1
|
Cristovão-Silva AC, Brelaz-de-Castro MCA, Dionisio da Silva E, Leite ACL, Santiago LBAA, Conceição JMD, da Silva Tiburcio R, de Santana DP, Bedor DCG, de Carvalho BÍV, Ferreira LFGR, de Freitas E Silva R, Alves Pereira VR, Hernandes MZ. Trypanosoma cruzi killing and immune response boosting by novel phenoxyhydrazine-thiazole against Chagas disease. Exp Parasitol 2024; 261:108749. [PMID: 38593864 DOI: 10.1016/j.exppara.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 μM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 μM) for trypomastigotes, and LIZ331 (IC50 1.9 μM) for amastigotes. We observed that LIZ311 (IC50 2.5 μM), LIZ431 (IC50 4.1 μM) and LIZ531 (IC50 5 μM) induced 200 μg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.
Collapse
Affiliation(s)
- Ana Catarina Cristovão-Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Maria Carolina Accioly Brelaz-de-Castro
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil; Laboratory of Parasitology, Vitória Academic Center, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil
| | - Elis Dionisio da Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Lizandra Beatriz Amorim Alves Santiago
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Juliana Maria da Conceição
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Robert da Silva Tiburcio
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Davi Pereira de Santana
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danilo Cesar Galindo Bedor
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Breno Ítalo Valença de Carvalho
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Rafael de Freitas E Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Marcelo Zaldini Hernandes
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Parvez A, Lee JS, Alam W, Tayara H, Chong KT. Integrated Computational Approaches for Drug Design Targeting Cruzipain. Int J Mol Sci 2024; 25:3747. [PMID: 38612558 PMCID: PMC11011879 DOI: 10.3390/ijms25073747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Cruzipain inhibitors are required after medications to treat Chagas disease because of the need for safer, more effective treatments. Trypanosoma cruzi is the source of cruzipain, a crucial cysteine protease that has driven interest in using computational methods to create more effective inhibitors. We employed a 3D-QSAR model, using a dataset of 36 known inhibitors, and a pharmacophore model to identify potential inhibitors for cruzipain. We also built a deep learning model using the Deep purpose library, trained on 204 active compounds, and validated it with a specific test set. During a comprehensive screening of the Drug Bank database of 8533 molecules, pharmacophore and deep learning models identified 1012 and 340 drug-like molecules, respectively. These molecules were further evaluated through molecular docking, followed by induced-fit docking. Ultimately, molecular dynamics simulation was performed for the final potent inhibitors that exhibited strong binding interactions. These results present four novel cruzipain inhibitors that can inhibit the cruzipain protein of T. cruzi.
Collapse
Affiliation(s)
- Aiman Parvez
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.P.); (W.A.)
| | - Jeong-Sang Lee
- Department of Functional Food and Biotechnology, College of Medical Sciences, Jeonju University, Jeonju 55069, Republic of Korea;
| | - Waleed Alam
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.P.); (W.A.)
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.P.); (W.A.)
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Gomha SM, El-Sayed AAA, Alrehaily A, Elbadawy HM, Farag B, Al-Shahri AA, Alsenani SR, Abdelgawad FE, Zaki ME. Synthesis, molecular docking, in silico study, and evaluation of bis-thiazole-based curcumin derivatives as potential antimicrobial agents. RESULTS IN CHEMISTRY 2024; 7:101504. [DOI: 10.1016/j.rechem.2024.101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
4
|
Prates JLB, Lopes JR, Chin CM, Ferreira EI, Dos Santos JL, Scarim CB. Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi. Curr Med Chem 2024; 31:2285-2308. [PMID: 37888814 DOI: 10.2174/0109298673254864230921090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 10/28/2023]
Abstract
Chagas disease (CD) is a parasitic disease endemic in several developing countries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to discover new targets for which new therapeutical agents could be developed. Cruzain cysteine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic effects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.
Collapse
Affiliation(s)
- João Lucas Bruno Prates
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Chung Man Chin
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine, São José do Rio Preto, SP, Brazil
| | - Elizabeth Igne Ferreira
- LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
5
|
Silva WL, de Andrade FHD, Lins TB, da Silva AL, da Cruz Amorim CA, dos Santos Lima MJ, da Silva PCD, Vilela WT, Nascimento PHDB, de Oliveira JF, de Souza FS, Alves de Lima MDC, da Silva RMF. Synthesis, thermal behavior and biological evaluation of benzodioxole derivatives as potential cytotoxic and antiparasitic agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Martins LC, de Oliveira RB, Lameira J, Ferreira RS. Experimental and Computational Study of Aryl-thiosemicarbazones Inhibiting Cruzain Reveals Reversible Inhibition and a Stepwise Mechanism. J Chem Inf Model 2023; 63:1506-1520. [PMID: 36802548 DOI: 10.1021/acs.jcim.2c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Trypanosoma cruzi is a parasite that infects about 6-7 million people worldwide, mostly in Latin America, causing Chagas disease. Cruzain, the main cysteine protease of T. cruzi, is a validated target for developing drug candidates for Chagas disease. Thiosemicarbazones are one of the most relevant warheads used in covalent inhibitors targeting cruzain. Despite its relevance, the mechanism of inhibition of cruzain by thiosemicarbazones is unknown. Here, we combined experiments and simulations to unveil the covalent inhibition mechanism of cruzain by a thiosemicarbazone-based inhibitor (compound 1). Additionally, we studied a semicarbazone (compound 2), which is structurally similar to compound 1 but does not inhibit cruzain. Assays confirmed the reversibility of inhibition by compound 1 and suggested a two-step mechanism of inhibition. The Ki was estimated to be 36.3 μM and Ki* to be 11.5 μM, suggesting the pre-covalent complex to be relevant for inhibition. Molecular dynamics simulations of compounds 1 and 2 with cruzain were used to propose putative binding modes for the ligands. One-dimensional (1D) quantum mechanics/molecular mechanics (QM/MM) potential of mean force (PMF) and gas-phase energies showed that the attack of Cys25-S- on the C═S or C═O bond yields a more stable intermediate than the attack on the C═N bond of the thiosemicarbazone/semicarbazone. Two-dimensional (2D) QM/MM PMF revealed a putative reaction mechanism for compound 1, involving the proton transfer to the ligand, followed by the Cys25-S- attack at C═S. The ΔG and energy barrier were estimated to be -1.4 and 11.7 kcal/mol, respectively. Overall, our results shed light on the inhibition mechanism of cruzain by thiosemicarbazones.
