1
|
Siddiq HA, Imam MA, Alsharif ST, Attar RMS, Almughathawi R, Alshammari NM, Halawani NM, El-Metwaly NM. Synthesis of New Thiazole-Pyrazole Analogues: Molecular Modelling, Antiproliferative/Antiviral Activities, and ADME Studies. Chem Biol Drug Des 2025; 105:e70090. [PMID: 40087811 DOI: 10.1111/cbdd.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Twelve thiazole-pyrazole analogues 4, 6, and 8 were synthesized by introducing various pyrazole systems into the core, 2-((4-acetylphenyl)amino)-4-methylthiazole (2), through many synthetic approaches. The density functional theory (DFT) study of the synthesized analogues revealed coincided configurations of their highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), except for the nitro derivatives, in which the intramolecular charge-transfer (CT) may be denoted as π → π* and n → π*. In addition, the in vitro antiproliferative efficacy towards some cancer cell lines was examined (Panc-1, HT-29, MCF-7) and the non-cancerous (WI-38), using Dasatinib (Reference). The analogues 4c and 4d demonstrated the most potent anticancer effect, particularly against Panc-1 and MCF-7 cells. Moreover, the antiviral activity against H5N1, using a plaque reduction assay, showed that analogue 6a exhibited the most potent antiviral activity (100% inhibition and TC50 = 61 μg/μL), comparable to the reference drug amantadine (TC50 = 72 μg/μL, 100% inhibition). Furthermore, the molecular docking disclosed that the analogues exhibited a range of interactions, such as H-bonding and π-π stacking, with binding affinities between -4.8558 and - 8.3673 kcal/mol. Additionally, the SwissADME predictions indicated that the synthesized analogues possess promising drug-like characteristics, but analogues 4a-d and 8c demonstrated inadequate solubility and bioavailability, which restricts their use as viable oral medications.
Collapse
Affiliation(s)
- Hind A Siddiq
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohammed A Imam
- Department of Medical Microbiology and Parasitology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Shaker T Alsharif
- Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Roba M S Attar
- Department of Biological Sciences/Microbiology, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Renad Almughathawi
- Department of Physics, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Nadiyah M Alshammari
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Nuha M Halawani
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Aggarwal R, Sharma S, Jain N, Sanz D, Claramunt RM, Delgado P, Torralba MC. Reaction of unsymmetrical α-bromo-1,3-diketones with N-substituted thioureas: regioselective access to 2-( N-arylamino)-5-acyl-4-methylthiazoles and/or rearranged 2-( N-acylimino)-3- N-aryl-4-methylthiazoles. RSC Adv 2024; 14:35585-35600. [PMID: 39524089 PMCID: PMC11544347 DOI: 10.1039/d4ra05436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
The present study reports some fascinating results of Hantzsch's [3 + 2] cyclic condensation of α-bromo-1,3-diketones, a tri-electrophilic synthon generated in situ by bromination of 1,3-diketones using the mild brominating reagent NBS with trinucleophilic N-substituted thioureas. Interestingly, out of a total of 20 combinations, 10 resulted in the exclusive formation of the desired 2-(N-arylamino)-5-acyl-4-methylthiazoles regioselectively, seven led to the formation of unexpected 2-(N-acylimino)-3-N-aryl-4-methylthiazoles through an interesting C-N acyl migration, and three furnished a mixture consisting of both products. The regioselectivity pattern of the two products may be attributed to a greater electrophilicity of the carbonyl carbon of the acetyl group than that of the acyl group towards both nitrogens of thiourea. The structures of the thiazole derivatives were unambiguously assigned using 1H-NMR, 13C-NMR, and rigorous heteronuclear 2D-NMR [(1H-13C) HMQC and (1H-13C) HMBC] spectroscopic techniques. The outcomes of the spectroscopic experiments were further concurred through X-ray crystallographic studies, and a plausible mechanism for acyl migration was proposed for the formation of the unexpected rearranged product.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
- CSIR-National Institute of Science Communication and Policy Research New Delhi India +91 9896740740
| | - Shilpa Sharma
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana India
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED Avenida Esparta s/n, Las Rozas E-28232 Madrid Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, UNED Avenida Esparta s/n, Las Rozas E-28232 Madrid Spain
| | - Patricia Delgado
- Unidad de Difracción de Rayos X - CAI de Técnicas Químicas, Facultad de Ciencias Químicas, UCM E-28040 Madrid Spain
| | - M Carmen Torralba
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, UCM E-28040 Madrid Spain
| |
Collapse
|
3
|
Yadav S, Vashisth C, Chaudhri V, Singh K, Raghav N, Pundeer R. Development of potential cathepsin B inhibitors: Synthesis of new bithiazole derivatives, in vitro studies supported with theoretical docking studies. Int J Biol Macromol 2024; 281:136290. [PMID: 39383913 DOI: 10.1016/j.ijbiomac.2024.136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Cysteine cathepsins play a crucial role in cancer, inflammation, and the regulation of degenerative processes such as apoptosis, making them significant targets in drug development. In this study, we designed, synthesized, and characterized sixteen novel bi-thiazole derivatives, confirmed by 1H NMR, 13C NMR, HRMS, and X-ray analysis, which demonstrated significant therapeutic potential as inhibitors of cathepsin B. The synthesized thiazoles showed % inhibition in the range of 59.11-77.32, out of which bis-methoxyphenyl derivative 8k showed the highest inhibition of 77.32 % with IC50 and ki values of 1.04 nM and 0.52 nM, respectively. Methoxy-containing derivatives 8c, 8g, 8i, 8j, 8l, and 8o showed improved inhibition over methyl and chloro. In silico studies of the new bis-thiazole compounds at cathepsin B active sites supported the in vitro findings, indicating that the synthesized bis-thiazole esters are promising therapeutic candidates for conditions involving elevated cathepsin B levels.
