1
|
Paul A, Terrell JR, Farahat AA, Ogbonna EN, Kumar A, Boykin DW, Neidle S, Wilson WD. Alternative Approach to Sequence-Specific Recognition of DNA: Cooperative Stacking of Dication Dimers─Sensitivity to Compound Curvature, Aromatic Structure, and DNA Sequence. ACS Chem Biol 2025; 20:489-506. [PMID: 39920086 PMCID: PMC11851451 DOI: 10.1021/acschembio.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
With the growing number and diversity of known genome sequences, there is an increasing opportunity to regulate gene expression through synthetic, cell-permeable small molecules. Enhancing the DNA sequence recognition abilities of minor groove compounds has the potential to broaden their therapeutic applications with significant implications for areas such as modulating transcription factor activity. While various classes of minor groove binding agents can selectively identify pure AT and mixed AT and GC base pair(s) containing sequences, there remains a lack of compounds capable of distinguishing between different AT sequences. In this work, we report on the design compounds that exhibit selective binding to -TTAA- or -TATA- containing DNA minor groove sequences compared with other AT ones. Several studies have shown that the -AATT- and -TTAA- sequences have distinct physical and interaction properties, especially in terms of their different requirements for recognition in the minor groove. Achieving strong, selective minor groove binding at -TTAA- sequences has been challenging, but DB1003, a benzimidazole-furan-furan diamidine, has demonstrated cooperative dimeric binding activity at -TTAA-. It has significantly less binding preference for AATT. To better understand and modify the selectivity, we synthesized a set of rationally designed analogs of DB1003 by altering the position of the five-membered heterocyclic structure. Binding affinities and stoichiometries obtained from biosensor-surface plasmon resonance experiments show that DB1992, a benzimidazolefuran-thiophene diamidine, binds strongly to -TTAA- as a positive cooperative dimer with high cooperativity. The high-resolution crystal structure of the TTAA-DNA-DB1992 complex reveals that DB1992 binds as an antiparallel π-stacked dimer with numerous diverse contacts to the DNA minor groove. This distinctive binding arrangement and the properties of diamidines at the -TTAA- minor groove demonstrate that benzimidazole-furan-thiophene is a unique DNA binding pharmacophore. Competition mass spectroscopy and circular dichroism studies confirmed the binding stoichiometry and selectivity preference of the compounds for the -TTAA- sequence.
Collapse
Affiliation(s)
- Ananya Paul
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| | - J. Ross Terrell
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| | - Abdelbasset A. Farahat
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Master
of Pharmaceutical Sciences Program, California
North State University, Elk Grove, California 95757, United States
| | - Edwin N. Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| | - Arvind Kumar
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| | - David W. Boykin
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| | - Stephen Neidle
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - W. David Wilson
- Department
of Chemistry and Center for Diagnostics and Therapeutics Georgia State
University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Alniss HY, Saber-Ayad MM, Ramadan WS, Manasa Bhamidimarri P, Msallam YA, Al-Jubeh HM, Ravi A, Menon V, Hamoudi R, El-Awady R. Transcriptomic analysis of MCF7 breast cancer cells treated with MGBs reveals a profound inhibition of estrogen receptor genes. Bioorg Chem 2024; 151:107680. [PMID: 39084151 DOI: 10.1016/j.bioorg.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer poses a significant health risk worldwide. However, the effectiveness of current chemotherapy is limited due to increasing drug resistance and side effects, making it crucial to develop new compounds with novel mechanism of action that can surpass these limitations. As a consequence of their reversible and targeted mechanism, DNA minor groove binders (MGBs) are considered as a relatively safer and more effective alternative. In this study, transcriptomic analysis was conducted to reveal the dysregulated genes and signaling pathways in MCF7 cancer cells following treatment with novel MGB ligands to gain insights into the mechanism of action of MGBs at the molecular level. The transcriptomic results were validated using real-time PCR. The findings of this study indicate that the investigated MGBs primarily inhibit the genes associated with the estrogen receptor. Remarkably, ligand 5 showed downregulation of 34 out of the 35 genes regulated by estrogen receptor, highlighting its potential as a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Center of Excellence for Precision Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah 27272, United Arab Emirates; Division of Surgery and Interventional Science, Faculty of Medicine, University College London, London, United Kingdom