Collapse
Affiliation(s)
- Luan Carvalho Martins
- Molecular Modeling and Drug Design Laboratory, Institute for Biological Sciences, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, 31270-901 Belo Horizonte, MG, Brazil
| | - Renata Barbosa de Oliveira
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, 31270-901 Belo Horizonte, MG, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Rafaela Salgado Ferreira
- Molecular Modeling and Drug Design Laboratory, Institute for Biological Sciences, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Tavares da Rocha RE, de Almeida Júnior ASA, Júnior NCP, do Nascimento AV, Leite NMS, de Oliveira JF, Alves de Lima MDC, Feitosa APS, Bezerra de Mélo ME, Brayner FA, Alves LC. Synthesis, in vitro schistosomicidal activity and ultrastructural alterations caused by thiosemicarbazones and thiazolidinones against juvenile and adult Schistosoma mansoni worms (Sambon, 1907). Mol Biochem Parasitol 2022; 252:111520. [PMID: 36122704 DOI: 10.1016/j.molbiopara.2022.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is a neglected disease that affects about 258 million people worldwide. Caused by Schistosoma mansoni, helminth which, in Brazil, it is present on 19 states and capital. Praziquantel (PZQ) treatment presents low efficacy and adverse effects in parasites juvenile stages. Thiosemicarbazones and thiazolidinones are rising as potent chemical groups that have biological activity wide spectrum, and with radical modifications, they may become more effective and selective. Aiming to evaluate the action of these molecules against S. mansoni, JF series thiosemicarbazones and thiazolidinones (LqIT/UFPE) were synthesized: JF30, JF31, JF33, JF34, JF35, JF36, JF38, JF39, JF42 and JF43. Several parameters were evaluated, such as: their cytotoxicity in VERO cells, in vitro schistosomicidal activity for juvenile and adult worms and their action on worms through ultrastructural changes. Cytotoxicity indices ranged from 272 µM to 725 µM. When evaluating mortality rate, adult and juvenile worms showed 100 % mortality rate within 24 h and 48 h, respectively, when exposed to the compounds JF31 and JF43 at a dose of 200 µM. Also, motility, mortality and oviposition parameters were evaluated: JF31 and JF43 presented a score of 0 in 24 h, meaning total absence of movement, whereas no eggs and soft tissue damage were observed under optical microscopy. Through scanning electron microscopy, integumentary alterations caused by the compounds JF31 and JF43 were observed, such as: exposure of the musculature, formation of integumentary bubbles, integuments with abnormal morphology and destruction of tubercles and spikes. The results shoerd that the compound JF31 was 2.39 times more selective for adult worms and JF43 was 3.74 times more selective for juvenile worms. Thus, the compounds JF43 and JF31 are the most promising for presenting schistosomicidal activity of S. mansoni.
Collapse
Affiliation(s)
- Rubens Emanoel Tavares da Rocha
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil.
| | | | - Nairomberg Cavalcanti Portela Júnior
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Amanda Vasconcelos do Nascimento
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | | | | | | | - Ana Paula Sampaio Feitosa
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Maria Eliane Bezerra de Mélo
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Fábio André Brayner
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Luiz Carlos Alves
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| |
Collapse
|
8
|
From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds. Eur J Med Chem 2022; 244:114876. [DOI: 10.1016/j.ejmech.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
9
|
Ibáñez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, Álvarez-Márquez M, Gómez-Núñez M, Lacueva-Arnedo M, Espinosa-Buitrago T, Martín-Pérez T, Escario JA, Merino-Montiel P, Montiel-Smith S, Gómez-Barrio A, López Ó, Fernández-Bolaños JG. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J Enzyme Inhib Med Chem 2022; 37:781-791. [PMID: 35193444 PMCID: PMC8881069 DOI: 10.1080/14756366.2022.2041629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Cristina Fonseca-Berzal
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Manuel Álvarez-Márquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Gómez-Núñez
- Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Lacueva-Arnedo
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Teresa Espinosa-Buitrago
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - José Antonio Escario
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alicia Gómez-Barrio
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
10
|
Pauli I, Rezende CDO, Slafer BW, Dessoy MA, de Souza ML, Ferreira LLG, Adjanohun ALM, Ferreira RS, Magalhães LG, Krogh R, Michelan-Duarte S, Del Pintor RV, da Silva FBR, Cruz FC, Dias LC, Andricopulo AD. Multiparameter Optimization of Trypanocidal Cruzain Inhibitors With In Vivo Activity and Favorable Pharmacokinetics. Front Pharmacol 2022; 12:774069. [PMID: 35069198 PMCID: PMC8767159 DOI: 10.3389/fphar.2021.774069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cruzain, the main cysteine protease of Trypanosoma cruzi, plays key roles in all stages of the parasite's life cycle, including nutrition acquisition, differentiation, evasion of the host immune system, and invasion of host cells. Thus, inhibition of this validated target may lead to the development of novel drugs for the treatment of Chagas disease. In this study, a multiparameter optimization (MPO) approach, molecular modeling, and structure-activity relationships (SARs) were employed for the identification of new benzimidazole derivatives as potent competitive inhibitors of cruzain with trypanocidal activity and suitable pharmacokinetics. Extensive pharmacokinetic studies enabled the identification of metabolically stable and permeable compounds with high selectivity indices. CYP3A4 was found to be involved in the main metabolic pathway, and the identification of metabolic soft spots provided insights into molecular optimization. Compound 28, which showed a promising trade-off between pharmacodynamics and pharmacokinetics, caused no acute toxicity and reduced parasite burden both in vitro and in vivo.
Collapse
Affiliation(s)
- Ivani Pauli
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Celso de O Rezende
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Brian W Slafer
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marco A Dessoy
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Mariana L de Souza
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Abraham L M Adjanohun
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luma G Magalhães
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Renata Krogh
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Simone Michelan-Duarte
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | - Fabio C Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz C Dias
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
11
|
Synthesis and Biological Evaluation of Thiazolyl-Ethylidene Hydrazino-Thiazole Derivatives: A Novel Heterocyclic System. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of 2-(1-(2-(2-(4-methoxybenzylidene)hydrazinyl)-4-methylthiazol-5-yl)ethylidene)hydrazinecarbothioamide with a range of hydrazonoyl chlorides and α-halo-compounds yielded three new series of thiazole derivatives. Chemical and physical techniques were used to analyze all newly prepared derivatives (1H-NMR, 13C-NMR, FT-IR and mass spectrometry). The potential antimicrobial and anticancer properties of the synthesized derivatives were investigated using various in vitro biological experiments. Most of the thiazole compounds tested were effective against Gram-positive and Gram-negative bacteria. In addition, a minimum inhibition concentration was determined for the antibiotic properties of the most active produced substances. The cytotoxic activities were tested on HepG-2 (liver carcinoma), HCT-116 (colorectal carcinoma) and MDA-MB-231 (breast carcinoma) cell lines in comparison with cisplatin reference drug and using colorimetric MTT assay. The results detected that compound 10c was the most potent against the three tested cell lines. Interestingly, when the tested compounds were evaluated for their toxicity against normal (MRC-5) cells, they exhibited low toxic effects indicating the safe use of most of them that may require further in vivo and pharmacological studies.