Collapse
Affiliation(s)
- Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Vishwas Chaudhri
- Department of Chemistry, JC Bose University of Science & Technology YMCA, Faridabad, India
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India.
| |
Collapse
|
4
|
Kazmi MT, Amir M, Iqbal MA, Rashid M, Husain A. Thiazolobenzamide-Naphthalene Hybrids as Potent Anticancer agents compared to Doxorubicin: Design, Synthesis, SAR, In-silico and Toxicity Analysis. Chem Biodivers 2024; 21:e202301662. [PMID: 38086017 DOI: 10.1002/cbdv.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
In order to determine whether thiazolobenzamide molecules connected to naphthalene could inhibit the growth of three different tumor cell lines, MCF7 (breast carcinoma), A549 (pulmonary carcinoma), and DU145 (prostatic adenocarcinoma) a novel series of ten molecules, designated TA 1-10, was designed, synthesized, and tested. Among these compounds, TA7 showed promising results against cell lines, especially showing exceptional efficacy against breast cancer. Antioxidant activity tests consistently showed the best performance from the TA7 molecule. Furthermore, when a dose of 50 to 500 mg/kg of the total mass of rats is given, the most effective chemical, TA7, did not exhibit any harmful effects during acute oral toxicity tests. The biochemical indicators (SGOT and SGPT) for hepatotoxicity associated with compound TA7 were found to be fairly similar to those of the control group. The findings from molecular docking, XP visualization, and MM-GBSA dG binding investigations are in agreement with the outcomes of in-vitro tests of antioxidant and anticancer capabilities. TA7 was the most effective compound among those that were docked; it bound free energy and had adequate properties for metabolism (biochemical processes), distribution (dispersion), absorption (assimilation), and excretion (elimination). This study found that the TA7 molecule, a thiazole ring system derivative connected to naphthalene, is to be a promising and possible anticancer agent and its efficacy may be further explored in clinical studies.
Collapse
Affiliation(s)
- Mohammad Taha Kazmi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Mohd Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Md Azhar Iqbal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Al-Qassim, Saudi Arabia
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110 062, India
| |
Collapse
|
5
|
Mehmood H, Akhtar T, Haroon M, Shah M, Rashid U, Woodward S. Synthesis of hydrazinylthiazole carboxylates: a mechanistic approach for treatment of diabetes and its complications. Future Med Chem 2023; 15:1149-1165. [PMID: 37551660 DOI: 10.4155/fmc-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The deaths of thousands of people and millions affected by diabetes mellitus triggered us to look for alternative possible solutions to cure diabetes and its complications. Materials & methods: A series of hydrazinylthiazole carboxylates (3a-n) was prepared by cyclocondensation reaction of thiosemicarbazones with ethyl 2-chloroacetoacetate. These compounds were screened for antidiabetic potential through α-amylase inhibition, antiglycation and antioxidant assays. Results & conclusion: Most of the compounds exhibited a promising antidiabetic property. Compounds 3e and 3h showed excellent α-amylase and glycation inhibition properties. The hemolytic assay indicated that all compounds are biocompatible. Docking studies carried out on α-amylase target showed correlation between in vitro inhibition and binding energy.
Collapse
Affiliation(s)
- Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
- Department of Chemistry & Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Muhammad Shah
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Umer Rashid
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Simon Woodward
- GSK, Carbon Neutral Laboratories for Sustainable Chemistry, University Park Nottingham, NG7 2RD, UK
| |
Collapse
|
6
|
Abd El Salam HA, Fathy U, Zayed EM, El Shehry MF, Ahmed E.Gouda A. Design, Synthesis, Cytotoxic Activity and Molecular Docking Studies of Naphthyl Pyrazolyl Thiazole Derivatives as Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202203956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hayam A. Abd El Salam
- Green Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | - Usama Fathy
- Applied Organic Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt Corresponding Author
| | - Ehab M. Zayed
- Green Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | - Mohamed F. El Shehry
- Pesticide Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | | |
Collapse
|
7
|
Palabindela R, Guda R, Ramesh G, Myadaraveni P, Banothu D, Ravi G, Korra R, Mekala H, Kasula M. Novel tryptanthrin hybrids bearing aminothiazoles as potential
EGFR
inhibitors: Design, synthesis, biological screening, molecular docking studies and
ADME
/T Predictions. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ramu Guda
- Advanced Centre of Research in High Energy Materials (ACRHEM) University of Hyderabad Hyderabad Telangana India
| | - Gondru Ramesh
- Environmental Monitoring & Exposure Assessment (Air) Laboratory ICMR−NIREH Bhopal Madhya Pradesh India
| | | | - Devendar Banothu
- Department of Chemistry Kakatiya University Warangal Telangana India
| | - Gangalla Ravi
- Department of Microbiology Kakatiya University Warangal Telangana India
| | - Rajashekar Korra
- Department of Chemistry Kakatiya University Warangal Telangana India
| | - Himabindu Mekala
- Department of Chemistry Kakatiya University Warangal Telangana India
| | - Mamatha Kasula
- Department of Chemistry Kakatiya University Warangal Telangana India
| |
Collapse
|
8
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
9
|
|
10
|
Velluti F, Acevedo A, Serra G, Ellena J, Borthagaray G, Facchin G, Scarone L, Alvarez N, Torre MH. Novel bisthiazole ligand and its copper(II) complex with unusual seven membered ring: Synthesis, characterization, experimental and theoretical study of the effect of ligand flexibility, and antimicrobial activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Strzyga-Łach P, Chrzanowska A, Podsadni K, Bielenica A. Investigation of the Mechanisms of Cytotoxic Activity of 1,3-Disubstituted Thiourea Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14111097. [PMID: 34832881 PMCID: PMC8623398 DOI: 10.3390/ph14111097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Substituted thiourea derivatives possess confirmed cytotoxic activity towards cancer but also normal cells. To develop new selective antitumor agents, a series of 3-(trifluoromethyl)phenylthiourea analogs were synthesized, and their cytotoxicity was evaluated in vitro against the cell line panel. Compounds 1-5, 8, and 9 were highly cytotoxic against human colon (SW480, SW620) and prostate (PC3) cancer cells, and leukemia K-562 cell lines (IC50 ≤ 10 µM), with favorable selectivity over normal HaCaT cells. The derivatives exerted better growth inhibitory profiles towards selected tumor cells than the reference cisplatin. Compounds incorporating 3,4-dichloro- (2) and 4-CF3-phenyl (8) substituents displayed the highest activity (IC50 from 1.5 to 8.9 µM). The mechanisms of cytotoxic action of the most effective thioureas 1-3, 8, and 9 were studied, including the trypan blue exclusion test of cell viability, interleukin-6, and apoptosis assessments. Compounds reduced all cancerous cell numbers (especially SW480 and SW620) by 20-93%. Derivatives 2 and 8 diminished the viability of SW620 cells by 45-58%. Thioureas 1, 2, and 8 exerted strong pro-apoptotic activity. Compound 2 induced late apoptosis in both colon cancer cell lines (95-99%) and in K-562 cells (73%). All derivatives acted as inhibitors of IL-6 levels in both SW480 and SW620 cells, decreasing its secretion by 23-63%.
