oriented Photo-Induced Denitrogenative Annulations of 1-Alkenylbenzotriazoles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010363. [PMID: 36615557 PMCID: PMC9823906 DOI: 10.3390/molecules28010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
The photo-induced denitrogenative annulations of a variety of 1-alkenylbenzotriazoles were investigated. By judiciously manipulating the structural variations of 1-alkenylbenzotriazoles, two characteristic polycyclic skeletons associated with monoterpene indole alkaloids were constructed through a diverted and controllable manner. The present work not only enriches the photochemistry of 1-alkenylbenzotriazoles, but also offers a unified approach to access skeletally diverse indole alkaloid scaffolds.
Collapse
Affiliation(s)
- Zhiguo Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Dong
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
34
|
D'Souza S, Balaji S, K V P. QSAR, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective benzotriazole-based SARS-CoV 3CL protease inhibitors. J Biomol Struct Dyn 2022; 40:14247-14261. [PMID: 34877897 DOI: 10.1080/07391102.2021.2002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 3CL Protease of severe acute respiratory syndrome coronavirus (SARS-CoV), responsible for viral replication, has emerged as an essential target for designing anti-coronaviral inhibitors in drug discovery. In recent years, small molecule and peptidomimetic inhibitors have been used to target the inhibition of SARS-CoV 3CL Protease. In this study, we have developed 2D and 3D Quantitative structure activity relationship (QSAR) models on 3CL protease inhibitors with good predictive capability to propose inhibitors with improved affinities. Based on the 3 D contour maps, three new inhibitors were designed in silico, which were further subjected to molecular docking to explore their binding modes. The newly designed compounds showed improved interaction energies toward SARS-CoV-3CLPro due to additional interactions with the active site residues. The molecular docking studies of the most potent compounds revealed specific interactions with Glu 166 and Cys 145. Furthermore, absorption, distribution, metabolism, elimination (ADME) and drug-likeness evaluation revealed improved pharmacokinetic properties for these compounds. The molecular dynamics simulations confirmed the stability of the interactions identified by docking. The results presented would guide the development of new 3CL protease inhibitors with improved affinities in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sofia D'Souza
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prema K V
- Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
35
|
Roy S, Sen S, Saha S, Deb SK, Singh B, Biswas G. Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subarna Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Samiran Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sandip Kumar Deb
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Bhagat Singh
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, USA
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|
36
|
Piludiya RI, Dholaria PV, Jivani AJ, Kapadiya KM. Bis-triazole Heterocycles as Antitubercular and Antimicrobial Agents: Synthesis Using Copper-Catalyzed Click Chemistry Approach. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Mermer A, Volkan Bulbul M, Mervenur Kalender S, Keskin I, Tuzun B, Emre Eyupoglu O. Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Nguyen QH, Hwang HS, Cho EJ, Shin S. Energy Transfer Photolysis of N-Enoxybenzotriazoles into Benzotriazolyl and α-Carbonyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quynh H. Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
39
|
An T, Liu C, Yin Y, Wu XF, Yin Z. Palladium-Catalyzed Denitrogenative Carbonylation of Benzotriazoles with Cr(CO) 6 as the Carbonyl Source. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tongshun An
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanzhao Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
40
|
Design, synthesis and biological studies of some new imidazole-1,2,3-triazole hybrid derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Patil TD, Amrutkar SV. Novel Benzotriazole Acetamide Derivatives as Benzo-Fused Five-
Membered Nitrogen-Containing Heterocycles - In silico Screening, Molecular
Docking, and Synthesis. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211007110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA gyrase subunit B (1KZN) is an attractive target for antibacterial drug development
because of its role in DNA replication. The fast development of antimicrobial medication resistance
necessitates the quick discovery of new antimicrobial medicines.
Objective:
The goal of this research was to design, synthesize, and discover benzo-fused five-membered
nitrogen-containing heterocycles that bind to DNA gyrase subunit B via molecular docking (1KZN).
Methods:
Based on literature research, 2-(1H-1,2,3-Benzotriazol-1-yl)-N-substituted acetamide was synthesized
using an efficient method. All synthesized compounds were evaluated for antibacterial activity
against three distinct organisms: E. coli, Pseudomonas aeruginosa, Staphylococcus aureus. In a docking
investigation, the chemical interacts with the active site of DNA gyrase subunit B (1KZN), indicating that
it might have antibacterial action.
Conclusion:
According to the findings of this research, the compounds 3d and 3f showed antibacterial
properties. For Staphylococcus aureus, 3c has the potential to be an antibacterial agent.
Collapse
Affiliation(s)
- Tejaswini D. Patil
- Department of Pharmaceutical Chemistry, Progressive Education Society’s Modern College of Pharmacy, Nigadi, Pune,
MS, India
| | - Sunil V. Amrutkar
- Department of Pharmaceutical Chemistry, Gokhale Education Society’s Sir Dr. M. S. Gosavi College of
Pharmaceutical Education and Research, Nashik, MS, India
| |
Collapse
|
42
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
43
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Synthesis of functionized N-arylbenzotriazoles via palladium catalyzed intramolecular amination. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Kalari S, Shinde AU, Rode HB. Methylene-Tethered Arylsulfonation and Benzotriazolation of Aryl/Heteroaryl C-H Bonds with DMSO as a One-Carbon Surrogate. J Org Chem 2021; 86:17684-17695. [PMID: 34851649 DOI: 10.1021/acs.joc.1c01914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Selectfluor-mediated approach toward the synthesis of methylene-tethered arylsulfonation and benzotriazolation of imidazopyridines has been described. The reaction involves imidazopyridine, aryl sulfinate, or benzotriazole and dimethyl sulfoxide (DMSO) in the presence of Selectfluor, where DMSO acts as a one-carbon synthon. The protocol has been extended to the methylene-tethered arylsulfonation and benzotriazolation of β-naphthols. The mechanistic insights show that the intermediate 3-((methylthio)methyl)-2-phenylimidazo[1,2-a]pyridine is generated from imidazopyridine, DMSO, and Selectfluor. The nucleophilic displacement by the aryl sulfinate salt or benzotriazole on the intermediate afforded the product.
