1
|
Petrova AV, Babkov DA, Danilov RD, Sokolova EV, Kazakova OB, Spasov AA. Spacered With Tetrazole Oleanolic and Ursolic Indolo-Acids Are Strong Inhibitors of α-Glucosidase. Chem Biol Drug Des 2025; 105:e70065. [PMID: 40026291 DOI: 10.1111/cbdd.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
A series of oleanane and ursane-type derivatives conjugated with a tetrazole cycle were obtained by 2 + 3 cycloaddition of C28-cyanoalkyl esters with sodium azide in the presence of NH4Cl. It was shown that 2,3-indolo-oleanolic and ursolic acids with a tetrazole moiety exhibited strong inhibitory activity against α-glucosidase with IC50 values of 1.15 and 1.28 μM, respectively, being more active than the marketed drug acarbose (IC50 649.94 μM). It was also established that the NH of the tetrazole moiety forms a hydrogen bond with the backbone of Ser308, which allowed an explanation for the drastically improved activity of the tetrazolyl derivatives. The tetrazole derivative of 2,3-indolo-oleanolic acid was also identified as a potential inhibitor of NLRP3 activation, reducing the area of LPS + ATP-stimulated macrophages by 33%, not much less than glibenclamide (51%).
Collapse
Affiliation(s)
- Anastasiya V Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Denis A Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| | - Roman D Danilov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| | - Elena V Sokolova
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Alexander A Spasov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| |
Collapse
|
2
|
Khademi Z, Nikoofar K. Applications of catalytic systems containing DNA nucleobases (adenine, cytosine, guanine, and thymine) in organic reactions. RSC Adv 2025; 15:3192-3218. [PMID: 39896433 PMCID: PMC11784891 DOI: 10.1039/d4ra07996e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
In recent years, nucleobases have attracted special attention because of their abundant resources and multiple interaction sites, which enable them to interact with and functionalize other molecules. This review focuses on the catalytic activities of each of the four main nucleobases found in deoxyribonucleic acid (DNA) in various organic reactions. Based on the studies, most of the nucleobases act as heterogeneous catalytic systems. The authors hope their assessment will help chemists and biochemists to propose new procedures for utilizing nucleobases as catalysts in various organic synthetic transformations. The review covers the corresponding literature published till the end of August 2023.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| | - Kobra Nikoofar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| |
Collapse
|
3
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Sadineni K, Haridasyam SB, Gujja V, Muvvala V, Nechipadappu SK, Nanda Pilli KVV, Chepuri K, Allaka TR. Novel tetrazolyl-1,2,3-triazole derivatives as potent antimicrobial targets: design, synthesis and molecular docking techniques. J Biomol Struct Dyn 2024:1-16. [PMID: 39562999 DOI: 10.1080/07391102.2024.2425830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
The main objective of this study is to produce novel triazoles-loaded tetrazoles, which are crucial in the development of prospective therapeutic agents in medicinal chemistry. Recent investigations have found a wide range of uses for these derivatives, and they are prospective lead molecules for the synthesis of substances with enormous therapeutic utility for various diseases, especially for bacterial therapy. New series of 1,2,3-triazole derivatives have been synthesized from methyl (2S,4S)-4-azido-1-(2,4-difluoro-3-methylbenzoyl)pyrrolidine-2-carboxylate (5) using a well-established click reaction that has several advantages to afford a novel heterocyclic compound based on tetrazole moieties. The structures of the new compounds were ascertained by spectral means (IR, NMR: 1H and 13C) and mass spectrum. All the synthesized compounds were assessed in vitro antimicrobial activity against Gram-+ve (S. pyogenes, S. aureus and B. subtilis), Gram-negative (E. coli and P. aeruginosa) bacterial and fungal strains A. flavus and C. albicans. The prepared compounds 7b and7f proved to have strong impact on S. aureus and S. pyogenes strains with MICs of 2.5 µg/mL and 1.5 µg/mL respectively. Among the tested compounds, hybrids 7b, 7f, 7h, and 7i exhibited exceptional antifungal susceptibilities against C. albicans with zone of inhibition 25 ± 0.2, 30 ± 0.3, 30 ± 0.1, and 28 ± 0.2 mm respectively, which is stronger than fluconazole (28 ± 0.1 mm). The capacity of ligand 7f to form a stable compound on the active site of S. aureus complex with DNA Gyrase (2XCT) was confirmed by docking studies using amino acids Ala233(A), Arg234(A), Gly283(A), Ser286(A), Lys52(A), His280(A), Gly51(A), His282(A) and Val246(A). Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated.
