1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
3
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
4
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
5
|
Yelamanda Rao K, Jeelan Basha S, Monika K, Naidu Gajula N, Sivakumar I, Kumar S, Vadde R, Aramati BMR, Subramanyam R, Damu AG. Development of quinazolinone and vanillin acrylamide hybrids as multi-target directed ligands against Alzheimer's disease and mechanistic insights into their binding with acetylcholinesterase. J Biomol Struct Dyn 2023; 41:11148-11165. [PMID: 37098803 DOI: 10.1080/07391102.2023.2203255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/13/2022] [Indexed: 04/27/2023]
Abstract
In view of Multi-Target Directed Ligand (MTDL) approach in treating Alzheimer's Disease (AD), a series of novel quinazolinone and vanillin cyanoacetamide based acrylamide derivatives (9a-z) were designed, synthesized, and assessed for their activity against a panel of selected AD targets including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), amyloid β protein (Aβ), and also 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and neuroprotective activities. Five of the target analogs 9e, 9h, 9 l, 9t and 9z showed elevated AChE inhibitory activity with IC50 values of 1.058 ± 0.06, 1.362 ± 0.09, 1.434 ± 0.10, 1.015 ± 0.10, 1.035 ± 0.02 µM respectively, high inhibition selectivity against AChE over BChE and good DPPH radical scavenging activity. Enzyme kinetic studies of the potent hybrids in the series disclosed their mixed inhibition approach. Active analogs were found to be non-toxic on SK-N-SH cell lines and have excellent neuroprotective effects against H2O2-induced cell death. Strong modulating affinities on Aβ aggregation process were observed for most active compounds since; they irretrievably interrupted the morphology of Aβ42 fibrils, increased the aggregates and declined the Aβ-induced toxicity in neurons. From the fluorescence emission studies, the binding constants (K) were determined as 2.5 ± 0.021x103, 2.7 ± 0.015x103, 3.7 ± 0.020x103, 2.4 ± 0.013x104, and 5.0 ± 0.033x103 M-1 and binding free energies as -5.82 ± 0.033, -6.07 ± 0.042, -6.26 ± 0.015, -7.71 ± 0.024, and -6.29 ± 0.026 kcal M-1 for complexes of AChE-9e, 9h, 9 l, 9t and 9z, respectively. Moreover, the CD analysis inferred the limited modifications in the AChE secondary structure when it binds to 9e, 9h, 9 l, 9t and 9z. On the basis of docking studies against AChE, the most active congeners were well oriented in the enzyme's active site by interacting with both catalytic active site (CAS) and peripheral anionic site (PAS). In summary, these quinazolinone and vanillin acrylamide hybrid analogs can be used as promising molecular template to further explore their in vivo efficiency in the development of lead compound to treat AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kandrakonda Yelamanda Rao
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Shaik Jeelan Basha
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Kallubai Monika
- Department of Biochemistry, Rayalaseema University, Kurnool, Andhra Pradesh, India
| | - Navya Naidu Gajula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Irla Sivakumar
- Soft Condensed Matter, Raman Research Institute, Sadashivanagar, Bangalore, India
| | - Sandeep Kumar
- Soft Condensed Matter, Raman Research Institute, Sadashivanagar, Bangalore, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amooru Gangaiah Damu
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
6
|
Rizou AEI, Nasi GI, Paikopoulos Y, Bezantakou DS, Vraila KD, Spatharas PM, Dimaki VD, Papandreou NC, Lamari FN, Chondrogianni N, Iconomidou VA. A Multilevel Study of Eupatorin and Scutellarein as Anti-Amyloid Agents in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051357. [PMID: 37239029 DOI: 10.3390/biomedicines11051357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Today, Alzheimer's disease (AD)-the most common neurodegenerative disorder, which affects 50 million people-remains incurable. Several studies suggest that one of the main pathological hallmarks of AD is the accumulation of abnormal amyloid beta (Aβ) aggregates; therefore, many therapeutic approaches focus on anti-Aβ aggregation inhibitors. Taking into consideration that plant-derived secondary metabolites seem to have neuroprotective effects, we attempted to assess the effects of two flavones-eupatorin and scutellarein-on the amyloidogenesis of Aβ peptides. Biophysical experimental methods were employed to inspect the aggregation process of Aβ after its incubation with each natural product, while we monitored their interactions with the oligomerized Aβ through molecular dynamics simulations. More importantly, we validated our in vitro and in silico results in a multicellular organismal model-namely, Caenorhabditis elegans-and we concluded that eupatorin is indeed able to delay the amyloidogenesis of Aβ peptides in a concentration-dependent manner. Finally, we propose that further investigation could lead to the exploitation of eupatorin or its analogues as potential drug candidates.