Collapse
|
12
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
13
|
Structural improvement of new thiazolyl-isatin derivatives produces potent and selective trypanocidal and leishmanicidal compounds. Chem Biol Interact 2021; 345:109561. [PMID: 34174251 DOI: 10.1016/j.cbi.2021.109561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
Neglected diseases are a group of transmissible diseases that occur mostly in countries in tropical climates. Among this group, Chagas disease and leishmaniasis stand out, considered threats to global health. Treatment for these diseases is limited. Therefore, there is a need for new therapies against these diseases. In this sense, our proposal consisted of developing two series of compounds, using a molecular hybridization of the heterocyclic isatin and thiazole. The isatin and thiazole ring are important scaffold for several biological disorders, including antiparasitic ones. Herein, thiazolyl-isatin has been synthesized from respective thiosemicarbazone or phenyl-thiosemicarbazone, being some of these new thiazolyl-isatin toxic for trypomastigotes without affecting macrophages viability. From this series, compounds 2e (IC50 = 4.43 μM), 2j (IC50 = 2.05 μM), 2l (IC50 = 4.12 μM) and 2m (1.72 μM) showed the best anti-T. cruzi activity for trypomastigote form presenting a selectivity index higher than Benznidazole (BZN). Compounds 2j, 2l and 2m were able to induce a significantly labelling compatible with necrosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with the compound 2m from IC50 concentrations, promoted changes in the shape, flagella and surface of body causing of the parasite dead. Concerning leishmanicidal evaluation against L. amazonensis and L. infantum, compounds 2l (IC50 = 7.36 and 7.97 μM, respectively) and 2m (6.17 and 6.04 μM, respectively) showed the best activity for promastigote form, besides showed a higher selectivity than Miltefosine. Thus, compounds 2l and 2m showed dual in vitro trypanosomicidal and leishmanicidal activities. A structural activity relationship study showed that thiazolyl-isatin derivatives from phenyl-thiosemicarbazone (2a-m) were, in general, more active than thiazolyl-isatin derivatives from thiosemicarbazone (1a-g). Crystallography studies revealed a different configuration between series 1a-g and 2a-m. The configuration and spatial arrangement divergent between the two sub-series could explain the improved biological activity profile of 2a-m sub-series.
Collapse
|
14
|
Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Caroline da Silva Santos A, Ramos Dos Santos TA, Cristovão-Silva AC, Rubio LG, da Silva Maia Neto L, Leite PG, Machado FS, Alves LC, Brayner FA, Alves Pereira VR, Lima Leite AC. Structural design, synthesis and anti-Trypanosoma cruzi profile of the second generation of 4-thiazolidinones chlorine derivatives. Chem Biol Interact 2021; 345:109514. [PMID: 34023282 DOI: 10.1016/j.cbi.2021.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Chagas disease causes more deaths in the Americas than any other parasitic disease. Initially confined to the American continent, it is increasingly becoming a global health problem. In fact, it is considered to be an "exotic" disease in Europe, being virtually undiagnosed. Benznidazole, the only drug approved for treatment, effectively treats acute-stage Chagas disease, but its effectiveness for treating indeterminate and chronic stages remains uncertain. Previously, our research group demonstrated that 4-thiazolidinones presented anti-T. cruzi activity including in the in vivo assays in mice, making this fragment appealing for drug development. The present work reports the synthesis and anti-T. cruzi activities of a novel series of 4-thiazolidinones derivatives that resulted in an increased anti-T. cruzi activity in comparison to thiosemicarbazones intermediates. Compounds 2c, 2e, and 3a showed potent inhibition of the trypomastigote form of the parasite at low cytotoxicity concentrations in mouse splenocytes. Besides, all the 2c, 2e, and 3a tested concentrations showed no cytotoxic activity on macrophages cell viability. When macrophages were submitted to T. cruzi infection and treated with 2c and 3a, compounds reduced the release of trypomastigote forms. Results also showed that the increased trypanocidal activity induced by 2c and 3a is independent of nitric oxide release. Flow cytometry assay showed that compound 2e was able to induce necrosis and apoptosis in trypomastigotes. Parasites treated with the compounds 2e, 3a, and 3c presented flagellum shortening, retraction and curvature of the parasite body, and extravasation of the internal content. Together, these data revealed a novel series of 4-thiazolidinones fragment-based compounds with potential effects against T. cruzi and lead-like characteristics.
Collapse
Affiliation(s)
| | | | - Aline Caroline da Silva Santos
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Thiago André Ramos Dos Santos
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Ana Catarina Cristovão-Silva
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Laura González Rubio
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Luiz da Silva Maia Neto
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Paulo Gaio Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz Carlos Alves
- Laboratory of Immunopathology Keizo Asami-LIKA / UFPE, 50670-420, Recife, PE, Brazil; Department of Parasitology, Cellular and Molecular Biology Laboratories, Leishmaniasis, and Mutagenesis, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Fabio André Brayner
- Laboratory of Immunopathology Keizo Asami-LIKA / UFPE, 50670-420, Recife, PE, Brazil; Department of Parasitology, Cellular and Molecular Biology Laboratories, Leishmaniasis, and Mutagenesis, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
15
|
Rosas-Jimenez JG, Garcia-Revilla MA, Madariaga-Mazon A, Martinez-Mayorga K. Predictive Global Models of Cruzain Inhibitors with Large Chemical Coverage. ACS OMEGA 2021; 6:6722-6735. [PMID: 33748586 PMCID: PMC7970485 DOI: 10.1021/acsomega.0c05645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Chagas disease affects 8-11 million people worldwide, most of them living in Latin America. Moreover, migratory phenomena have spread the infection beyond endemic areas. Efforts for the development of new pharmacological therapies are paramount as the pharmacological profile of the two marketed drugs currently available, nifurtimox and benznidazole, needs to be improved. Cruzain, a parasitic cysteine protease, is one of the most attractive biological targets due to its roles in parasite survival and immune evasion. In this work, we compiled and curated a database of diverse cruzain inhibitors previously reported in the literature. From this data set, quantitative structure-activity relationship (QSAR) models for the prediction of their pIC50 values were generated using k-nearest neighbors and random forest algorithms. Local and global models were calculated and compared. The statistical parameters for internal and external validation indicate a significant predictability, with q loo 2 values around 0.66 and 0.61 and external R 2 coefficients of 0.725 and 0.766. The applicability domain is quantitatively defined, according to QSAR good practices, using the leverage and similarity methods. The models described in this work are readily available in a Python script for the discovery of novel cruzain inhibitors.