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Mcgee LMC, Carpinteyro Sanchez AG, Perieteanu M, Eskandari K, Bian Y, Mackie L, Young L, Beveridge R, Suckling CJ, Roberts CW, Scott FJ. Strathclyde minor groove binders (S-MGBs) with activity against Acanthamoeba castellanii. J Antimicrob Chemother 2024; 79:2251-2258. [PMID: 38980760 PMCID: PMC11368431 DOI: 10.1093/jac/dkae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/15/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Acanthamoeba spp. is the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms. OBJECTIVES To synthesize and evaluate the anti-Acanthamoeba activity of a panel of S-MGBs, and therefore determine the potential of this class for further development. METHODS A panel of 12 S-MGBs was synthesized and anti-Acanthamoeba activity was determined using an alamarBlue™-based trophocidal assay against Acanthamoeba castellanii. Cross-screening against Trypanosoma brucei brucei, Staphylococcus aureus and Escherichia coli was used to investigate selective potency. Cytotoxicity against HEK293 cells allowed for selective toxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. RESULTS AND DISCUSSION S-MGB-241 has an IC50 of 6.6 µM against A. castellanii, comparable to the clinically used miltefosine (5.6 µM) and negligible activity against the other organisms. It was also found to have an IC50 > 100 µM against HEK293 cells, demonstrating low cytotoxicity. S-MGB-241 binds to DNA as a dimer, albeit weakly compared to other S-MGBs previously studied. This was confirmed by DNA thermal shift assay with a ΔTm = 1 ± 0.1°C. CONCLUSIONS Together, these data provide confidence that S-MGBs can be further optimized to generate new, potent treatments for Acanthameoba spp. infections. In particular, S-MGB-241, has been identified as a 'hit' compound that is selectively active against A. castellanii, providing a starting point from which to begin optimization of DNA binding and potency.
Collapse
Affiliation(s)
- Leah M C Mcgee
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | - Marina Perieteanu
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Kaveh Eskandari
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Yan Bian
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Logan Mackie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Colin J Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Alniss HY, Al-Jubeh HM, Msallam YA, Siddiqui R, Makhlouf Z, Ravi A, Hamdy R, Soliman SSM, Khan NA. Structure-based drug design of DNA minor groove binders and evaluation of their antibacterial and anticancer properties. Eur J Med Chem 2024; 271:116440. [PMID: 38678825 DOI: 10.1016/j.ejmech.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Antimicrobial and chemotherapy resistance are escalating medical problem of paramount importance. Yet, research for novel antimicrobial and anticancer agents remains lagging behind. With their reported medical applications, DNA minor groove binders (MGBs) are worthy of exploration. In this study, the approach of structure-based drug design was implemented to generate 11 MGB compounds including a novel class of bioactive alkyne-linked MGBs. The NCI screening protocol was utilized to evaluate the antitumor activity of the target MGBs. Furthermore, a variety of bactericidal, cytopathogenicity, MIC90, and cytotoxicity assays were carried out using these MGBs against 6 medically relevant bacteria: Salmonella enterica, Escherichia coli, Serratia marcescens, Bacillus cereus, Streptococcus pneumoniae and Streptococcus pyogenes. Moreover, molecular docking, molecular dynamic simulations, DNA melting, and isothermal titration calorimetry (ITC) analyses were utilized to explore the binding mode and interactions between the most potent MGBs and the DNA duplex d(CGACTAGTCG)2. NCI results showed that alkyne-linked MGBs (26 & 28) displayed the most significant growth inhibition among the NCI-60 panel. In addition, compounds MGB3, MGB4, MGB28, and MGB32 showed significant bactericidal effects, inhibited B. cereus and S. enterica-mediated cytopathogenicity, and exhibited low cytotoxicity. MGB28 and MGB32 demonstrated significant inhibition of S. pyogenes, whereas MGB28 notably inhibited S. marcescens and all four minor groove binders significantly inhibited B. cereus. The ability of these compounds to bind with DNA and distort its groove dimensions provides the molecular basis for the allosteric perturbation of proteins-DNA interactions by MGBs. This study shed light on the mechanism of action of MGBs and revealed the important structural features for their antitumor and antibacterial activities, which are important to guide future development of MGB derivatives as novel antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Zinb Makhlouf
- College of Medicine, Department of Clinical Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Naveed A Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
6
|
Hind C, Clifford M, Woolley C, Harmer J, McGee LMC, Tyson-Hirst I, Tait HJ, Brooke DP, Dancer SJ, Hunter IS, Suckling CJ, Beveridge R, Parkinson JA, Sutton JM, Scott FJ. Insights into the Spectrum of Activity and Mechanism of Action of MGB-BP-3. ACS Infect Dis 2022; 8:2552-2563. [PMID: 36444998 PMCID: PMC9745797 DOI: 10.1021/acsinfecdis.2c00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/30/2022]
Abstract