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkanna Gujja
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam Deemed to be University, Rudraram, Hyderabad, India
| | - Sunil Kumar Nechipadappu
- Department of Analytical and Structural Chemistry, CSIR-IICT, Tarnaka, Hyderabad, Telangana, India
| | - Kishore Veera Venkata Nanda Pilli
- Department of Chemistry, School of Applied Sciences and Humanities, Vignans Foundation for Science, Technology and Research University), Vadlamudi, Guntur, India
| | - Kalyani Chepuri
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Gandham SK, Kudale AA, Allaka TR, Chepuri K, Jha A. New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies. Mol Divers 2024; 28:3313-3329. [PMID: 37938509 DOI: 10.1007/s11030-023-10762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. We report design, synthesis and molecular docking studies of tetrazolyl-1,2,3-triazole derivatives (7a-i) bearing pyrrolidine moiety and evaluating their anticancer activity against four cancer cell lines viz. Hela, MCF-7, HCT-116 and HepG2. The structures of the new compounds were ascertained by spectral means IR, NMR: 1H &13C and Mass spectrum. From the studies compounds7a and 7i exhibited significant anticancer activity against the Hela cell line with IC50 = 0.32 ± 1.00, 1.80 ± 0.22 μM when compared to reference drug Doxorubicin (IC50 = 2.34 ± 0.11 μM), whereas 7h, 7i, and 7b were found to be active against MCF-7, HCT-116 and HepG2 cell lines with IC50 = 3.20 ± 1.40, 1.38 ± 0.06 and 0.97 ± 0.12 μM respectively. Notably 7a exhibited highest conventional hydrogen bondings TyrA:40, SerA:17, LysA:117, AlaA:146, Tyr218 with 3HB4and SerA:17, LysA:117, AlaA:146, TyrA:40 with 6IBZ and docking energy - 10.85, - 8.21 kcal/mol respectively. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME. The results of the in vitro and in silico studies suggest that the tetrazole incorporated pyrrolidine-triazoles may possess the ideal structural requirements for further developing new anticancer agents.
Collapse
Affiliation(s)
- Siva Kumar Gandham
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit A Kudale
- Research and Development, ASolution Pharmaceuticals Pvt Ltd, Dist. Thane, Ambernath, Maharashtra, 421506, India
| | - Tejeswara Rao Allaka
- Department of Chemistry, Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Kalyani Chepuri
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Anjali Jha
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
6
|
Al Maqbali AS, Al Rasbi NK, Zoghaib WM, Sivakumar N, Robertson CC, Shongwe MS, Grzegorzek N, Abdel-Jalil RJ. Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1 H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology. Molecules 2024; 29:2839. [PMID: 38930904 PMCID: PMC11206253 DOI: 10.3390/molecules29122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.