Collapse
Affiliation(s)
- Jose Guadalupe Rosas-Jimenez
- Division
de Ciencias Naturales y Exactas, Universidad
de Guanajuato, Guanajuato 36050, Mexico
- Instituto
de Quimica, Universidad Nacional Autonoma
de Mexico, Mexico
City 04510, Mexico
| | - Marco A. Garcia-Revilla
- Division
de Ciencias Naturales y Exactas, Universidad
de Guanajuato, Guanajuato 36050, Mexico
| | | | | |
Collapse
|
16
|
Nossa González DL, Gómez Castaño JA, Rozo Núñez WE, Duchowicz PR. Antiprotozoal QSAR modelling for trypanosomiasis (Chagas disease) based on thiosemicarbazone and thiazole derivatives. J Mol Graph Model 2020; 103:107821. [PMID: 33333422 DOI: 10.1016/j.jmgm.2020.107821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a neglected endemic infection that affects around 8 million people worldwide and causes 12,000 premature deaths per year. Traditional chemotherapy is limited to the nitro-antiparasitic drugs Benznidazole and Nifurtimox, which present serious side effects and low long-term efficacy. Several research efforts have been made over the last decade to find new chemical structures with better effectiveness and tolerance than standard anti-Chagas drugs. Among these, new sets of thiosemicarbazone and thiazole derivatives have exhibited potent in vitro activity against T. cruzi, especially for its extracellular forms (epimastigote and trypomastigote). In this work, we have developed three antiprotozoal quantitative structure-relationship (QSAR) models for Chagas disease based on the in vitro activity data reported as IC50 (μM) and CC50 (μM) over the last decade, particularly by Lima-Leite's group in Brazil. The models were developed using the replacement method (RM), a technique based on Multivariable Linear Regression (MLR), and external and internal validation methodologies, like the use of a test set, Leave-one-Out (LOO) cross-validation and Y-Randomization. Two of these QSAR models were developed for trypomastigotes form of the parasite Trypanosoma cruzi, one based on IC50 and the other on CC50 data; while the third QSAR model was developed for its epimastigotes form based on CC50 activity. Our models presented sound statistical parameters that endorses their prediction capability. Such capability was tested for a set of 13 hitherto-unknown structurally related aromatic cyclohexanone derivatives.
Collapse
Affiliation(s)
- Diana L Nossa González
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Jovanny A Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Wilson E Rozo Núñez
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (CONICET- Universidad Nacional de La Plata), Diagonal 113 y calle 64, C.C. 16, Sucursal 4, 1900, La Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Synthesis and biological evaluation in vitro and in silico of N-propionyl-N'-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol Divers 2020; 26:39-50. [PMID: 33216257 DOI: 10.1007/s11030-020-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023]
Abstract
An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.
Collapse
|
18
|
Queiroz CM, de Oliveira Filho GB, Espíndola JWP, do Nascimento AV, Aliança ASDS, de Lorena VMB, Feitosa APS, da Silva PR, Alves LC, Leite ACL, Brayner FA. Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02619-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Molecular events and cytotoxic effects of a novel thiosemicarbazone derivative in human leukemia and lymphoma cell lines. Hematol Oncol Stem Cell Ther 2020; 14:51-64. [PMID: 32763229 DOI: 10.1016/j.hemonc.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/20/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to investigate the cytotoxic effect of 38 new thiosemicarbazone derivatives on hematological neoplastic cells lines and to select the most effective compounds to investigate the main molecular mechanisms involved in cell death. Cytotoxicity screening on Daudi and Jurkat cells revealed that only compound 1b met the selection criteria; therefore, it was chosen for further investigation. Cell viability of Daudi, Jurkat, Molt-4, Namalwa, K562, and MM.1S cell lines decreased in a concentration- and time-dependent manner after compound1b incubation; nevertheless the compound neither caused significant hemolysis nor reduction in peripheral blood mononuclear cell viability. Although no changes were observed on cell cycle or Ki-67 expression, compound1b induced apoptotic-like cell death with mitochondrial involvement, Bax/Bcl-2 inversion, AIF release, survivin inhibition, and caspase-3 activation in both Daudi and Jurkat cells. Furthermore, the compound reduced NFκB expression in Jurkat cells. In Daudi cells, compound1b also decreased CHOP, Akt, pAkt, and MAPK/ERK2 expression, thereby suggesting modulation of UPR, PI3K/Akt/mTOR, and MAPK/ERK signaling pathways. Finally, the compound was able to reduce the cell viability of samples collected from patients with different lymphoid neoplasms subtypes, showing that thiosemicarbazones derivatives could be used in the development of new drugs with anticancer activity.
Collapse
|
20
|
Benzimidazole inhibitors of the major cysteine protease of Trypanosoma brucei. Future Med Chem 2020; 11:1537-1551. [PMID: 31469332 DOI: 10.4155/fmc-2018-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Limitations in available therapies for trypanosomiases indicate the need for improved medicines. Cysteine proteases cruzain and rhodesain are validated targets for treatment of Chagas disease and human African trypanosomiasis. Previous studies reported a benzimidazole series as potent cruzain inhibitors. Results & methodology: Considering the high similarity between these proteases, we evaluated 40 benzimidazoles against rhodesain. We describe their structure-activity relationships (SAR), revealing trends similar to those observed for cruzain and features that lead to enzyme selectivity. This series comprises noncovalent competitive inhibitors (best Ki = 0.21 μM against rhodesain) and micromolar activity against Trypanosoma brucei brucei. A cheminformatics analysis confirms scaffold novelty, and the inhibitors described have favorable predicted physicochemical properties. Conclusion: Our results support this series as a starting point for new human African trypanosomiasis medicines.
Collapse
|
21
|
Sayed AR, Gomha SM, Taher EA, Muhammad ZA, El-Seedi HR, Gaber HM, Ahmed MM. One-Pot Synthesis of Novel Thiazoles as Potential Anti-Cancer Agents. Drug Des Devel Ther 2020; 14:1363-1375. [PMID: 32308369 PMCID: PMC7138620 DOI: 10.2147/dddt.s221263] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Thiazole and thiosemicarbazone derivatives are known to have potential anticancer activity with a mechanism of action related to inhibition of matrix metallo-proteinases, kinases and anti-apoptotic BCL2 family proteins. MATERIALS AND METHODS A novel three series of 5-(1-(2-(thiazol-2-yl)hydrazono)ethyl)thiazole derivatives were prepared in a one-pot three-component reaction using 2-(2-benzylidene hydrazinyl)-4-methylthiazole as a starting precursor. MS, IR, 1H-NMR and 13C-NMR were used to elucidate the structures of the synthesized compounds. Most of the synthesized products were evaluated for their in vitro anticancer screening against HCT-116, HT-29 and HepG2 using the MTT colorimetric assay. RESULTS The results indicated that compounds 4c, 4d and 8c showed growth inhibition activity against HCT-116 with IC50 values of 3.80 ± 0.80, 3.65 ± 0.90 and 3.16 ± 0.90 μM, respectively, compared to harmine (IC50 = 2.40 ± 0.12 μM) and cisplatin (IC50 = 5.18 ± 0.94 μM) reference drugs. Also, compounds 8c, 4d and 4c showed promising IC50 values of 3.47 ± 0.79, 4.13 ± 0.51 and 7.24 ± 0.62 μM, respectively, against the more resistant human colorectal cancer (HT-29) cell line compared with harmine (IC50 = 4.59 ± 0.67 μM) and cisplatin (IC50 = 11.68 ± 1.54 μM). On the other hand, compounds 4d, 4c, 8c and 11c were the most active (IC50 values of 2.31± 0.43, 2.94 ± 0.62, 4.57 ± 0.85 and 9.86 ± 0.78 μM, respectively) against the hepatocellular carcinoma (HepG2) cell line compared with harmine (IC50 = 2.54 ± 0.82 μM) and cisplatin (IC50 = 41 ± 0.63 μM). The study also suggested that the mechanism of the anticancer action exerted by the most active compounds (4c, 4d and 8c) inside HCT-116 cells was apoptosis through the Bcl-2 family. CONCLUSION Thiazole scaffolds 4c, 4d and 8c showed anticancer activities in the micromolar range and are appropriate as a candidate for cancer treatment.