Collapse
Affiliation(s)
| | | | | | - Anna Bielenica
- Correspondence: ; Tel.: +(48)-022-572-06-93; Fax: +(48)-022-572-06-79
| |
Collapse
|
12
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
13
|
Yin L, Zhang M, He T. Design and development of novel thiazole-sulfonamide derivatives as a protective agent against diabetic cataract in Wistar rats via inhibition of aldose reductase. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In recent years, ALR2 (aldose reductase) inhibitors have attracted attention for their effective ability to reduce the progression of diabetes-associated cataracts. Therefore, in the present article, we intended to develop novel thiazole-sulfonamide hybrids as a potent inhibitor of ALR2. These molecules significantly inhibited the ALR2 level in the rat lenses homogenate, where the most potent compound 7b showed activity comparable to sorbinil as standard. In Wistar rats, compound 7b improved the insulin level and body weight of the experimental animal together with a reduction in the glucose output. Compound 7b showed a significant reduction in the expression of ALR2 in rat lenses in western blot analysis.
Collapse
Affiliation(s)
- Liang Yin
- Department of Ophthalmology, General Hospital of the Tianjin Medical University, Tianjin Medical University, Heping District , Tianjin City , 300014 , China
| | - Mingxue Zhang
- Department of Ophthalmology, General Hospital of the Tianjin Medical University, Tianjin Medical University, Heping District , Tianjin City , 300014 , China
| | - Tiangeng He
- Department of Ophthalmology, General Hospital of the Tianjin Medical University, Tianjin Medical University, Heping District , Tianjin City , 300014 , China
| |
Collapse
|
14
|
Ibrahim SA, Fayed EA, Rizk HF, Desouky SE, Ragab A. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorg Chem 2021; 116:105339. [PMID: 34530234 DOI: 10.1016/j.bioorg.2021.105339] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Microbial resistance is a big concern worldwide, making the development of new antimicrobial drugs difficult. The thiazole and pyrazole rings are important heterocyclic compounds utilized to produce a variety of antimicrobial medications. As a result, a series of new bis-thiazolyl-pyrazole derivatives 3, 4a-c, 5a, b, and 6a-c was synthesized by reacting bis hydrazonoyl bromide with several active methylene reagents in a one-pot reaction. The assigned structure was characterized entirely based on elemental and spectral analyses. The antimicrobial activity represented by MIC was performed using a resazurin-based turbidimetric (TB) assay. The results exhibited good antimicrobial activity against gram-positive strains, especially S. aureus (ATCC6538) while showing poor to moderate activity against gram-negative and fungal strains. Furthermore, the most active derivatives 3, 4a, 4c, and 5b were evaluated for MIC, MBC, antibiofilm, hemolytic assay, and drug combination testing against two S. aureus (ATCC6538) and MRSA (ACL18) strains. Additionally, bis-thiazolyl pyrazole 3, 4c, and 5b exhibited more potent inhibitory activity for DHFR with IC50 values (6.34 ± 0.26, 7.49 ± 0.28, and 3.81 ± 0.16 µM), respectively, compared with Trimethoprim (8.34 ± 0.11 µM). The bis-1-(substituted-thiazol-2-yl)-1H-pyrazole-4-carbonitrile derivative 5b was the most active member with MIC values ranging from (0.12-0.25 µM) compared to Vancomycin (1-2 µM), and MBC values ranging from (0.5-1 µM) for S. aureus (ATCC6538) and MRSA (ACL18). Surprisingly, compound 5b displayed bactericidal behavior, synergistic effect with three commercial antibiotics, and inhibited DHFR with 2.1 folds higher than Trimethoprim. Finally, good findings were obtained from in silico investigations incorporating toxicity prediction and molecular docking simulation.
Collapse
Affiliation(s)
- Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Hala F Rizk
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Said E Desouky
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
15
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
16
|
Dawood KM, Raslan MA, Abbas AA, Mohamed BE, Abdellattif MH, Nafie MS, Hassan MK. Novel Bis-Thiazole Derivatives: Synthesis and Potential Cytotoxic Activity Through Apoptosis With Molecular Docking Approaches. Front Chem 2021; 9:694870. [PMID: 34458233 PMCID: PMC8397418 DOI: 10.3389/fchem.2021.694870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
A series of bis-thiazoles 5a-g were synthesized from bis-thiosemicarbazone 3 with hydrazonoyl chlorides 4a-g. Reaction of 3 with two equivalents of α-halocarbonyl compounds 6-8, 10, and 12a-d afforded the corresponding bis-thiazolidines 9, 11, and 13a-d, respectively. Condensation of bis-thiazolidin-4-one 9 with different aromatic aldehydes furnished bis-thiazolidin-4-ones 14a-d. Compounds 5a-g, 9, and 13a,c,d were screened in vitro for their cytotoxic activities in a panel of cancer cell lines. Compounds 5a-c, 5f-g, and 9 exhibited remarkable cytotoxic activities, especially compound 5c with potent IC50 value 0.6 nM (against cervical cancer, Hela cell line) and compound 5f with high IC50 value 6 nM (against ovarian cancer, KF-28 cell line). Compound 5f-induced appreciated apoptotic cell death was measured as 82.76% associated with cell cycle arrest at the G1 phase. The apoptotic pathways activated in KF-28 cells treated with 5a, 5b, and 5f were further investigated. The upregulation of some pro-apoptotic genes, bax and puma, and the downregulation of some anti-apoptotic genes including the Bcl-2 gene were observed, indicating activation of the mitochondrial-dependent apoptosis. Together with the molecular docking studies of compounds 5a and 5b, our data revealed potential Pim-1 kinase inhibition through their high binding affinities indicated by inhibition of phosphorylated C-myc as a downstream target for Pim-1 kinase. Our study introduces a set of bis-thiazoles with potent anti-cancer activities, in vitro.
Collapse
Affiliation(s)
- Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A. Raslan
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | - Ashraf A. Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Belal E. Mohamed
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed K. Hassan
- Biotechnology Program, Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt
| |
Collapse
|
17
|
Oliveira AR, Dos Santos FA, Ferreira LPDL, Pitta MGDR, Silva MVDO, Cardoso MVDO, Pinto AF, Marchand P, de Melo Rêgo MJB, Leite ACL. Synthesis, anticancer activity and mechanism of action of new phthalimido-1,3-thiazole derivatives. Chem Biol Interact 2021; 347:109597. [PMID: 34303695 DOI: 10.1016/j.cbi.2021.109597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
In this work, 22 new compounds were obtained and evaluated for their cytotoxic activity on peripheral blood mononuclear cells (PBMC) and eight different tumor cell lines. All compounds displayed IC50 values above 100 μM when assayed against PBMCs. The cytotoxic assays in tumor cell lines revealed that sub-series of phthalimido-bis-1,3-thiazoles (5a-f) exhibited the best anti-tumor activity profile, presenting viability values below 59 %. As a result, the IC50 value was calculated for compounds 5a-f and 4c, and compounds 5b and 5e were selected for further assays due to their best IC50s. Considering the results presented by the sub-series 5a-f, the importance of the 1,3-thiazole ring in improving the anti-tumor activity was pointed out. Together, the results highlighted the anti-tumor activity of phthalimido-bis-1,3-thiazole derivatives.