MGB-BP-3 is a potential first-in-class antibiotic, a Strathclyde Minor Groove Binder (S-MGB), that has successfully completed Phase IIa clinical trials for the treatment of Clostridioides difficile associated disease. Its precise mechanism of action and the origin of limited activity against Gram-negative pathogens are relatively unknown. Herein, treatment with MGB-BP-3 alone significantly inhibited the bacterial growth of the Gram-positive, but not Gram-negative, bacteria as expected. Synergy assays revealed that inefficient intracellular accumulation, through both permeation and efflux, is the likely reason for lack of Gram-negative activity. MGB-BP-3 has strong interactions with its intracellular target, DNA, in both Gram-negative and Gram-positive bacteria, revealed through ultraviolet-visible (UV-vis) thermal melting and fluorescence intercalator displacement assays. MGB-BP-3 was confirmed to bind to dsDNA as a dimer using nano-electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Type II bacterial topoisomerase inhibition assays revealed that MGB-BP-3 was able to interfere with the supercoiling action of gyrase and the relaxation and decatenation actions of topoisomerase IV of both Staphylococcus aureus and Escherichia coli. However, no evidence of stabilization of the cleavage complexes was observed, such as for fluoroquinolones, confirmed by a lack of induction of DSBs and the SOS response in E. coli reporter strains. These results highlight additional mechanisms of action of MGB-BP-3, including interference of the action of type II bacterial topoisomerases. While MGB-BP-3's lack of Gram-negative activity was confirmed, and an understanding of this presented, the recognition that MGB-BP-3 can target DNA of Gram-negative organisms will enable further iterations of design to achieve a Gram-negative active S-MGB.
Collapse
Affiliation(s)
- Charlotte Hind
- Research
and Evaluation, UKHSA Porton Down, SalisburySP4 0JG, United Kingdom
| | - Melanie Clifford
- Research
and Evaluation, UKHSA Porton Down, SalisburySP4 0JG, United Kingdom
| | - Charlotte Woolley
- Research
and Evaluation, UKHSA Porton Down, SalisburySP4 0JG, United Kingdom
| | - Jane Harmer
- School
of Applied Sciences, University of Huddersfield, Queensgate, HuddersfieldHD1 3DH, United Kingdom
| | - Leah M. C. McGee
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - Izaak Tyson-Hirst
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - Henry J. Tait
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - Daniel P. Brooke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - Stephanie J. Dancer
- Department
of Microbiology, Hairmyres Hospital, NHS Lanarkshire, GlasgowG75 8RG, United Kingdom
- School
of Applied Sciences, Edinburgh Napier University, EdinburghEH11 4BN, United Kingdom
| | - Iain S. Hunter
- Strathclyde
Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, United
Kingdom
| | - Colin J. Suckling
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - Rebecca Beveridge
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - John A. Parkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| | - J. Mark Sutton
- Research
and Evaluation, UKHSA Porton Down, SalisburySP4 0JG, United Kingdom
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, LondonSE1 9NH, United Kingdom
| | - Fraser J. Scott
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1XL, United
Kingdom
| |
Collapse
|
7
|
Tentellino C, Tipping WJ, McGee LMC, Bain LM, Wetherill C, Laing S, Tyson-Hirst I, Suckling CJ, Beveridge R, Scott FJ, Faulds K, Graham D. Ratiometric imaging of minor groove binders in mammalian cells using Raman microscopy. RSC Chem Biol 2022; 3:1403-1415. [PMID: 36544571 PMCID: PMC9709774 DOI: 10.1039/d2cb00159d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Quantitative drug imaging in live cells is a major challenge in drug discovery and development. Many drug screening techniques are performed in solution, and therefore do not consider the impact of the complex cellular environment in their result. As such, important features of drug-cell interactions may be overlooked. In this study, Raman microscopy is used as a powerful technique for semi-quantitative imaging of Strathclyde-minor groove binders (S-MGBs) in mammalian cells under biocompatible imaging conditions. Raman imaging determined the influence of the tail group of two novel minor groove binders (S-MGB-528 and S-MGB-529) in mammalian cell models. These novel S-MGBs contained alkyne moieties which enabled analysis in the cell-silent region of the Raman spectrum. The intracellular uptake concentration, distribution and mechanism were evaluated as a function of the pK a of the tail group, morpholine and amidine, for S-MGB-528 and S-MGB-529, respectively. Although S-MGB-529 had a higher binding affinity to the minor groove of DNA in solution-phase measurements, the Raman imaging data indicated that S-MGB-528 showed a greater degree of intracellular accumulation. Furthermore, using high resolution stimulated Raman scattering (SRS) microscopy, the initial localisation of S-MGB-528 was shown to be in the nucleus before accumulation in the lysosome, which was demonstrated using a multimodal imaging approach. This study highlights the potential of Raman spectroscopy for semi-quantitative drug imaging studies and highlights the importance of imaging techniques to investigate drug-cell interactions, to better inform the drug design process.