Collapse
Affiliation(s)
- Abdelwahed R Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara42351, Saudi Arabia
| | - Eman A Taher
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza12311, Egypt
- Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom32512, Egypt
| | - Zeinab A Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza12311, Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom32512, Egypt
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, UppsalaSE-75123, Sweden
| | - Hatem M Gaber
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza12311, Egypt
| | - Mahgoub M Ahmed
- Molecular Drug Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza12311, Egypt
| |
Collapse
|
22
|
de Souza ML, de Oliveira Rezende Junior C, Ferreira RS, Espinoza Chávez RM, Ferreira LLG, Slafer BW, Magalhães LG, Krogh R, Oliva G, Cruz FC, Dias LC, Andricopulo AD. Discovery of Potent, Reversible, and Competitive Cruzain Inhibitors with Trypanocidal Activity: A Structure-Based Drug Design Approach. J Chem Inf Model 2019; 60:1028-1041. [PMID: 31765144 DOI: 10.1021/acs.jcim.9b00802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A virtual screening conducted with nearly 4 000 000 compounds from lead-like and fragment-like subsets enabled the identification of a small-molecule inhibitor (1) of the Trypanosoma cruzi cruzain enzyme, a validated drug target for Chagas disease. Subsequent comprehensive structure-based drug design and structure-activity relationship studies led to the discovery of carbamoyl imidazoles as potent, reversible, and competitive cruzain inhibitors. The most potent carbamoyl imidazole inhibitor (45) exhibited high affinity with a Ki value of 20 nM, presenting both in vitro and in vivo activity against T. cruzi. Furthermore, the most promising compounds reduced parasite burden in vivo and showed no toxicity at a dose of 100 mg/kg. These carbamoyl imidazoles are structurally attractive, nonpeptidic, and easy to prepare and synthetically modify. Finally, these results further advance our understanding of the noncovalent mode of inhibition of this pharmaceutically relevant enzyme, building strong foundations for drug discovery efforts.
Collapse
Affiliation(s)
- Mariana L de Souza
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| | | | - Rafaela S Ferreira
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte - MG 31270-901 , Brazil
| | | | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| | - Brian W Slafer
- Institute of Chemistry , State University of Campinas , Campinas - SP 13084-971 , Brazil
| | - Luma G Magalhães
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| | - Glaucius Oliva
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| | - Fabio Cardoso Cruz
- Department of Pharmacology , Federal University of Sao Paulo , Sao Paulo - SP 04023-062 , Brazil
| | - Luiz Carlos Dias
- Institute of Chemistry , State University of Campinas , Campinas - SP 13084-971 , Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos , University of Sao Paulo , Sao Carlos - SP 13563-120 , Brazil
| |
Collapse
|
23
|
Ferreira RAA, Pauli I, Sampaio TS, de Souza ML, Ferreira LLG, Magalhães LG, Rezende CDO, Ferreira RS, Krogh R, Dias LC, Andricopulo AD. Structure-Based and Molecular Modeling Studies for the Discovery of Cyclic Imides as Reversible Cruzain Inhibitors With Potent Anti- Trypanosoma cruzi Activity. Front Chem 2019; 7:798. [PMID: 31824926 PMCID: PMC6886403 DOI: 10.3389/fchem.2019.00798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Chagas disease causes ~10,000 deaths each year, mainly in Latin America, where it is endemic. The currently available chemotherapeutic agents are ineffective in the chronic stage of the disease, and the lack of pharmaceutical innovation for Chagas disease highlights the urgent need for the development of new drugs. The enzyme cruzain, the main cysteine protease of Trypanosoma cruzi, has been explored as a validated molecular target for drug discovery. Herein, the design, molecular modeling studies, synthesis, and biological evaluation of cyclic imides as cruzain inhibitors are described. Starting with a micromolar-range cruzain inhibitor (3a, IC50 = 2.2 μM), this molecular optimization strategy resulted in the nanomolar-range inhibitor 10j (IC50 = 0.6 μM), which is highly active against T. cruzi intracellular amastigotes (IC50 = 1.0 μM). Moreover, most compounds were selective toward T. cruzi over human fibroblasts, which were used as host cells, and are less toxic to hepatic cells than the marketed drug benznidazole. This study enabled the discovery of novel chemical diversity and established robust structure-activity relationships to guide the design of optimized cruzain inhibitors as new trypanocidal agents.
Collapse
Affiliation(s)
| | - Ivani Pauli
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Thiago S Sampaio
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Mariana L de Souza
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Luma G Magalhães
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Celso de O Rezende
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Krogh
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Luiz C Dias
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
24
|
Ribeiro AG, Almeida SMVD, de Oliveira JF, Souza TRCDL, Santos KLD, Albuquerque APDB, Nogueira MCDBL, Carvalho Junior LBD, Moura ROD, da Silva AC, Pereira VRA, Castro MCABD, Lima MDCAD. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem 2019; 182:111592. [DOI: 10.1016/j.ejmech.2019.111592] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
|
25
|
Lopes CD, Possato B, Gaspari APS, Oliveira RJ, Abram U, Almeida JPA, Rocho FDR, Leitão A, Montanari CA, Maia PIS, da Silva JS, de Albuquerque S, Carneiro ZA. Organometallic Gold(III) Complex [Au(Hdamp)(L1 4)] + (L1 = SNS-Donating Thiosemicarbazone) as a Candidate to New Formulations against Chagas Disease. ACS Infect Dis 2019; 5:1698-1707. [PMID: 31419384 DOI: 10.1021/acsinfecdis.8b00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In in vivo assays, 4-Cl in PBS solution loses the protonation and becomes the 4-neutral. 4-Neutral reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage at 2.8 mg/kg/day. All these changes resulted in the survival of 100% of the mice treated with the gold complex during the acute phase. Analyzing the surviving animals of the acute infection, the parasite load after 150 days of infection was equivalent to those treated with the standard dose of Bz without demonstrating the hepatotoxicity of the latter. In addition, we identified a modulation of interferon gamma (IFN-γ) levels that may be targeting the disease's positive outcome. To the best of our knowledge, this is the first gold organometallic study that shows promise in an in vivo experimental model against Chagas disease.