Collapse
Affiliation(s)
- Anwaar S. Al Maqbali
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nawal K. Al Rasbi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Wajdi M. Zoghaib
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman;
| | | | - Musa S. Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Norbert Grzegorzek
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, 72076 Tübingen, Germany;
| | - Raid J. Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| |
Collapse
|
7
|
El Faydy M, Lakhrissi L, Dahaieh N, Ounine K, Tüzün B, Chahboun N, Boshaala A, AlObaid A, Warad I, Lakhrissi B, Zarrouk A. Synthesis, Biological Properties, and Molecular Docking Study of Novel 1,2,3-Triazole-8-quinolinol Hybrids. ACS OMEGA 2024; 9:25395-25409. [PMID: 38882066 PMCID: PMC11170742 DOI: 10.1021/acsomega.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 μg/mL against S. aureus and 20 μg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
Collapse
Affiliation(s)
- Mohamed El Faydy
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Loubna Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Naoufel Dahaieh
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Khadija Ounine
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Nabila Chahboun
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, PO Box 242, Kenitra 14000, Morocco
- Institute of Nursing Professions and Health Techniques, Annex, Kenitra 14000, Morocco
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Ahmed Boshaala
- Libyan Authority for Scientific Research, P O Box 80045, Tripoli Libya
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| | - Abeer AlObaid
- Department of Chemistry, College of Science, King Saud University, P O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ismail Warad
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
- Department of Chemistry, AN-Najah National University, PO Box 7, Nablus 00970, Palestine
| | - Brahim Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| |
Collapse
|
8
|
Makhmutova LI, Shurpik DN, Mostovaya OA, Lachugina NR, Gerasimov AV, Guseinova A, Evtugyn GA, Stoikov II. A supramolecular electrochemical probe based on a tetrazole derivative pillar[5]arene/methylene blue system. Org Biomol Chem 2024; 22:4353-4363. [PMID: 38736397 DOI: 10.1039/d4ob00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For the first time, an original synthetic approach has been developed that enables the introduce ten tetrazole fragments into the pillar[5]arene structure. A supramolecular electrochemical probe was assembled for the first time from the obtained macrocycles and an electrochemically active signal converter: methylene blue (MB) dye. The ability of pillar[5]arene containing tetrazole fragments to selectively bind MB was confirmed by UV-vis and 2D 1H-1H NOESY spectroscopy. The stoichiometry of the resulting pillar[5]arene/MB complex = 1 : 2. This new supramolecular probe pillar[5]arene/MB allowed the detection of changes in the electrochemical signals of MB implemented in the supramolecular complex depending on the presence or absence of some metal ions (Zn2+ and Co2+) that do not exert their own redox activity. This will find further applications for the enhancement of the range of analytes detected by their influence on host-guest complexation and for the design of biosensors based on specific DNA-MB interactions.
Collapse
Affiliation(s)
- Lyaysan I Makhmutova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Dmitriy N Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Olga A Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Natalia R Lachugina
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Alexander V Gerasimov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Adelya Guseinova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Gennady A Evtugyn
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Ivan I Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| |
Collapse
|
9
|
Jaiswal S, Verma K, Dwivedi J, Sharma S. Tetrazole derivatives in the management of neurological disorders: Recent advances on synthesis and pharmacological aspects. Eur J Med Chem 2024; 271:116388. [PMID: 38614062 DOI: 10.1016/j.ejmech.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Neurological disorders are the leading cause of a large number of mortalities and morbidities. Nitrogen heterocyclic compounds have been pivotal in exhibiting wide array of therapeutic applications. Among them, tetrazole is a ubiquitous class of organic heterocyclic compounds that have attracted much attention because of its unique structural and chemical properties, and a wide range of pharmacological activities comprising anti-convulsant effect, antibiotic, anti-allergic, anti-hypertensive to name a few. Owing to significant chemical and biological properties, the present review aimed at highlighting the recent advances in tetrazole derivatives with special emphasis on their role in the management of neurological diseases. Besides, in-depth structure-activity relationships, molecular docking studies, and associated modes of action of tetrazole derivatives evident in in vitro, in vivo preclinical, and clinical studies have been discussed.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India.
| |
Collapse
|
10
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
11
|
Dhonnar SL, Jagdale BS, Adole VA, Sadgir NV. PEG-mediated synthesis, antibacterial, antifungal and antioxidant studies of some new 1,3,5-trisubstituted 2-pyrazolines. Mol Divers 2023; 27:2441-2452. [PMID: 36367640 DOI: 10.1007/s11030-022-10562-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
A new series of 1,3,5-trisubstituted 2-pyrazoline derivatives (3a-l) are synthesized in good to excellent yields from the corresponding chalcones (1a-h) and acid hydrazides (2a-e) in polyethylene glycol-400 (PEG-400) as a green reaction medium. The newly synthesized 2-pyrazoline derivatives are screened for their antibacterial and antifungal activity. The synthesized trisubstituted pyrazolines displayed moderate to good antibacterial and antifungal properties as compared with the standard reference penicillin and fluconazole drugs. Additionally, the antioxidant potential of the 1,3,5-trisubstituted 2-pyrazolines is evaluated by OH and DPPH assay. The 1,3,5-trisubstituted 2-pyrazolines showed good radical scavenger activity and were found as good antioxidant agents.