Collapse
Affiliation(s)
- Christian Tentellino
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - William J. Tipping
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of StrathclydeGlasgow G1 1RDUK
| | - Leah M. C. McGee
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Laura M. Bain
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Corinna Wetherill
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Stacey Laing
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Izaak Tyson-Hirst
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Fraser J. Scott
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| |
Collapse
|
8
|
Selective Anti-Leishmanial Strathclyde Minor Groove Binders Using an N-Oxide Tail-Group Modification. Int J Mol Sci 2022; 23:ijms231911912. [PMID: 36233213 PMCID: PMC9569768 DOI: 10.3390/ijms231911912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class of anti-infective agent that have been shown to have potent activity against various bacteria, viruses, fungi and parasites. Herein, it is shown that S-MGBs have potent activity against L. donovani, and that an N-oxide derivation of the tertiary amine tail of typical S-MGBs leads to selective anti-leishmanial activity. Additionally, using S-MGB-219, the N-oxide derivation is shown to retain strong binding to DNA as a 2:1 dimer. These findings support the further study of anti-leishmanial S-MGBs as novel therapeutics.
Collapse
|
9
|
Synthesis and Evaluation of Novel DNA Minor Groove Binders as Antiamoebic Agents. Antibiotics (Basel) 2022; 11:antibiotics11070935. [PMID: 35884189 PMCID: PMC9312114 DOI: 10.3390/antibiotics11070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders (MGBs) were synthesized and tested for their antiamoebic activity via amoebicidal, encystation, excystation, and cytopathogenicity assays. It was found that the compounds MGB3, MGB6, MGB22, MGB24, and MGB16 significantly reduce amoeba viability to 76.20%, 59.45%, 66.5%, 39.32%, and 43.21%, respectively, in amoebicidal assays. Moreover, the compounds MGB6, MGB20, MGB22, MGB28, MGB30, MGB32, and MGB16 significantly inhibit Acanthamoeba cysts, leading to the development of only 46.3%, 39%, 30.3%, 29.6%, 27.8%, 41.5%, and 45.6% cysts. Additionally, the compounds MGB3, MGB4, MGB6, MGB22, MGB24, MGB28, MGB32, and MGB16 significantly reduce the re-emergence of cysts to trophozoites, with viable trophozoites being only 64.3%, 47.3%, 41.4%, 52.9%, 55.4%, 40.6%, 62.1%, and 51.7%. Moreover, the compounds MGB3, MGB4, and MGB6 exhibited the greatest reduction in amoeba-mediated host-cell death, with cell death reduced to 41.5%, 49.4%, and 49.5%. With the following determined, future in vivo studies can be carried out to understand the effect of the compounds on animal models such as mice.
Collapse
|
10
|
Multitargeted anti-infective drugs: resilience to resistance in the antimicrobial resistance era. FUTURE DRUG DISCOVERY 2022; 4:FDD73. [PMID: 35600289 PMCID: PMC9112235 DOI: 10.4155/fdd-2022-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022] Open
Abstract
The standard drug discovery paradigm of single molecule – single biological target – single biological effect is perhaps particularly unsuitable for anti-infective drug discovery. This is due to the rapid evolution of resistance likely to be observed with single target drugs. Multitargeted anti-infective drugs are likely to be superior due to their lower susceptibility to target-related resistance mechanisms. Strathclyde minor groove binders are a class of compounds which have been developed by adopting the multitargeted anti-infective drugs paradigm, and their effectiveness against a wide range of pathogenic organisms is discussed. The renaming of this class to Strathclyde nucleic acid binders is also presented due to their likely targets including both DNA and RNA.