Collapse
Affiliation(s)
- Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Flaviana Alves Dos Santos
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Larissa Pelágia de Lima Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | | | | | - Aline Ferreira Pinto
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil.
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
18
|
Daoui O, Elkhattabi S, Chtita S, Elkhalabi R, Zgou H, Benjelloun AT. QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon 2021; 7:e07463. [PMID: 34296007 PMCID: PMC8282965 DOI: 10.1016/j.heliyon.2021.e07463] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 02/09/2023] Open
Abstract
A quantitative structure-activity relationship (QSAR) study is performed on 48 novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2 derivatives as anticancer agents capable of inhibiting c-Met receptor tyrosine kinase. The present study is conducted using multiple linear regression, multiple nonlinear regression and artificial neural networks. Three QSAR models are developed after partitioning the database into two sets (training and test) via the k-means method. The obtained values of the correlation coefficients by the three developed QSAR models are 0.90, 0.91 and 0.92, respectively. The resulting models are validated by using the external validation, leave-one-out cross-validation, Y-randomization test, and applicability domain methods. Moreover, we evaluated the drug-likeness properties of seven selected molecules based on their observed high activity to inhibit the c-Met receptor. The results of the evaluation showed that three of the seven compounds present drug-like characteristics. In order to identify the important active sites for the inhibition of the c-Met receptor responsible for the development of cancer cell lines, the crystallized form of the Crizotinib-c-Met complex (PDB code: 2WGJ) is used. These sites are used as references in the molecular docking test of the three selected molecules to identify the most suitable molecule for use as a new c-Met inhibitor. A comparative study is conducted based on the evaluation of the predicted properties of ADMET in silico between the candidate molecule and the Crizotinib inhibitor. The comparison results show that the selected molecule can be used as new anticancer drug candidates.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca P.O. Box 7955, Morocco
| | - Rachida Elkhalabi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Hsaine Zgou
- Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Agadir, Morocco
| | - Adil Touimi Benjelloun
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| |
Collapse
|
19
|
Guerrero-Pepinosa NY, Cardona-Trujillo MC, Garzón-Castaño SC, Veloza LA, Sepúlveda-Arias JC. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed Pharmacother 2021; 138:111495. [PMID: 33765586 DOI: 10.1016/j.biopha.2021.111495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Thiazole and oxazole are compounds with a heterocyclic nucleus that have attracted the attention of medicinal chemistry due to the great variety of biological activities that they enable. In recent years, their study has increased, finding a wide range of biological activities, including antifungal, antiparasitic, anti-inflammatory, and anticancer activities. This systematic review provides evidence from the literature on the antiproliferative and antitumor activities of thiazole and oxazole and their derivatives from 2014 to April 2020. Three bibliographical databases were consulted (PubMed, Web of Science, and Scopus), and a total of 32 studies were included in this paper based on our eligibility criteria. The analysis of the activity-structure relationship allows us to conclude that most of the promising compounds identified contained thiazole nuclei or derivatives.
Collapse
Affiliation(s)
- Nancy Y Guerrero-Pepinosa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - María C Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Sandra C Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
20
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
21
|
Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Moghaddam‐manesh M, Beyzaei H, Heidari Majd M, Hosseinzadegan S, Ghazvini K. Investigation and comparison of biological effects of regioselectively synthesized thiazole derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mohammadreza Moghaddam‐manesh
- General Bureau of Standard Sistan and Baluchestan Province Iranian National Standards Organization Zahedan Iran
- Noncommunicable Diseases Research Center Bam University of Medical Sciences Bam Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy Zabol University of Medical Sciences Zabol Iran
| | - Sara Hosseinzadegan
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Kiarash Ghazvini
- Department of of Mycobacteriology, Ghaem Hospital Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
23
|
Sanad SMH, Mekky AEM, El-Reedy AAM. Tandem synthesis and antibacterial screening of novel thieno[2,3- b]thiophene-linked bis(thiazole) hybrids. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1918170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A. M. El-Reedy
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
24
|
Bhagat DS, Chawla PA, Gurnule WB, Shejul SK, Bumbrah GS. An Insight into Synthesis and Anticancer Potential of Thiazole and 4-thiazolidinone Containing Motifs. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210101234704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, the branch of oncology has reached a mature stage, and substantial
development and advancement have been achieved in this dimension of medical science. The
synthesis and isolation of numerous novel anticancer agents of natural and synthetic origins
have been reported. Thiazole and 4-thiazolidinone containing heterocyclic compounds, having
a broad spectrum of pharmaceutical activities, represent a significant class of medicinal
chemistry. Thiazole and 4-thiazolidinone are five-membered unique heterocyclic motifs containing
S and N atoms as an essential core scaffold and have commendable medicinal significance.
Thiazoles and 4-thiazolidinones containing heterocyclic compounds are used as building
blocks for the next generation of pharmaceuticals. Thiazole precursors have been frequently
used due to their capabilities to bind to numerous cancer-specific protein targets.
Suitably, thiazole motifs have a biological suit via inhibition of different signaling pathways involved in cancer
causes. The scientific community has always tried to synthesize novel thiazole-based heterocycles by carrying out
different replacements of functional groups or skeleton around thiazole moiety. Herein, we report the current trend of
research and development in anticancer activities of thiazoles and 4-thiazolidinones containing scaffolds. In the current
study, we have also highlighted some other significant biological properties of thiazole, novel protocols of synthesis
for the synthesis of the new candidates, along with a significant broad spectrum of the anticancer activities of
thiazole containing scaffolds. This study facilitates the development of novel thiazole and 4-thiazolidinone containing
candidates with potent, efficient anticancer activity and less cytotoxic property.
Collapse
Affiliation(s)
- Devidas S. Bhagat
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad 431 004, (MS), India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Wasudeo B. Gurnule
- Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur-440024, (MS), India
| | - Sampada K. Shejul
- Department of Life Science, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431 001, (MS), India
| | - Gurvinder S. Bumbrah
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University, 122413, Haryana, India
| |
Collapse
|
25
|
Evren AE, Yurttaş L, Ekselli B, Aksoy O, Akalin-Çiftçi G. Design and Efficient Synthesis of Novel 4,5-Dimethylthiazole-Hydrazone Derivatives and their Anticancer Activity. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201022192937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background::
Recently, researchers have been warning about the increased mortality of
the various cancer types. Also, the lung adenocarcinoma and the glioma types are burning issues for
world's health due to late or wrong diagnosis and/or insufficient treatment methods. For this
purpose, our research group designed and synthesized novel 4,5-dimethyl thiazole-hydrazone
derivatives which were tested against cancer and normal cell lines to understand the structureactivity
relationship (SAR).