Collapse
Affiliation(s)
- Carla Duque Lopes
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
- Departament of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Bruna Possato
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Ana Paula S. Gaspari
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Ronaldo J. Oliveira
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais 38025-470, Brazil
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin D-14195, Germany
| | - José P. A. Almeida
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Fernanda dos Reis Rocho
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Andrei Leitão
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Carlos A. Montanari
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Pedro I. S. Maia
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais 38025-470, Brazil
| | - João S. da Silva
- Departament of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sérgio de Albuquerque
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Zumira A. Carneiro
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
26
|
Salsi F, Bulhões Portapilla G, Schutjajew K, Roca Jungfer M, Goulart A, Hagenbach A, de Albuquerque S, Abram U. Organometallic Gold(III) Complexes with Tridentate Halogen‐Substituted Thiosemicarbazones: Effects of Halogenation on Cytotoxicity and Anti‐Parasitic Activity. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Federico Salsi
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34–36 D‐14195 Berlin Germany
| | - Gisele Bulhões Portapilla
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. do Café – Vila Monte Alegre 14040‐903 Ribeirão Preto Brazil
| | - Konstantin Schutjajew
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34–36 D‐14195 Berlin Germany
| | - Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34–36 D‐14195 Berlin Germany
| | - Amanda Goulart
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. do Café – Vila Monte Alegre 14040‐903 Ribeirão Preto Brazil
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34–36 D‐14195 Berlin Germany
| | - Sérgio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. do Café – Vila Monte Alegre 14040‐903 Ribeirão Preto Brazil
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34–36 D‐14195 Berlin Germany
| |
Collapse
|
27
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
28
|
Cardoso MVDO, Oliveira Filho GBD, Siqueira LRPD, Espíndola JWP, Silva EBD, Mendes APDO, Pereira VRA, Castro MCABD, Ferreira RS, Villela FS, Costa FMRD, Meira CS, Moreira DRM, Soares MBP, Leite ACL. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur J Med Chem 2019; 180:191-203. [DOI: 10.1016/j.ejmech.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
29
|
de Almeida Júnior ASA, de Oliveira JF, da Silva AL, da Rocha RET, Junior NCP, Gouveia ALA, da Silva RMF, de Azevedo Albuquerque MCP, Brayner FA, Alves LC, do Carmo Alves de Lima M. In vitro activity, ultrastructural studies and in silico pharmacokinetic properties of indol-3-yl-thiosemicarbazones derivatives and analogues against juvenile and adult worms of S. mansoni. Eur J Pharm Sci 2019; 138:104985. [PMID: 31283945 DOI: 10.1016/j.ejps.2019.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
The present work aimed to carry out in vitro biological assays of indol-3-yl derivatives thiosemicarbazones (2a-e) and 4-thiazolidinones (3a-d) against juvenile and adult worms of S. mansoni, as well as the in silico determination of pharmacokinetic parameters for the prediction of the oral bioavailability of these derivatives. All compounds were initially screened at a concentration of 200 μM against S. mansoni adult worms and the results evidenced the good activity of compounds 2b, 2d and 3b, which caused 100% mortality after 24, 48 and 72 h, respectively. Subsequent studies with these same compounds revealed that compound 2b was able to reduce the viability of the parasites by 85% and 83% at concentrations of 200 and 100 μM, respectively. In relation to the juvenile worms, all compounds (2b, 2d and 3b) were able to cause mortality, but compound 2b demonstrated better activity causing 100% mortality in 48 h. Additionally, it was possible to observe reduction in the viability of juvenile worms of 85%, 81% and 64% at concentrations of 200, 100 and 50 μM, respectively. Several ultrastructural damages were observed when adult and juvenile S. mansoni worms were exposed to compound 2b (200 μM) that was characterized by extensive destruction by the integument, which may justify the mortality rate of cultured parasites. In the DNA interaction assay, fragmentation of the genetic material of adult worms when treated with compound 2b (200 μM) was evidenced, indicating the apoptosis process as mechanism of parasite death. Regarding pharmacokinetic properties, all derivatives are according to the required parameters, predicting good oral bioavailability for the studied compounds. The results presented in this study reveal the good activity of compound 2b in both adult and juvenile worms of S. mansoni, pointing this compound as promising in the development of further studies on schistosomicidal activity.
Collapse
Affiliation(s)
- Antônio Sérgio Alves de Almeida Júnior
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, 50670-901 Recife, PE, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | | - Anekécia Lauro da Silva
- Universidade Federal do Vale do São Francisco (UNIVASF), Departamento de Medicina, 48607-190 Paulo Afonso, BA, Brazil
| | | | | | | | | | | | - Fábio André Brayner
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Luiz Carlos Alves
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | |
Collapse
|
30
|
Pereira GAN, da Silva EB, Braga SFP, Leite PG, Martins LC, Vieira RP, Soh WT, Villela FS, Costa FMR, Ray D, de Andrade SF, Brandstetter H, Oliveira RB, Caffrey CR, Machado FS, Ferreira RS. Discovery and characterization of trypanocidal cysteine protease inhibitors from the 'malaria box'. Eur J Med Chem 2019; 179:765-778. [PMID: 31284086 DOI: 10.1016/j.ejmech.2019.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/04/2023]
Abstract
Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 μM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 μM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Glaécia A N Pereira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Elany B da Silva
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Saulo F P Braga
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Luan C Martins
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael P Vieira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Wai Tuck Soh
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Filipe S Villela
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francielly M R Costa
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Debalina Ray
- University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Saulo F de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Hans Brandstetter
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Renata B Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabiana S Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela S Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
31
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
32
|
Santos LH, Waldner BJ, Fuchs JE, Pereira GAN, Liedl KR, Caffarena ER, Ferreira RS. Understanding Structure–Activity Relationships for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations. J Chem Inf Model 2018; 59:137-148. [DOI: 10.1021/acs.jcim.8b00557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucianna H. Santos
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Birgit J. Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Glaécia A. N. Pereira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF Brazil
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Ernesto R. Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rafaela S. Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
33
|
Kryshchyshyn A, Kaminskyy D, Nektegayev I, Grellier P, Lesyk R. Isothiochromenothiazoles-A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei. Sci Pharm 2018; 86:scipharm86040047. [PMID: 30347722 DOI: 10.3390/scipharm86040047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, thiazolidinone derivatives have been widely studied as antiparasitic agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially thiopyranothiazoles) retain pharmacological activity of their synthetic precursors-simple 5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited parasite growth at concentrations in the micromolar range. The established low acute toxicity of this class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole derivatives may be promising for designing new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Igor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| | - Philippe Grellier
- UMR 7245 CNRS MCAM, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP 52, 57 rue Cuvier, Paris 75005, France.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv-10, Ukraine.