Collapse
|
11
|
Kieswetter NS, Ozturk M, Hlaka L, Chia JE, Nichol RJO, Cross JM, McGee LMC, Tyson-Hirst I, Beveridge R, Brombacher F, Carter KC, Suckling CJ, Scott FJ, Guler R. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1061-1071. [PMID: 35084027 PMCID: PMC8969509 DOI: 10.1093/jac/dkac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Background Objectives Methods Results Conclusions
Collapse
Affiliation(s)
- Nathan S. Kieswetter
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lerato Hlaka
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Ryan J. O. Nichol
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Jasmine M. Cross
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Leah M. C. McGee
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Izaak Tyson-Hirst
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katharine C. Carter
- Strathclyde Institute of Pharmacy of Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, Scotland
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Fraser J. Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Corresponding author. E-mail:
| |
Collapse
|
12
|
Brooke DP, McGee LMC, Giordani F, Cross JM, Khalaf AI, Irving C, Gillingwater K, Shaw CD, Carter KC, Barrett MP, Suckling CJ, Scott FJ. Truncated S-MGBs: towards a parasite-specific and low aggregation chemotype. RSC Med Chem 2021; 12:1391-1401. [PMID: 34447938 PMCID: PMC8372214 DOI: 10.1039/d1md00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
This paper describes the design and synthesis of Strathclyde minor groove binders (S-MGBs) that have been truncated by the removal of a pyrrole ring in order to mimic the structure of the natural product, disgocidine. S-MGBs have been found to be active against many different organisms, however, selective antiparasitic activity is required. A panel of seven truncated S-MGBs was prepared and the activities examined against a number of clinically relevant organisms including several bacteria and parasites. The effect of the truncation strategy on S-MGB aggregation in aqueous environment was also investigated using 1H inspection and DOSY experiments. A lead compound, a truncated S-MGB, which possesses significant activity only against trypanosomes and Leishmania has been identified for further study and was also found to be less affected by aggregation compared to its full-length analogue.
Collapse
Affiliation(s)
- Daniel P Brooke
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Leah M C McGee
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow UK
| | - Jasmine M Cross
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Abedawn I Khalaf
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Craig Irving
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Kirsten Gillingwater
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute Basel Switzerland
- University of Basel Basel Switzerland
| | - Craig D Shaw
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde Glasgow UK
| | - Katharine C Carter
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde Glasgow UK
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow UK
| | - Colin J Suckling
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Fraser J Scott
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| |
Collapse
|
13
|
Nichol RJO, Khalaf AI, Sooda K, Hussain O, Griffiths HBS, Phillips R, Javid FA, Suckling CJ, Allison SJ, Scott FJ. Selective in vitro anti-cancer activity of non-alkylating minor groove binders. MEDCHEMCOMM 2019; 10:1620-1634. [PMID: 32952999 DOI: 10.1039/c9md00268e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Traditional cytotoxic agents which act through a DNA-alkylating mechanism are relatively non-specific, resulting in a small therapeutic window and thus limiting their effectiveness. In this study, we evaluate a panel of 24 non-alkylating Strathclyde Minor Groove Binders (S-MGBs), including 14 novel compounds, for in vitro anti-cancer activity against a human colon carcinoma cell line, a cisplatin-sensitive ovarian cancer cell line and a cisplatin-resistant ovarian cancer cell line. A human non-cancerous retinal epithelial cell line was used to measure selectivity of any response. We have identified several S-MGBs with activities comparable to cis-platin and carboplatin, but with better in vitro selectivity indices, particularly S-MGB-4, S-MGB-74 and S-MGB-317. Moreover, a comparison of the cis-platin resistant and cis-platin sensitive ovarian cancer cell lines reveals that our S-MGBs do not show cross resistance with cisplatin or carboplatin and that they likely have a different mechanism of action. Finally, we present an initial investigation into the mechanism of action of one compound from this class, S-MGB-4, demonstrating that neither DNA double strand breaks nor the DNA damage stress sensor protein p53 are induced. This indicates that our S-MGBs are unlikely to act through an alkylating or DNA damage response mechanism.
Collapse
Affiliation(s)
- Ryan J O Nichol
- Department of Biological and Geographical Sciences , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Abedawn I Khalaf
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Glasgow , UK .
| | - Kartheek Sooda
- Department of Pharmacy , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Omar Hussain
- Department of Pharmacy , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Hollie B S Griffiths
- Department of Biological and Geographical Sciences , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Roger Phillips
- Department of Pharmacy , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Farideh A Javid
- Department of Pharmacy , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Colin J Suckling
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Glasgow , UK .
| | - Simon J Allison
- Department of Biological and Geographical Sciences , School of Applied Sciences , University of Huddersfield , Huddersfield , UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Glasgow , UK .