Method::
The lead compounds were obtained by reacting 2-(substituted aryl-2-ylmethylene)
hydrazin-1-carbothioamide with 3-chloro-2-butanone derivatives. The structural elucidation of the
compounds was performed by 1H-NMR, 13C-NMR, and LC/MS-IT-TOF spectral and elemental
analyses. The synthesized compounds were tested in vitro for the anticancer activity against A549
human lung adenocarcinoma and C6 rat glioma cells and investigated for which pathway to induce
cell death. Also, the docking study of the active compounds was achieved to understand the SAR.
Result and Discussion::
The targeted compounds (2a-2l) were synthesized successfully above 70% yields, and
the analysis findings proved their purity. In general, the results of activity studies displayed
significant effects against at least one cell line, except compounds 2e (indol-3-yl) and 2h
(4-dimethylaminophenyl). Furthermore, compounds 2b and 2f displayed potential anticancer
activity. With the help of molecular docking study, a potential selectivity of compound 2f was
observed for type II protein kinase. On the other hand, compound 2b interacted with the active site
nearly the same as Dasatinib. Therefore, these two compounds could be used as a base on
developing selective anticancer drugs.
Conclusion::
Pyridin-2-yl (2b) derivative was found to be a favorable molecule with high anticancer
potency against C6 and A549 cell lines. Additionally, 1-naphthyl (2f) derivative was a worthy
compound for potential selectivity. In future studies, it will be our priority to focus on developing
derivatives of these two compounds (2b and 2f) and elucidate their mechanisms.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,,Turkey
| | - Büşra Ekselli
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Onur Aksoy
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| | - Gülşen Akalin-Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,Turkey
| |
Collapse
|
26
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
27
|
Shi DH, Song MQ, Ma XD, Su JB, Wang J, Wang XJ, Liu YW, Liu WW, Si XX. Synthesis, characterization, crystal structures, and the biological evaluation of 2-phenylthiazole derivatives as cholinesterase inhibitors. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820976543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Four 2-phenylthiazole derivatives are synthesized, characterized, and evaluated as cholinesterase inhibitors. The structures of the 2-phenylthiazole derivatives are confirmed by 1H and 13C nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction studies, and Hirshfeld surfaces analysis. Hirshfeld surface analysis of the prepared compounds showed C–H···O intermolecular interactions. The cholinesterase inhibition activities of the synthesized compounds are tested by Ellman’s method. [2-(4-Benzyloxyphenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone showed the best acetylcholinesterase inhibition activity with an IC50 value of 8.86 µM and the best butyrylcholinesterase inhibition activity with an IC50 value of 1.03 µM. A docking study demonstrates that the same compound interacts with the catalytic anionic site and peripheral anionic site of acetylcholinesterase and the catalytic anionic site of butyrylcholinesterase.
Collapse
Affiliation(s)
- Da-Hua Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu ocean university/Jiangsu Key Laboratory of Marine Bioresources and environment, Jiangsu ocean university, Lianyungang, P.R. China
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang, P.R. China
| | - Meng-qiu Song
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Xiao-Dong Ma
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Jia-Bin Su
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Jing Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Xiu-Jun Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Yu-Wei Liu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Wei-Wei Liu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Xin-Xin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| |
Collapse
|
28
|
Affiliation(s)
- Sukinah H. Ali
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
29
|
Sirakanyan SN, Kartsev VG, Geronikaki A, Spinelli D, Petrou A, Hakobyan EK, Glamoclija J, Ivanov M, Sokovic M, Hovakimyan AA. Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1,3-thiazol-2-ylacetamides of Condensed Pyrido[3',2':4,5] furo(thieno)[3,2-d]pyrimidines. Curr Top Med Chem 2020; 20:2192-2209. [DOI: 10.2174/1568026620666200628145308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Background:
From the literature it is known that many derivatives of fused thienopyrimidines
and furopyrimidines possess broad spectrum of biological activity.
Objectives:
The current studies describe the synthesis and evaluation of antimicrobial activity of some
new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines.
Methods:
By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1with formamide
were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of
compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of
pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives
of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized.
Results:
All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m
showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active
compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Half of the
tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole.
The docking analysis provided useful information about the interactions occurring between the tested
compounds and the different enzymes.
Conclusion:
Gram-negative and Gram-positive bacteria and fungi showed different response towards
tested compounds, indicating that different substituents may lead to different modes of action or that the
metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.
Collapse
Affiliation(s)
- Samuel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| | | | - Athina Geronikaki
- Aristotle University of Thessaloniki, School of Pharmacy, Thessaloniki, 54124, Greece
| | - Domenico Spinelli
- Department of Chemistry G. Ciamician, Alma Mater Studiorum- Universita di Bologna, Via F. Selmi 2, Bologna 40126, Italy
| | - Anthi Petrou
- Aristotle University of Thessaloniki, School of Pharmacy, Thessaloniki, 54124, Greece
| | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| | - Jasmina Glamoclija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Manija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Marina Sokovic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of RA, 26 Azatutian Ave., Yerevan 0014, Armenia
| |
Collapse
|
30
|
Güngör EM, Altıntop MD, Sever B, Çiftçi GA. Design, Synthesis, In vitro and In silico Evaluation of New Hydrazonebased Antitumor Agents as Potent Akt Inhibitors. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200618163507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
Akt is overexpressed or activated in a variety of human cancers, including
gliomas, lung, breast, ovarian, gastric and pancreatic carcinomas. Akt inhibition leads to the induction
of apoptosis and inhibition of tumor growth and therefore extensive efforts have been devoted
to the discovery of potent antitumor drugs targeting Akt.
Objectives:
The objective of this work was to identify potent anticancer agents targeting Akt.
Methods:
New hydrazone derivatives were synthesized and investigated for their cytotoxic effects
on 5RP7 H-ras oncogene transformed rat embryonic fibroblast and L929 mouse embryonic fibroblast
cell lines. Besides, the apoptotic effects of the most active compounds on 5RP7 cell line were
evaluated using flow cytometry. Their Akt inhibitory effects were also investigated using a colorimetric
assay. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME)
studies were also performed using Schrödinger’s Maestro molecular modeling package.