| |
Collapse
|
34
|
Rocha DA, Silva EB, Fortes IS, Lopes MS, Ferreira RS, Andrade SF. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur J Med Chem 2018; 157:1426-1459. [DOI: 10.1016/j.ejmech.2018.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
|
35
|
Mariz Gomes da Silva LM, de Oliveira JF, Silva WL, da Silva AL, de Almeida Junior ASA, Barbosa dos Santos VH, Alves LC, Brayner dos Santos FA, Costa VMA, Aires ADL, de Lima MDCA, Albuquerque MCPDA. New 1,3-benzodioxole derivatives: Synthesis, evaluation of in vitro schistosomicidal activity and ultrastructural analysis. Chem Biol Interact 2018; 283:20-29. [DOI: 10.1016/j.cbi.2018.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/24/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
|
36
|
Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT. Bis(4-meth-oxy-chalcone 4-ethyl-thio-semi-carbazon-ato-κ 2N1, S)zinc(II): crystal structure and Hirshfeld surface analysis. Acta Crystallogr E Crystallogr Commun 2018; 74:151-157. [PMID: 29850043 PMCID: PMC5956326 DOI: 10.1107/s2056989018000282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 03/26/2024]
Abstract
The title ZnII complex, [Zn(C19H20N3OS)2] {systematic name: bis-[(N-ethyl-N'-{(Z)-[(2E)-3-(4-meth-oxy-phen-yl)-1-phenyl-prop-2-en-1-yl-idene]amino}-carb-am-im-id-o-yl)sulfanido]zinc(II)}, features a tetra-hedrally coordinated ZnII ion within an N2S2 donor set provided by two N,S-chelating thio-semicarbazone anions. The resulting five-membered Zn,C,N2,S chelate rings adopt different conformations, i.e. almost planar and an envelope with the Zn atom being the flap atom. The configuration about the imine bond within the chelate ring is Z but those about the exocyclic imine and ethyl-ene bonds are E. In the crystal, supra-molecular [100] chains mediated by thio-amide-N-H⋯S(thione) hydrogen bonds and eight-membered thio-amide {⋯HNCS}2 synthons are observed. A range of inter-actions, including C-H⋯O, C-H⋯π, C-H⋯π(chelate ring) and π(meth-oxy-benzene)-π(chelate ring) consolidate the packing. The Hirshfeld surface analysis performed on the title complex also indicates the influence of the inter-actions involving the chelate rings upon the packing along with the more conventional contacts.
Collapse
Affiliation(s)
- Ming Yueh Tan
- Department of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia
| | - Karen A. Crouse
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada
| | - Thahira B. S. A. Ravoof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mukesh M. Jotani
- Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
37
|
de Santana TI, Barbosa MDO, Gomes PATDM, da Cruz ACN, da Silva TG, Leite ACL. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur J Med Chem 2017; 144:874-886. [PMID: 29329071 DOI: 10.1016/j.ejmech.2017.12.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
Thiazole derivatives are recognized to possess various biological activities as antiparasitic, antifungal, antimicrobial and antiproliferative. The present work reports the synthesis of 22 new substances belonging to two classes of compounds: thiosemicarbazones and thiazoles, with the purpose of developing new drugs that present high specificity for tumor cells and low toxicity to the organism. A cytotoxic screening was performed to evaluate the performance of the new derivatives in five tumor cell lines. Eight compounds were shown to be promising in at least three tumor cell lines. These compounds had their IC50 determined within 72 h and the activity structure ratio was assessed. The effect of the best compounds on PBMC and hemolytic activity assay was then evaluated. The compound 1d was considered the most promising among the samples tested and its influence on cell cycle, DNA fragmentation and mitochondrial depolarization was evaluated.
Collapse
Affiliation(s)
- Temístocles Italo de Santana
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Miria de Oliveira Barbosa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
38
|
Gonçalves AC, Carneiro ZA, Oliveira CG, Danuello A, Guerra W, Oliveira RJ, Ferreira FB, Veloso-Silva LL, Batista FA, Borges JC, de Albuquerque S, Deflon VM, Maia PI. Pt II , Pd II and Au III complexes with a thiosemicarbazone derived from diacethylmonooxime: Structural analysis, trypanocidal activity, cytotoxicity and first insight into the antiparasitic mechanism of action. Eur J Med Chem 2017; 141:615-631. [DOI: 10.1016/j.ejmech.2017.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
39
|
Effects of polar substituents on the biological activity of thiosemicarbazone metal complexes. J Inorg Biochem 2017; 179:60-70. [PMID: 29175629 DOI: 10.1016/j.jinorgbio.2017.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 11/23/2022]
Abstract
In this paper, citronellal, vanillin and pyridoxal thiosemicarbazones were modified with polar substituents, namely ethylmorpholine and glucose, to increase their polarity and compare the effects of these moieties on their biological activity. Altogether, nine ligands were synthesized and for each of them also their copper(II) and nickel(II) complexes were prepared and used for the biological tests. Eventually, assays on proliferation inhibition were conducted using leukemic cell line U937, already used as a model for previous citronellal thiosemicarbazone tests. Biological tests were also performed on solid tumor cell line HT29. From the first screenings, two of the metal complexes showed remarkable interesting properties, and, therefore, were also tested for histosensitivity.
Collapse
|
40
|
Li D, Luong TTM, Dan WJ, Ren Y, Nien HX, Zhang AL, Gao JM. Natural products as sources of new fungicides (IV): Synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase. Bioorg Med Chem 2017; 26:386-393. [PMID: 29248352 DOI: 10.1016/j.bmc.2017.10.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27 μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba.
Collapse
Affiliation(s)
- Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Tuong Thi Mai Luong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Institute of Scientific Research and Technological Development, Thu Dau Mot University, Binh Duong, Viet Nam
| | - Wen-Jia Dan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hoang Xuan Nien
- Institute of Scientific Research and Technological Development, Thu Dau Mot University, Binh Duong, Viet Nam
| | - An-Ling Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
41
|
de Oliveira Filho GB, Cardoso MVDO, Espíndola JWP, Oliveira E Silva DA, Ferreira RS, Coelho PL, Anjos PSD, Santos EDS, Meira CS, Moreira DRM, Soares MBP, Leite ACL. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem 2017; 141:346-361. [PMID: 29031078 DOI: 10.1016/j.ejmech.2017.09.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Chagas disease is one of the most significant health problems in the American continent. benznidazole (BDZ) and nifurtimox (NFX) are the only drugs approved for treatment and exhibit strong side effects and ineffectiveness in the chronic stage, besides different susceptibility among T. cruzi DTUs (Discrete Typing Units). Therefore, new drugs to treat this disease are necessary. Thiazole compounds have been described as potent trypanocidal agents. Here we report the structural planning, synthesis and anti-T. cruzi evaluation of a new series of 1,3-thiazoles (7-28), which were designed by placing this heterocycle instead of thiazolidin-4-one ring. The synthesis was conducted in an ultrasonic bath with 2-propanol as solvent at room temperature. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity. In some cases, methyl at position 5 of the thiazole (compounds 9, 12 and 23) increased trypanocidal property. The exchange of phenyl for pyridinyl heterocycle resulted in increased activity, giving rise to the most potent compound against the trypomasigote form (14, IC50trypo = 0.37 μM). Importantly, these new thiazoles were toxic for trypomastigotes without affecting macrophages and cardiomyoblast viability. The compounds were also evaluated against cruzain, and five of the most active compounds against trypomastigotes (7, 9, 12, 16 and 23) inhibited more than 70% of enzymatic activity at 10 μM, among which compound 7 had an IC50 in the submicromolar range, suggesting a possible mechanism of action. In addition, examination of T. cruzi cell death showed that compound 14 induces apoptosis. We also examined the activity against intracellular parasites, revealing that compound 14 inhibited T. cruzi infection with potency similar to benznidazole. The antiparasitic effect of 14 and benznidazole in combination was also investigated against trypomastigotes and revealed that they have synergistic effects, showing a promising profile for drug combination. Finally, in mice acutely-infected with T. cruzi,14 treatment significanty reduced the blood parasitaemia and had a protective effect on mortality. In conclusion, we report the identification of compounds (7), (12), (15), (23) and (26) with similar trypanocidal activity of benznidazole; compounds (9) and (21) as trypanocidal agents equipotent with BDZ, and compound 14 with potency 28 times better than the reference drug without affecting macrophages and cardiomyoblast viability. Mechanistically, the compounds inhibit cruzain, and 14 induces T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.