Collapse
Affiliation(s)
- Saradhi Kalari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash U Shinde
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
46
|
Göktürk T, Hökelek T, Güp R. Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Ethyl 4-(4-(2-Bromoethyl)-1H-1,2,3-triazol-1-yl)benzoate. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521060109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Luo X, Tian A, Pei M, Yan J, Liu X, Wang L. Highly Stable Univalent Copper of a Cu@Al/SBA-15 Nanocomposite Catalyzes the Synthesis of Fluorescent Aminobenzotriazoles Derivatives. Chemistry 2021; 28:e202103361. [PMID: 34841580 DOI: 10.1002/chem.202103361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 12/21/2022]
Abstract
With the development of green chemistry, it is still a challenge to maintain the unstable valence state of the metal in heterogeneous catalysts and realize new catalytic synthesis methods. In this paper, it is reported that an univalent copper nanocomposite (Cu@Al/SBA-15) can efficiently catalyze the formation of novel amino-containing benzotriazoles with great fluorescence properties in a new synthetic strategy. Subsequently, its application is further verified by an acylation reaction to produce a series of novel benzotriazoles derivatives with high yield. It is worth noting that the Cu@Al/SBA-15 nanocomposites not only enable the reaction completed with high yield in a short time, but can also be recycled many times without a significant reduction in activity, and the leaching of copper and aluminum species in reaction system is negligible. Finally, the detailed and feasible reaction mechanism is also provided.
Collapse
Affiliation(s)
- Xianghao Luo
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China
| | - Anqi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China
| | - Mengyu Pei
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China
| | - Jiaying Yan
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China
| | - Xiang Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University Yichang, Hubei, 443002, China.,Hubei Three Gorges Laboratory Yichang, Hubei, 443007, China
| |
Collapse
|
48
|
Peters SJ, Patel K. Electron Distribution in 1,2,3-Benzotriazole and 1,2,3-Triazole Anion Radical Isomers: An EPR and DFT Study. J Org Chem 2021; 86:14786-14796. [PMID: 34633818 DOI: 10.1021/acs.joc.1c01584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anion radicals of N1- and N2-alkylbenzotriazoles and alkyltriazoles (alkyl = methyl or isopropyl) have been generated by low-temperature potassium metal reduction in tetrahydrofuran. Electron paramagnetic resonance (EPR) analysis and density functional theory calculations reveal that the electron spin distribution within the triazole ring of these systems is markedly different. The magnitude of the electron-nitrogen couplings along with the calculated spin densities reveals that the N2-alkylbenzotriazole and N2-alkyltriazole anion radicals have significantly greater electron spin residing within the N3 portion of the triazole ring compared with that of the respective N1 isomers. These differences impact the overall geometry of the triazole ring where both N2-isomers lose planarity upon reduction. Experimental and computational results reveal that the N2-methyltriazole anion radical has the largest concentration of electron spin residing in the N3 moiety compared to that of the other three anion radicals studied. Significant anisotropic line broadening is observed in the EPR spectrum of the N2-methyltriazole anion radical, which is a consequence of the large nitrogen hyperfine couplings and sufficiently slow rotational motion of this species in solution.
Collapse
Affiliation(s)
- Steven J Peters
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Krutil Patel
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
49
|
Khayyat AN, Mohamed KO, Malebari AM, El-Malah A. Design, Synthesis, and Antipoliferative Activities of Novel Substituted Imidazole-Thione Linked Benzotriazole Derivatives. Molecules 2021; 26:5983. [PMID: 34641526 PMCID: PMC8512560 DOI: 10.3390/molecules26195983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/18/2023] Open
Abstract
A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.E.-M.)
| | - Khaled O. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.E.-M.)
| | - Afaf El-Malah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.E.-M.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| |
Collapse
|
50
|
Tiwari VK, Yadav MS, Jaiswal MK, Kumar S. Trichloroacetimidate-Triggered Expeditious and Novel Synthesis of N-Acylbenzotriazoles. SYNOPEN 2021. [DOI: 10.1055/a-1656-7293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractA facile route for the synthesis of a diverse range of N-acylbenzotriazole derivatives from the corresponding carboxylic acids has been established through a carbonyl activation pathway. In this method, trichloroacetonitrile is performed as an effective reagent for an easy access of N-acylbenzotriazoles which was simply proceeded through the activation of carboxylic acids via in situ imidate formation in anhydrous 1,2-dichloroethane followed by addition of 1H-benzotriazole at 80 °C for 3–4 h. Easy handling, one-pot, and metal-free conditions demonstrate the notable merits of the devised protocol.
Collapse
|