Results and Discussion:
Compounds 3a, 3d, 3g and 3j were found to be effective on 5RP7 cells
(with IC50 values of <0.97, <0.97, 1.13±0.06 and <0.97 μg/mL, respectively) when compared with
cisplatin (IC50= 1.87±0.15 μg/mL). It was determined that these four compounds significantly induced
apoptosis in 5RP7 cell line. Among them, N'-benzylidene-2-[(4-(4-methoxyphenyl)pyrimidin-
2-yl)thio]acetohydrazide (3g) significantly inhibited Akt (IC50= 0.5±0.08 μg/mL) when compared
with GSK690693 (IC50= 0.6±0.05 μg/mL). Docking studies suggested that compound 3g showed
good affinity to the active site of Akt (PDB code: 2JDO). According to in silico ADME studies, the
compound also complies with Lipinski's rule of five and Jorgensen's rule of three.
Conclusion:
Compound 3g stands out as a potential orally bioavailable cytotoxic agent and apoptosis
inducer targeting Akt.
Collapse
Affiliation(s)
- Emine Merve Güngör
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
31
|
Karakaya S, Yilmaz SV, Özdemir Ö, Koca M, Pınar NM, Demirci B, Yıldırım K, Sytar O, Turkez H, Baser KHC. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1813212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University , Erzurum, Turkey
| | - Serdar Volkan Yilmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University , Erzurum, Turkey
| | - Özlem Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University , Erzurum, Turkey
| | - Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University , Erzurum, Turkey
| | - Nur Münevver Pınar
- Department of Biology, Faculty of Science, Ankara University , Ankara, Turkey
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University , Eskisehir, Turkey
| | - Kadir Yıldırım
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University , Erzurum, Turkey
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Kiev National University of Taras Shevchenko , Kyiv, Ukraine
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University , Erzurum, Turkey
| | - K. Hüsnü Can Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University , Nicosia, Northern Cyprus
| |
Collapse
|
32
|
Alvarez N, Velluti F, Guidali F, Serra G, Gabriela Kramer M, Ellena J, Facchin G, Scarone L, Torre MH. New BI and TRI-Thiazole copper (II) complexes in the search of new cytotoxic drugs against breast cancer cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Latif NAA, Abbas EMH, Farghaly TA, Awad HM. Synthesis, Characterization, and Anticancer Screening of Some
New Bithiazole Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020060202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Maccallini C, Arias F, Gallorini M, Amoia P, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L, Cataldi A, Camacho ME, Amoroso R. Antiglioma Activity of Aryl and Amido-Aryl Acetamidine Derivatives Targeting iNOS: Synthesis and Biological Evaluation. ACS Med Chem Lett 2020; 11:1470-1475. [PMID: 32676156 DOI: 10.1021/acsmedchemlett.0c00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is an important inflammation mediator with a recognized role in the development of different cancers. Gliomas are primary tumors of the central nervous system with poor prognosis, and the expression of the inducible nitric oxide synthase correlates with the degree of malignancy, changes in vascular reactivity, and neo-angiogenesis. Therefore, targeting the nitric oxide biosynthesis appears as a potential strategy to impair glioma progression. In the present work a set of aryl and amido-aryl acetamidine derivatives were synthesized to obtain new potent and selective inducible nitric oxide synthase inhibitors with improved physicochemical parameters with respect to the previously published molecules. Compound 17 emerged as the most promising inhibitor and was evaluated on C6 rat glioma cell line, showing antiproliferative effects and high selectivity over astrocytes.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Fabio Arias
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Pasquale Amoia
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - María Encarnación Camacho
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| |
Collapse
|
35
|
Raslan MA, Sayed SM. Synthesis of some new thiazolo[3,2‐
a
]pyridine,
bi‐thiazole‐thiazole
,
bi‐thiazole‐pyrazole
and
bi‐thiazole‐thiophene
derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. A. Raslan
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| | - S. M. Sayed
- Chemistry Department, Faculty of ScienceAswan University Aswan Egypt
| |
Collapse
|
36
|
Hossan ASM. Synthesis, modelling and molecular docking of new 5-arylazo-2-chloroacetamido thiazole derivatives as antioxidant agent. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Liao S, Rao X, Shen M, Si H, Song J, Shang S, Song Z. New Hybrids Derived from the Natural Compound (-)-β-Pinene and Amides or Acylthioureas as Antitumor Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181107094427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background:Plant-derived natural compounds have a unique molecular structure and rich biological activity, hence, they are treated as important raw materials for the development of drugs.Methods:A natural compound (-)-β-pinene was used as a raw material, and twenty-six novel derivatives with amide or acylthiourea groups were synthesized based on the molecular hybridization method. In vitro antitumor activity of these derivatives on human breast cancer cell line MCF7 and human colon cancer cell line SW1116 were tested by MTT method. The effects of the synthesized derivatives on the morphology of MCF7 and SW1116 were observed by fluorescent inverted microscope.Results:The preliminary structure-activity relationship analysis demonstrates that the position and species of substituents on the aromatic ring of derivatives have an effect on the antitumor activity of derivatives. Observation of the cell morphology reveals that derivatives with antitumor activity can lead to rounding of the cell morphology, a decrease in cell volume and cell density, and ultimately inhibition of the proliferation of MCF7 and SW1116 cells. The antitumor activity evaluation results show that among these derivatives, compounds 5c, 5e, 5h, 7c, 7b and 7e exhibit good antitumor activity against MCF7, and compounds 5c, 5e, 5h and 7j exert moderate antitumor activity against SW1116.Conclusion:This study hopes to promote the high value-added utilization of natural compounds β-pinene and the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Shengliang Liao
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| | - Xiaoping Rao
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| | - Minggui Shen
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| | - Hongyan Si
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, 303E Kearsley Street, Flint, MI 48502, United States
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, China Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu 210042, China
| |
Collapse
|
38
|
A novel metal-free synthesis of thiazole-substituted α-hydroxy carbonyl compounds and 2-alkenylthiazoles from thiazole N-oxides and olefins. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