Collapse
Affiliation(s)
- Aikaterini E I Rizou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Yiorgos Paikopoulos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Dimitra S Bezantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Konstantina D Vraila
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Panagiotis M Spatharas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Virginia D Dimaki
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Rion, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Rion, Greece
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
7
|
Development of the "hidden" multi-target-directed ligands by AChE/BuChE for the treatment of Alzheimer's disease. Eur J Med Chem 2023; 251:115253. [PMID: 36921526 DOI: 10.1016/j.ejmech.2023.115253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/09/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Accumulation of evidences suggested that excessive amounts of AChE and BuChE in the brain of AD patients at the different stage of AD, which could hydrolyze ACh and accelerated Aβ aggregation. To develop new "hidden" multifunctional agents through AChE/BuChE would be a promising strategy to treat AD. To this end, firstly, a series of chalcone derivatives with chelating property was designed and synthesized. The in vitro results showed that compound 3f indicated significant selective MAO-B inhibitory activity (IC50 = 0.67 μM) and remarkable anti-inflammatory property. It also significantly inhibited self-induced Aβ1-42 aggregation and showed remarkable neuroprotective effects on Aβ25-35-induced PC12 cell injury. Furthermore, compound 3f was a selective metal chelator and could inhibit Cu2+-induced Aβ1-42 aggregation. Based on this, the carbamate fragment was introduced to compound 3f to obtain carbamate derivatives. The biological activity results exhibited that compound 4b showed good BBB permeability, good AChE inhibitory potency (IC50 = 5.3 μM), moderate BuChE inhibitory potency (IC50 = 12.4 μM), significant MAO-B inhibitory potency, anti-inflammation potency on LPS-induced BV-2 cells and neuroprotective effects on Aβ25-35-induced PC12 cell injury. Compared with 3f, compound 4b did not show obvious chelation property. Significantly, compound 4b could be activated by AChE/BuChE following inhibition of AChE/BuChE to liberate an active multifunctional chelator 3f, which was consistent with our original intention. More importantly, compounds 3f and 4b presented favorable ADME properties and good stability in artificial gastrointestinal fluid, blood plasma and rat liver microsomes. The in vivo results suggested that compound 4b (0.0195 μg/mL) could significantly improve dyskinesia and reaction capacity of the AlCl3-induced zebrafish AD model by increasing the level of ACh. Together our data suggest that compound 4b was a promising "hidden" multifunctional agent by AChE/BuChE, and this strategy deserved further development for the treatment of AD.
Collapse
|
8
|
Zhao Z, Nian M, Qiao H, Yang X, Wu S, Zheng X. Review of bioactivity and structure-activity relationship on baicalein (5,6,7-trihydroxyflavone) and scutellarin (5,7-dihydroxy-8-methoxyflavone) derivatives: Structural modifications inspired from flavonoids in Scutellaria baicalensis. Eur J Med Chem 2022; 243:114733. [DOI: 10.1016/j.ejmech.2022.114733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 12/13/2022]
|
9
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
10
|
Işık A, Çevik UA, Celik I, Erçetin T, Koçak A, Özkay Y, Kaplancıklı ZA. Synthesis, characterization, molecular docking, dynamics simulations, and in silico absorption, distribution, metabolism, and excretion (ADME) studies of new thiazolylhydrazone derivatives as butyrylcholinesterase inhibitors. Z NATURFORSCH C 2022; 77:447-457. [DOI: 10.1515/znc-2021-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (3a–3f) and 4-methoxyphenylpiperazine (3g–3l) side chains were synthesized and their structures were characterized by spectral (1H NMR, 13C NMR, and MS spectra) analyses. In vitro inhibitory activities of synthesized compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined by Ellman method. According to the results, all compounds showed a weak inhibitory effect on AChE, while promising results were obtained on BChE. Among the synthesized compounds, the activities of the derivatives carrying 4-ethylpiperazine (3a–3f) structure were found to be more effective than the compounds carrying 4-methoxyphenyl piperazine (3g–3l) derivatives. Especially, compound 3f bearing the nitro substituent was found to be the most promising compound on BChE in the series. The absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were predicted by using the SwissADME server. The potential binding mode and stability of compound 3f with BChE were investigated by the molecular docking and dynamics simulations. The results showed that 3f was strongly bound up with BChE with the optimal conformation; in addition, their binding free energy reached −167.936 ± 13.109 kJ/mol.