| |
Collapse
|
14
|
Giordani F, Khalaf AI, Gillingwater K, Munday JC, de Koning HP, Suckling CJ, Barrett MP, Scott FJ. Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. J Med Chem 2019; 62:3021-3035. [DOI: 10.1021/acs.jmedchem.8b01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Abedawn I. Khalaf
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Kirsten Gillingwater
- Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | | | | | - Colin J. Suckling
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | | | - Fraser J. Scott
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| |
Collapse
|
15
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
16
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
17
|
Harika NK, Germann MW, Wilson WD. First Structure of a Designed Minor Groove Binding Heterocyclic Cation that Specifically Recognizes Mixed DNA Base Pair Sequences. Chemistry 2017; 23:17612-17620. [PMID: 29044822 PMCID: PMC6360951 DOI: 10.1002/chem.201704563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 12/24/2022]
Abstract
The high-resolution NMR structure of the first heterocyclic, non-amide, organic cation that strongly and selectively recognizes mixed AT/GC bp (bp=base pair) sequences of DNA in a 1:1 complex is described. Compound designs of this type provide essential methods for control of functional, non-genomic DNA sequences and have broad cell uptake capability, based on studies from animals to humans. The high-resolution structural studies described in this report are essential for understanding the molecular basis for the sequence-specific binding as well as for new ideas for additional compound designs for sequence-specific recognition. The molecular features, in this report, explain the mechanism of recognition of both A⋅T and G⋅C bps and are an interesting molecular recognition story. Examination of the experimental structure and the NMR restrained molecular dynamics model suggests that recognition of the G⋅C base pair involves two specific H-bonds. The structure illustrates a wealth of information on different DNA interactions and illustrates an interfacial water molecule that is a key component of the complex.
Collapse
Affiliation(s)
- Narinder K. Harika
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Markus W. Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
18
|
Hlaka L, Rosslee MJ, Ozturk M, Kumar S, Parihar SP, Brombacher F, Khalaf AI, Carter KC, Scott FJ, Suckling CJ, Guler R. Evaluation of minor groove binders (MGBs) as novel anti-mycobacterial agents and the effect of using non-ionic surfactant vesicles as a delivery system to improve their efficacy. J Antimicrob Chemother 2017; 72:3334-3341. [PMID: 28961913 PMCID: PMC5890746 DOI: 10.1093/jac/dkx326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The slow development of major advances in drug discovery for the treatment of Mycobacterium tuberculosis (Mtb) infection suggests a compelling need for evaluation of more effective drug therapies against TB. New classes of drugs are constantly being evaluated for anti-mycobacterial activity with currently a very limited number of new drugs approved for TB treatment. Minor groove binders (MGBs) have previously revealed promising antimicrobial activity against various infectious agents; however, they have not yet been screened against Mtb. METHODS The mycobactericidal activity of 96 MGB compounds against Mtb was determined using an H37Rv-GFP microplate assay. MGB hits were screened for their intracellular mycobactericidal efficacy against the clinical Beijing Mtb strain HN878 in bone-marrow-derived macrophages using standard cfu counting. Cell viability was assessed by CellTiter-Blue assays. Selected MGBs were encapsulated into non-ionic surfactant vesicles (NIVs) for drug delivery system evaluation. RESULTS H37Rv-GFP screening yielded a hit-list of seven compounds at an MIC99 of between 0.39 and 1.56 μM. MGB-362 and MGB-364 displayed intracellular mycobactericidal activity against Mtb HN878 at an MIC50 of 4.09 and 4.19 μM, respectively, whilst being non-toxic. Subsequent encapsulation into NIVs demonstrated a 1.6- and 2.1-fold increased intracellular mycobacterial activity, similar to that of rifampicin when compared with MGB-alone formulation. CONCLUSIONS MGB anti-mycobacterial activities together with non-toxic properties indicate that MGB compounds constitute an important new class of drug/chemical entity, which holds promise in future anti-TB therapy. Furthermore, the ability of NIVs to better deliver entrapped MGB compounds to an intracellular Mtb infection suggests further preclinical evaluation is warranted.
Collapse
Affiliation(s)
- Lerato Hlaka
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Michael-Jon Rosslee
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Mumin Ozturk
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Santosh Kumar
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Suraj P Parihar
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Frank Brombacher
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| | - Abedawn I Khalaf
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Katharine C Carter
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 ORE, UK
| | - Fraser J Scott
- Department of Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Colin J Suckling
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Reto Guler
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa
| |
Collapse
|