El-Wakil MH, El-Yazbi AF, Ashour HM, Khalil MA, Ismail KA, Labouta IM. Discovery of a novel DNA binding agent via design and synthesis of new thiazole hybrids and fused 1,2,4-triazines as potential antitumor agents: Computational, spectrometric and in silico studies. Bioorg Chem 2019; 90:103089. [DOI: 10.1016/j.bioorg.2019.103089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
|
40
|
Aly AA, El-Sheref EM, Brown AB, Bräse S, Nieger M, Abdelhafez ESMN. New one-pot synthesis of 2-ylidenehydrazono-thiazoles. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1635132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University El-Minia, Egypt
| | | | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, USA
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki Helsinki, Finland
| | | |
Collapse
|
41
|
Tratrat C, Haroun M, Xenikakis I, Liaras K, Tsolaki E, Eleftheriou P, Petrou A, Aldhubiab B, Attimarad M, Venugopala KN, Harsha S, Elsewedy HS, Geronikaki A, Soković M. Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones. Curr Top Med Chem 2019; 19:356-375. [PMID: 30706816 DOI: 10.2174/1568026619666190129121933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiazole derivates as well as chalcones, are very important scaffold for medicinal chemistry. Literature survey revealed that they possess wide spectrum of biological activities among which are anti-inflammatory and antimicrobial. OBJECTIVES The current studies describe the synthesis and evaluation of antimicrobial activity of twenty eight novel thiazole-based chalcones. METHODS The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. RESULTS All compounds have shown antibacterial properties better than that of ampicillin and in many cases better than streptomycin. As far as the antifungal activity is concerned, all compounds possess much higher activity than reference drugs bifonazole and ketoconazole. The most sensitive bacterial species was B. cereus (MIC 6.5-28.4 µmol × 10-2/mL and MBC 14.2-105.0 µmol × 10-2/mL) while the most resistant ones were L. monocytogenes (MIC 21.4-113.6 µmol × 10-2/mL) and E. coli (MIC 10.7- 113.6 µmol × 10-2/mL) and MBC at 42.7-358.6 µmol × 10-2/mL and 21.4-247.2 µmol × 10-2/mL, respectively. All the compounds exhibited antibacterial activity against the three resistant strains, MRSA, P. aeruginosa and E.coli. with MIC and MBC in the range of 0.65-11.00 µmol/mL × 10-2 and 1.30-16.50 µmol/mL × 10-2. Docking studies were performed. CONCLUSION Twenty-eight novel thiazole-based chalcones were designed, synthesized and evaluated for antimicrobial activity. The results showed that these derivatives could be lead compounds in search of new potent antimicrobial agents. Docking studies indicated that DNA gyrase, GyrB and MurA inhibition may explain the antibacterial activity.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Iakovos Xenikakis
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Liaras
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Evangelia Tsolaki
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, 54700, Sindos, Thessaloniki, Greece
| | - Anthi Petrou
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Sree Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Athina Geronikaki
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Marina Soković
- Institute for Biological Research "S. Stankovic", Mycological Laboratory, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
42
|
Sharma D, Bansal KK, Sharma A, Pathak M, Sharma PC. A Brief Literature and Review of Patents on Thiazole Related Derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180827094725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
Thiazole is widely investigated bioactive scaffold and dynamic tool in medicinal
chemistry research. Significance of thiazole compounds are well documented as thiazole is an
obligatory structure of number of currently available therapeutics. In spite of that, thiazole derivatives
are endowed with myriad biological activities, such as antiviral, anticancer, antibacterial, antifungal,
antimalarial, antiparkinsonian, anti-inflammatory activities and many more.
Methods:
In recent past, different approaches have been introduced for synthesis of thiazole and related
compounds. Intrinsic molecular interaction between newly synthesized thiazole compounds and plethora
of drug targets/enzymes has rendered discovery of new drug molecules with advances in modes of
action. A renewed interest in therapeutic use of thiazole derivatives has been seen among the prospective
researchers as exemplified by influx of huge scientific articles and patents. Some important patents
of anti-infective and anticancer interest have been addressed appropriately and are presented in tables.
Results:
This review paper is a contemporary approach on therapeutic/applications of thiazole derivatives
by summarizing important patents filed from 2000-2017. The main focus of these patents is on
anti-infective and anticancer potential of thiazole based compounds.
Conclusion:
These approaches may provide valuable information for the further design of more active
biological agents through various modifications and derivatizations.
Collapse
Affiliation(s)
- Diksha Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana-136119, India
| | - Kushal K. Bansal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana-136119, India
| | - Archana Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana-136119, India
| | - Meenakshi Pathak
- Pharmacy Australia Center of Excellence, University of Queensland, Woollongabba, Brisbane, QLD 4102, Australia
| | - Prabodh C. Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana-136119, India
| |
Collapse
|
43
|
New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking. Molecules 2019; 24:molecules24091741. [PMID: 31060260 PMCID: PMC6539608 DOI: 10.3390/molecules24091741] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Based on the extensive biological activities of thiazole derivatives against different types of diseases, we are interested in the effective part of many natural compounds, so we synthesized a new series of compounds containing di-, tri- and tetrathiazole moieties. The formation of such derivatives proceeded via reaction of 2-bromo-1-(4-methyl-2-(methylamino)thiazol-5-yl)ethan-1-one with heterocyclic amines, o-aminothiophenol and thiosemicarbazone derivatives. The structure and mechanistic pathways for all products were discussed and proved based on spectral results, in addition to conformational studies. Our aim after the synthesis is to investigate their antimicrobial activity against various types of bacteria and fungi species. Preceeding such an investigation, a molecular docking study was carried out with selected conformers, as representative examples, against three pathogen-proteins. This preliminary stage could support the biological application. The potency of these compounds as antimicrobial agents has been evaluated. The results showed that derivatives which have di- and trithiazole rings displayed high activity that exceeds the used standard antibiotic.