Collapse
Affiliation(s)
- Ayşen Işık
- Department of Biochemistry , Faculty of Science, Selçuk University , Konya , Turkey
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Doping and Narcotic Compounds Analysis Laboratory , Eskişehir 26470 , Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Erciyes University , Kayseri 38039 , Turkey
| | - Tuğba Erçetin
- Department of Pharmacognosy , Eastern Mediterranean University , Famagusta , Cyprus
| | - Ahmet Koçak
- Department of Chemistry , Faculty of Science, Selçuk University , Konya , Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Doping and Narcotic Compounds Analysis Laboratory , Eskişehir 26470 , Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
| |
Collapse
|
11
|
Zhao Y, Mu Y, Luo W, Tian Z. Synthesis of Naphthalimide Derivatives as Cholinesterase Inhibitors with Aggregation Induced Emission Properties. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
He Y, Xiao G, Yu G, Song Q, Zhang H, Liu Z, Tan Z, Deng Y. 2-(3-Hydroxybenzyl)benzo[d]isothiazol-3(2H)-one Mannich base derivatives as potential multifunctional anti-Alzheimer’s agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02725-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Shi S, Wang H, Wang J, Wang Y, Xue X, Hou Z, Yao GD, Huang XX, Zhao H, Liu Q, Song SJ. Semi-synthesis and biological evaluation of flavone hybrids as multifunctional agents for the potential treatment of Alzheimer's disease. Bioorg Chem 2020; 100:103917. [PMID: 32442817 DOI: 10.1016/j.bioorg.2020.103917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
7-O-galloyltricetiflavan (GTF), a natural flavonoid, is known to exert anti-oxidation and neuroprotective activity, which are related to the prevention of Alzheimer's disease (AD). In this study, three series of GTF hybrids have been designed, synthesized and evaluated as multifunctional agents for treatment AD. The biological assays indicated that most of them showed strong inhibitory effect on self-induced β-amyloid (Aβ) aggregation, and a significant ability to inhibit ChEs. Among them, compound A15 exhibited best inhibition of Aβ aggregation (78.81% at 20 μM), potent AChE inhibitory potencies (IC50, 0.56 μM), and compound C4 presented the highest ability to inhibit BuChE (IC50, 5.77 μM). Furthermore, kinetic, molecular modeling and molecular dynamics studies revealed that A15 and C4 could interact with the catalytic active site of AChE and BuChE, respectively. In addition, compounds A15 and C4 could cross the blood-brain barrier in vitro. More importantly, A15 and C4 also showed excellent neuroprotective activities against H2O2-induced human neuroblastoma SH-SY5Y cells damage and nearly no toxicity on SH-SY5Y cells. All of these outstanding in vitro results indicated A15 and C4 as the leading structure worthy of further investigation.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Huibin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yvxi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaobian Xue
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zilin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
15
|
Synthesis and evaluation of chromone-2-carboxamido-alkylamines as potent acetylcholinesterase inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Jin X, Wang M, Shentu J, Huang C, Bai Y, Pan H, Zhang D, Yuan Z, Zhang H, Xiao X, Wu X, Ding L, Wang Q, He S, Cui W. Inhibition of acetylcholinesterase activity and β-amyloid oligomer formation by 6-bromotryptamine A, a multi-target anti-Alzheimer's molecule. Oncol Lett 2019; 19:1593-1601. [PMID: 31966085 DOI: 10.3892/ol.2019.11226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by learning and memory impairments. Recent studies have suggested that AD can be induced by multiple factors, such as cholinergic system dysfunction and β-amyloid (Aβ) neurotoxicity. It was reported that 6-bromo-N-propionyltryptamine could treat neurological diseases, including AD. In the present study, 6-bromotryptamine A, a derivative of 6-bromo-N-propionyltryptamine, was synthesized by the condensation of 2-(6-bromo-1H-indol-3-yl)ethan-1-amine and 2-(4-bromophenyl)acetic acid, and was used as a potential anti-AD molecule. Furthermore, scopolamine can induce impairments of learning and memory, and was widely used to establish AD animal models. The results demonstrated that 6-bromotryptamine A significantly prevented scopolamine-induced short-term cognitive impairments, as revealed by various behavioral tests in mice. Furthermore, an acetylcholinesterase (AChE) activity assay revealed that 6-bromotryptamine A directly inhibited AChE activity. Notably, it was observed that 6-bromotryptamine A blocked the formation of Aβ oligomer, as evaluated by the dot blot assay. All these results suggested that 6-bromotryptamine A may be used to prevent impairments in short-term learning and memory ability possibly via the inhibition of AChE and the blockade of Aβ oligomer formation.