Collapse
Affiliation(s)
- Gevanio Bezerra de Oliveira Filho
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil; Faculdade de Integração do Sertão - FIS, Rua João Luiz de Melo, 2110, COHAB, Serra Talhada, PE, Brazil.
| | | | - José Wanderlan Pontes Espíndola
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Dayane Albuquerque Oliveira E Silva
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Pollyanne Lacerda Coelho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil
| | | | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40296-710, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil
| | - Ana Cristina Lima Leite
- Laboratório de Planejamento em Química Medicinal - LpQM, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco - UFPE, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
42
|
da Silva EB, Oliveira E Silva DA, Oliveira AR, da Silva Mendes CH, Dos Santos TAR, da Silva AC, de Castro MCA, Ferreira RS, Moreira DRM, Cardoso MVDO, de Simone CA, Pereira VRA, Leite ACL. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur J Med Chem 2017; 130:39-50. [PMID: 28242550 DOI: 10.1016/j.ejmech.2017.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Chagas disease, caused by the kinetoplastid protozoan parasite Trypanosoma cruzi, remains a relevant cause of illness and premature death and it is estimated that 6 million to 7 million people are infected worldwide. Although chemotherapy options are limited presenting serious problems, such as low efficacy and high toxicity. T. cruzi is susceptible to thiazoles, making this class of compounds appealing for drug development. Previously, thiazoles resulted in an increase in anti-T. cruzi activity in comparison to thiosemicarbazones. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new thiazoles derivatives (3a-m and 4a-m), designed from molecular hybridization associated with non-classical bioisosterism. By varying substituents attached to the phenyl and thiazole rings, substituents were observed to retain, enhance or greatly increase their anti-T. cruzi activity, in comparison to the corresponding thiosemicarbazones. In most cases, electron-withdrawing substituents, such as bromine, 3,4-dichloro and nitro groups, greatly increased antiparasitic activity. Specifically, new thiazoles were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting macrophages viability. These compounds were also evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these molecules induce apoptosis. In conclusion, except for compounds 3h and 3k, all thiazoles derivatives evaluated exhibited higher cytotoxic activity against the trypomastigote forms than the reference medicament benznidazole, without affecting macrophages viability. Compounds 4d and 4k were highlights, CC50 = 1.2 e 1.6 μM, respectively. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process, being considered a good starting point for the development of new anti-Chagas drug candidates.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carlos Henrique da Silva Mendes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Maria Carolina Acioly de Castro
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil; Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Carlos Alberto de Simone
- Departamento de Física e Informática, Instituto de Física, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
43
|
Pacca CC, Marques RE, Espindola JWP, Filho GBOO, Leite ACL, Teixeira MM, Nogueira ML. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus. Biomed Pharmacother 2017; 87:381-387. [PMID: 28068627 DOI: 10.1016/j.biopha.2016.12.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication.
Collapse
Affiliation(s)
- Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitarias, Faculdade de Medicina de São José do Rio Preto - FAMERP, 15090-000, São José do Rio Preto, SP, Brazil; Faceres Medical School, 15090-305, São José do Rio Preto, SP, Brazil
| | - Rafael Elias Marques
- Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - José Wanderlan P Espindola
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Gevânio B O Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Mauricio L Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitarias, Faculdade de Medicina de São José do Rio Preto - FAMERP, 15090-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
44
|
Salerno A, Celentano AM, López J, Lara V, Gaozza C, Balcazar DE, Carrillo C, Frank FM, Blanco MM. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity. Eur J Med Chem 2017; 125:327-334. [DOI: 10.1016/j.ejmech.2016.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
|
45
|
de Moraes Gomes PAT, de Oliveira Barbosa M, Farias Santiago E, de Oliveira Cardoso MV, Capistrano Costa NT, Hernandes MZ, Moreira DRM, da Silva AC, Dos Santos TAR, Pereira VRA, Brayner Dos Santosd FA, do Nascimento Pereira GA, Ferreira RS, Leite ACL. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur J Med Chem 2016; 121:387-398. [PMID: 27295485 DOI: 10.1016/j.ejmech.2016.05.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/05/2016] [Accepted: 05/22/2016] [Indexed: 12/27/2022]
Abstract
In previous studies, the compound 3-(bromopropiophenone) thiosemicarbazone was described as a potent anti-Trypanosoma cruzi and cruzain inhibitor. In view to optimize this activity, 1,3-thiazole core was used as building-block strategy to access new lead generation of anti T. cruzi agents. In this way a series of thiazole derivatives were synthesized and most of these derivatives exhibited antiparasitic activity similar to benznidazole (Bzd). Among them, compounds (1c) and (1g) presented better selective index (SI) than Bzd. In addition, compounds showed inhibitory activity against the cruzain protease. As observed by electron microscopy, compound (1c) treatment caused irreversible and specific morphological changes on ultrastructure organization of T. cruzi, demonstrating that this class of compounds is killing parasites.
Collapse
Affiliation(s)
| | - Miria de Oliveira Barbosa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Edna Farias Santiago
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Natáli Tereza Capistrano Costa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Aline Caroline da Silva
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, CEP 50670-420, Recife, PE, Brazil
| | | | | | | | - Glaécia Aparecida do Nascimento Pereira
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
46
|
Costa LB, Cardoso MVDO, de Oliveira Filho GB, de Moraes Gomes PAT, Espíndola JWP, de Jesus Silva TG, Torres PHM, Silva FP, Martin J, de Figueiredo RCBQ, Leite ACL. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg Med Chem 2016; 24:1608-18. [DOI: 10.1016/j.bmc.2016.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
47
|
Gomes PATDM, Oliveira AR, Cardoso MVDO, Santiago EDF, Barbosa MDO, de Siqueira LRP, Moreira DRM, Bastos TM, Brayner FA, Soares MBP, Mendes APDO, de Castro MCAB, Pereira VRA, Leite ACL. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur J Med Chem 2016; 111:46-57. [DOI: 10.1016/j.ejmech.2016.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
|
48
|
de Oliveira Filho GB, de Oliveira Cardoso MV, Espíndola JWP, Ferreira LFGR, de Simone CA, Ferreira RS, Coelho PL, Meira CS, Magalhaes Moreira DR, Soares MBP, Lima Leite AC. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg Med Chem 2015; 23:7478-86. [DOI: 10.1016/j.bmc.2015.10.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/20/2015] [Accepted: 10/31/2015] [Indexed: 01/03/2023]
|