Collapse
|
44
|
Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev Med Chem 2019; 19:477-509. [PMID: 30324877 DOI: 10.2174/1389557518666181015152433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 09/30/2018] [Indexed: 02/01/2023]
Abstract
1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohemmed F Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
45
|
Nayak S, Gaonkar SL. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini Rev Med Chem 2019; 19:215-238. [PMID: 30112994 DOI: 10.2174/1389557518666180816112151] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Thiazole is the most common heterocyclic compound in heterocyclic chemistry and in drug design. Presence of several reaction sites in the thiazole moiety extends their range of applications and leads to new solutions for challenges in synthetic and medicinal chemistry. Thiazole derivatives are widely used as bioactive agents, liquid crystals, sensors, catalysts, etc. The motivating molecular architecture of 1,3-thiazoles makes them suitable moieties for drug development. In this review, our aim is to corroborate the recent data available on various synthetic strategies and biological properties of 1,3- thiazole derivatives.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santhosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
46
|
Temel HE, Altintop MD, Özdemir A. Synthesis and Evaluation of a New Series of Thiazolyl-pyrazoline Derivatives as Cholinesterase Inhibitors. Turk J Pharm Sci 2018; 15:333-338. [PMID: 32454678 DOI: 10.4274/tjps.20982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/30/2017] [Indexed: 12/01/2022]
Abstract
Objectives In recent years, the design of anticholinesterase agents based on molecular hybridization of pharmacologically active scaffolds has attracted a great deal of interest in medicinal chemistry. For this purpose, we aimed to design and synthesize anticholinesterase agents based on the molecular hybridization of thiazole and pyrazoline scaffolds. Materials and Methods New thiazolyl-pyrazoline derivatives were synthesized via the ring closure reaction of 3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-1-thiocarbamoyl-4,5-dihydro-1H-pyrazole with 2-bromo-1-arylethanone derivatives. The compounds were investigated for their inhibitory effects on AChE and BuChE using a modification of Ellman's spectrophotometric method. As a part of this study, the compliance of the compounds to Lipinski's rule of five was evaluated. The physicochemical parameters (log P, TPSA, nrotb, molecular weight, number of hydrogen bond donors and acceptors, molecular volume) were calculated using Molinspiration software. Results 2-[5-(1,3-Benzodioxol-5-yl)-3-(2-furyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(naphthalen-2-yl)thiazole was found to be the most effective AChE inhibitor (38.5±2.85%), whereas 2-[5-(1,3-benzodioxol-5-yl)-3-(2-furyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(4-fluorophenyl)thiazole was found as the most potent BuChE inhibitor (43.02±2.71%) in this series. These compounds only violated one parameter of Lipinski's rule of five. On the basis of Lipinski's rule, they were expected to have reasonable oral bioavailability. Conclusion In the view of this study, the structural modification of the identified compounds is on-going for the generation of new cholinesterase inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Halide Edip Temel
- Anadolu University, Faculty of Pharmacy, Department of Biochemistry, Eskişehir, Turkey
| | - Mehlika Dilek Altintop
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskişehir, Turkey
| | - Ahmet Özdemir
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskişehir, Turkey
| |
Collapse
|
47
|
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, Dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2018; 162:378-395. [PMID: 30453246 DOI: 10.1016/j.ejmech.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Thiazole, thiosemicarbazone and semicarbazone moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. In this review article, we critically analyzed the contribution of these scaffolds to medicinal chemistry in the last five years, focusing on tropical infectious diseases, such as Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. We also present perspectives for their use in drug design in order to contribute to the development of new drugs.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | | | | | | | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
48
|
Mohareb RM, Klapötke TM, Reinhardt E. Uses of dimedone for the synthesis of thiazole derivatives as new anti-tumor, c-Met, tyrosine kinase, and Pim-1 inhibitions. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Shah CP, Kharkar PS. Discovery of novel human inosine 5'-monophosphate dehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents. Eur J Med Chem 2018; 158:286-301. [PMID: 30223117 DOI: 10.1016/j.ejmech.2018.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
The enzyme inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes an essential step in the de novo biosynthesis of guanine nucleotides, and thus regulates the guanine nucleotide pool required for cell proliferation. Of the two isoforms, human IMPDH type 2 (hIMPDH2) is a validated molecular target for potential immunosuppressive, antiviral and anticancer chemotherapy. In search of newer hIMPDH2 inhibitors as potential anticancer agents, three novel series (A: 5-aminoisobenzofuran-1(3H)-one, B: 3,4-dimethoxyaniline and C: benzo[d]-[1,3]dioxol-5-ylmethanamine) were synthesized and evaluated for in vitro and cell-based activities. A total of 37 molecules (29-65) were screened for their in vitro hIMPDH2 inhibition, with particular emphasis on establishing their structure-activity relationship (SAR) trends. Eight compounds (hits, 30, 31, 33-35, 37, 41 and 43) demonstrated significant enzyme inhibition (>70% @ 10 μM); especially the A series molecules were more potent than B series (<70% inhibition @ 10 μM), while C series members were found to be inactive. The hIMPDH2 IC50 values for the hits ranged from 0.36 to 7.38 μM. The hits displaying >80% hIMPDH2 inhibition (30, 33, 35, 41 and 43) were further assessed for their cytotoxic activity against cancer cell lines such as MDA-MB-231 (breast adenocarcinoma), DU145 (prostate carcinoma), U87 MG (glioblastoma astrocytoma) and a normal cell line, NIH-3T3 (mouse embryonic fibroblast) using MTT assay. Most of the compounds exhibited higher cellular potency against cancer cell lines and notably lower toxicity towards NIH-3T3 cells compared to mycophenolic acid (MPA), a prototypical hIMPDH2 inhibitor. Two of the series A hits (30 and 35) were evaluated in human peripheral blood mononuclear cells (hPBMC) assay and found to be better tolerated than MPA. The calculated/predicted molecular and physicochemical properties were satisfactory with reference to drug-likeness. The molecular docking studies clearly demonstrated crucial interactions of the hits with the cofactor-binding site of hIMPDH2, further providing critical information for refining the design strategy. The present study reports the design and discovery of structurally novel hIMPDH2 inhibitors as potential anticancer agents and provides a guide for further research on the development of safe and effective anticancer agents, especially against glioblastoma.
Collapse
Affiliation(s)
- Chetan P Shah
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai, 400 056, India.
| |
Collapse
|
50
|
Bielenica A, Sanna G, Madeddu S, Giliberti G, Stefańska J, Kozioł AE, Savchenko O, Strzyga-Łach P, Chrzanowska A, Kubiak-Tomaszewska G, Struga M. Disubstituted 4-Chloro-3-nitrophenylthiourea Derivatives: Antimicrobial and Cytotoxic Studies. Molecules 2018; 23:molecules23102428. [PMID: 30248936 PMCID: PMC6222614 DOI: 10.3390/molecules23102428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
4-Chloro-3-nitrophenylthioureas 1–30 were synthesized and tested for their antimicrobial and cytotoxic activities. Compounds exhibited high to moderate antistaphylococcal activity against both standard and clinical strains (MIC values 2–64 μg/mL). Among them derivatives with electron-donating alkyl substituents at the phenyl ring were the most promising. Moreover, compounds 1–6 and 8–19 were cytotoxic against MT-4 cells and various other cell lines derived from human hematological tumors (CC50 ≤ 10 μM). The influence of derivatives 11, 13 and 25 on viability, mortality and the growth rate of immortalized human keratinocytes (HaCaT) was observed.
Collapse
Affiliation(s)
- Anna Bielenica
- Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliary, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Silvia Madeddu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliary, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Gabriele Giliberti
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliary, Cittadella Universitaria, 09042 Monserrato, Italy.
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland.
| | - Anna E Kozioł
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | | | | | - Alicja Chrzanowska
- Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Marta Struga
- Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warszawa, Poland.
| |
Collapse
|