Collapse
Affiliation(s)
- Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Minjun Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jieyi Shentu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunhui Huang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yujing Bai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hanbo Pan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Difan Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhijun Yuan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiang Wu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Deparment of Anesthesia, Ningbo University Medical School Affiliated Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
17
|
The chemistry toolbox of multitarget-directed ligands for Alzheimer's disease. Eur J Med Chem 2019; 181:111572. [DOI: 10.1016/j.ejmech.2019.111572] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
|
18
|
Sang Z, Wang K, Zhang P, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 180:238-252. [DOI: 10.1016/j.ejmech.2019.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022]
|
19
|
Sang Z, Wang K, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 178:726-739. [DOI: 10.1016/j.ejmech.2019.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/25/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
|
20
|
Zhu G, Wang K, Shi J, Zhang P, Yang D, Fan X, Zhang Z, Liu W, Sang Z. The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2019; 29:126625. [PMID: 31444085 DOI: 10.1016/j.bmcl.2019.126625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
A series of 2-acetylphenol-donepezil hybrids was designed and synthesized based on multi-target-directed ligands strategy. The biological activities were evaluated by AChE/BChE inhibition and MAO-A/MAO-B inhibition. The results revealed that the tertiary amines and methylene chain length significantly affected the eeAChE inhibitory potency, in particular, compound TM-14 showed the best eeAChE inhibitory activity with IC50 value of 2.9 μM, in addition, both kinetic analysis of AChE inhibition and docking study displayed that TM-14 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. Moreover, compound TM-14 was a selective metal chelator and could form 1:1 TM-14-Cu2+ complex. The structure-active-relationship also indicated that the O-alkylamine fragment remarkably decreased hMAO-B inhibitory activity, compound TM-2 exhibited potent hMAO-B inhibitory activity (IC50 = 6.8 μM), which was supported by the molecular docking study. More interestingly, compounds TM-14 and TM-2 could cross the blood-brain barrier in vitro. Therefore, the structure-active-relationship of 2-acetylphenol-donepezil hybrids could encourage the development of multifunction agents with selective AChE inhibition or selective MAO-B inhibition for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jian Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pengfei Zhang
- School of Medicine, Henan University Minsheng College, Kaifeng 475000, China
| | - Dan Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaotian Fan
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ziyi Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
21
|
Synthesis and AChE Inhibitory Activity of Novel Thiazolylhydrazone Derivatives. Molecules 2019; 24:molecules24132392. [PMID: 31261693 PMCID: PMC6651548 DOI: 10.3390/molecules24132392] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common of the degenerative brain diseases and is described together with the impairment of cognitive function. Patients with AD lose the capability to code new memories, and life conditions are extremely difficult. The development of new drugs in this area continues at a great pace. A novel series of thiazole-piperazine hybrids, aimed against Alzheimer’s disease (AD), have been synthesized. The structure identification of synthesized compounds was elucidated by 1HNMR, 13C-NMR, and LCMSMS spectroscopic methods. The inhibitory potential of the synthesized compounds on cholinesterase enzymes was investigated. The compounds 3a, 3c and 3i showed significant inhibitory activity on the acetylcholinesterase (AChE) enzyme. On the other hand, none of the compounds showed significant inhibitory activity on the butyrylcholinesterase (BChE) enzyme. In addition to enzyme inhibition studies, enzyme kinetic studies were performed to observe the effects of the most active inhibitor compounds on the substrate–enzyme relationship. In addition to in vitro tests, docking studies also indicated that compound 3c potentially acts as a dual binding site AChE inhibitor.
Collapse
|
22
|
Zhu J, Wang LN, Cai R, Geng SQ, Dong YF, Liu YM. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett 2019; 29:1325-1329. [DOI: 10.1016/j.bmcl.2019.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
|
23
|
Design, synthesis, and evaluation of isoflavone analogs as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 168:207-220. [DOI: 10.1016/j.ejmech.2019.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
|
24
|
Novel salicylamide derivatives as potent multifunctional agents for the treatment of Alzheimer's disease: Design, synthesis and biological evaluation. Bioorg Chem 2019; 84:137-149. [DOI: 10.1016/j.bioorg.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 01/16/2023]
|
25
|
Liu H, Qiang X, Song Q, Li W, He Y, Ye C, Tan Z, Deng Y. Discovery of 4'-OH-flurbiprofen Mannich base derivatives as potential Alzheimer's disease treatment with multiple inhibitory activities. Bioorg Med Chem 2019; 27:991-1001. [PMID: 30772129 DOI: 10.1016/j.bmc.2019.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
A series of 4'-OH flurbiprofen Mannich base derivatives were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer's disease. The biological screening results indicated that most of these derivatives exhibited good multifunctional activities. Among them, compound 8n demonstrated the best inhibitory effects on self-induced Aβ1-42 aggregation (65.03% at 25.0 μM). Moreover, this representative compound also exhibited good antioxidant activity, biometal chelating ability and anti-neuroinflammatory activity in vitro. Furthermore, compound 8n displayed appropriate blood-brain barrier permeability. These multifunctional properties highlight compound 8n as promising candidate for further development of multi-functional drugs against AD.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Wei Li
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuxi He
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
27
|
Preparation of 4-Flexible Amino-2-Arylethenyl-Quinoline Derivatives as Multi-target Agents for the Treatment of Alzheimer's Disease. Molecules 2018; 23:molecules23123100. [PMID: 30486440 PMCID: PMC6321145 DOI: 10.3390/molecules23123100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex and multifactorial neurodegenerative disorder of aged people. The development of multitarget-directed ligands (MTDLs) to act as multifunctional agents to treat this disease is the mainstream of current research. As a continuation of our previous studies, a series of 4-flexible amino-2-arylethenylquinoline derivatives as multi-target agents was efficiently synthesized and evaluated for the treatment of AD. Among these synthesized derivatives, some compounds exhibited strong self-induced Aβ1–42 aggregation inhibition and antioxidant activity. The structure-activity relationship was summarized, which confirmed that the introduction of a flexible amino group featuring a N,N-dimethylaminoalkylamino moiety at the 4-position increased the Aβ1–42 aggregation inhibition activity, with an inhibition ratio of 95.3% at 20 μM concentration. Compound 6b1, the optimal compound, was able to selectively chelate copper (II), and inhibit Cu2+-induced Aβ aggregation effectively. It also could disassemble the self-induced Aβ1–42 aggregation fibrils with a ratio of 64.3% at 20 μM concentration. Moreover, compound 6b1 showed low toxicity and a good neuroprotective effect against Aβ1–42-induced toxicity in SH-SY5Y cells. Furthermore, the step-down passive avoidance test indicated compound 6b1 significantly reversed scopolamine-induced memory deficit in mice. Taken together, these results suggested that compound 6b1 was a promising multi-target compound worthy of further study for AD.
Collapse
|
28
|
Song Q, Li Y, Cao Z, Liu H, Tian C, Yang Z, Qiang X, Tan Z, Deng Y. Discovery of novel 2,5-dihydroxyterephthalamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2018; 26:6115-6127. [PMID: 30470598 DOI: 10.1016/j.bmc.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
A series of 2,5-dihydroxyterephthalamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. In vitro assays demonstrated that most of the derivatives exhibited good multifunctional activities. Among them, compound 9d showed the best inhibitory activity against both RatAChE and EeAChE (IC50 = 0.56 μM and 5.12 μM, respectively). Moreover, 9d exhibited excellent inhibitory effects on self-induced Aβ1-42 aggregation (IC50 = 3.05 μM) and Cu2+-induced Aβ1-42 aggregation (71.7% at 25.0 μM), and displayed significant disaggregation ability to self- and Cu2+-induced Aβ1-42 aggregation fibrils (75.2% and 77.2% at 25.0 μM, respectively). Furthermore, 9d also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activities and appropriate BBB permeability. These multifunctional properties highlight 9d as promising candidate for further studies directed to the development of novel drugs against AD.
Collapse
Affiliation(s)
- Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yan Li
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Hongyan Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chaoquan Tian
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ziyi Yang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, PR China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
29
|
Han T, Wang Y, Wang M, Li X, Cheng K, Gao X, Li Z, Bai J, Hua H, Li D. Synthesis of scutellarein derivatives with antiproliferative activity and selectivity through the intrinsic pathway. Eur J Med Chem 2018; 158:493-501. [DOI: 10.1016/j.ejmech.2018.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022]
|
30
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Panzella L, Eidenberger T, Napolitano A. Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules 2018; 23:E676. [PMID: 29547584 PMCID: PMC6017763 DOI: 10.3390/molecules23030676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Black sesame pigment (BSP) represents a low cost, easily accessible material of plant origin exhibiting marked antioxidant and heavy metal-binding properties with potential as a food supplement. We report herein the inhibitory properties of the potentially bioaccessible fraction of BSP following simulated gastrointestinal digestion against key enzymes involved in Alzheimer's disease (AD). HPLC analysis indicated that BSP is transformed under the pH conditions mimicking the intestinal environment and the most abundant of the released compounds was identified as vanillic acid. More than 80% inhibition of acetylcholinesterase-induced aggregation of the β-amyloid Aβ1-40 was observed in the presence of the potentially bioaccessible fraction of BSP, which also efficiently inhibited self-induced Aβ1-42 aggregation and β-secretase (BACE-1) activity, even at high dilution. These properties open new perspectives toward the use of BSP as an ingredient of functional food or as a food supplement for the prevention of AD.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Thomas Eidenberger
- School of Engineering and Environmental Sciences, Upper Austria University of Applied Sciences, Stelzhamerstraße 23, 4600 Wels, Austria.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
32
|
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, Endres K. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer's disease hallmarks. Sci Rep 2018; 8:1329. [PMID: 29358714 PMCID: PMC5778060 DOI: 10.1038/s41598-018-19577-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer’s disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, efficacy and safety has to be analyzed in Alzheimer patients in the future.
Collapse
Affiliation(s)
- Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nicolai Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Luderer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
33
|
Iraji A, Firuzi O, Khoshneviszadeh M, Nadri H, Edraki N, Miri R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer's disease. Bioorg Chem 2018; 77:223-235. [PMID: 29367079 DOI: 10.1016/j.bioorg.2018.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) requires using multi-target ligands (MTLs) for disease management. We synthesized, characterized and evaluated a series of novel triazine analogues as MTLs for AD. The biological screening results indicated that most of our compounds displayed potent inhibitory activities against β-site APP-cleaving enzyme 1 (BACE1) using a FRET-based assay. Compounds 6c and 6m were found to possess significant BACE1 inhibitory properties with IC50 values of 0.91 (±0.25) µM and 0.69 (±0.20) µM, respectively. DPPH radical scavenging activity evaluation showed that compounds with hydroxyl and pyrrole moieties had antioxidant effects. Docking evaluations provided insight into enzyme inhibitory interactions of novel synthesized compounds with the BACE1 active site involving a critical role for Gln73 and/or Phe108 alongside of Asp32. Metal chelation tests confirmed that compound 6m is a chelator for Fe2+, Fe3+, Zn2+, Cu2+. Moreover 6m as the most potent BACE1 inhibitor did not show any toxicity against PC12 neuronal cells. These findings demonstrate the high potential of triazine scaffolds in the design of MTLs for treatment of AD.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 2017; 139:222-231. [PMID: 28802122 DOI: 10.1016/j.ejmech.2017.07.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Wiemann
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Julia Karasch
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Heller
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
35
|
Iraji A, Firuzi O, Khoshneviszadeh M, Tavakkoli M, Mahdavi M, Nadri H, Edraki N, Miri R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer's disease. Eur J Med Chem 2017; 141:690-702. [PMID: 29107423 DOI: 10.1016/j.ejmech.2017.09.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known for the presence of amyloid beta plaques resulting from the sequential action of β-secretase and γ-secretase on amyloid precursor protein. We developed and synthesized, through click reactions, a new family of iminochromene carboxamides containing different aminomethylene triazole. The BACE1 inhibition, neuroprotective capacity and metal chelation of these derivatives make them ideal candidates against AD. Most of the synthesized compounds were shown to have potent BACE1 inhibitory activity in a FRET assay, with an IC50 value of 2.2 μM for the most potent compound. Moreover, molecular modeling evaluation of these BACE1 inhibitors demonstrates the vital role of the amine and amide linkers through hydrogen bond interactions with key amino acids in the BACE1 active site. Our in vitro neuroprotective evaluations in PC12 neuronal cells of Aβ-induced neuroprotection demonstrated promising activity for most of the compounds as neuroprotective agents. Based on our findings, we propose that introduction of a phthalimide substitute on the triazole ring shown to be interesting multifunctional lead compound worthy of further study.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|