Collapse
Affiliation(s)
- Sunil L Dhonnar
- Department of Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati (Affiliated to Savitribai Phule Pune University, Pune), Nashik, 422003, India.
| | - Bapu S Jagdale
- Department of Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati (Affiliated to Savitribai Phule Pune University, Pune), Nashik, 422003, India
| | - Vishnu A Adole
- Department of Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati (Affiliated to Savitribai Phule Pune University, Pune), Nashik, 422003, India
| | - Nutan V Sadgir
- Department of Chemistry, Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati (Affiliated to Savitribai Phule Pune University, Pune), Nashik, 422003, India
| |
Collapse
|
12
|
Zhang X, Li F, Li R, Zhao N, Liu D, Xu Y, Wang L, Wang D, Zhao R. B7 Induces Apoptosis in Colorectal Cancer Cells by Regulating the Expression of Caspase-3 and Inhibits Autophagy. Onco Targets Ther 2023; 16:867-883. [PMID: 37915320 PMCID: PMC10617530 DOI: 10.2147/ott.s429128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Heterocyclic compounds are organic compounds with heterocyclic structures, which are common in drug molecules. They include pyrazines with diverse functions, including anti-cancer, antimicrobial, antidiabetic, and anticholinergic activities. In this study a new small molecular compound B7 based on tetrazolium substituted pyrazine was synthesized and its effect on the progression of colorectal cancer (CRC) and its potential mechanism were investigated. Methods We synthesized a series of tetrazolium-substituted pyrazine compounds by chemoenzymatic method. NCM460 (Human), HCT116 (Human), SW480 (Human) cell lines were selected to analyse the inhibitory effect of B7 on CRC by CCK-8, apoptosis, cell migration and invasion, qPCR, Western blotting, molecular docking, immunofluorescence. Moreover, a CRC xenograft model of mice was used to analyzed the role of B7 in vivo. Results Among these compounds, 3-methyl-5je-6-bis (1H-tetrazole-5-yl) pyrazine-2-carboxylic acid (B7) inhibited CRC cell proliferation and induced apoptosis. The expression of Caspase-3 was increased after B7 treatment. In addition, the mitochondria abnormalities was observed in B7 group due to decrease the expression of Beclin-1. In addition, B7 inhibited the migration and invasion in CRC cells. Finally, the results showed that B7 had anti-tumor activity in CRC xenograft model of mice. Conclusion In summary, compound B7 was synthesized efficiently using tetrazolium-substituted pyrazine via a chemoenzymatic method. Moreover, B7 have ability to regulate the expression of Caspase-3 which induced apoptosis in CRC cells. In addition, decreased Beclin-1 expression after B7 treatment, indicating inhibited autophagy. This study showed that B7 effectively induced apoptosis and inhibited autophagy in CRC cells.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130023, People’s Republic of China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ruihong Zhao
- Department of Gastroenterology Endoscopy Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
13
|
Oyeneyin OE, Ibrahim A, Ipinloju N, Ademoyegun AJ, Ojo ND. Insight into the corrosion inhibiting potential and anticancer activity of 1-(4-methoxyphenyl)-5-methyl-N'-(2-oxoindolin-3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide via computational approaches. J Biomol Struct Dyn 2023; 42:11149-11166. [PMID: 37747068 DOI: 10.1080/07391102.2023.2260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Cancer is a major health concern globally. Orthodox and traditional medicine have actively been explored to manage this disease. Also, corrosion is a natural catastrophe that weakens and deteriorates metallic structures and their alloys causing major structural failures and severe economic implications. Designing and exploring multi-functional materials are beneficial since they are adaptive to different fields including engineering and pharmaceutics. In this study, we examined the anti-corrosion and anti-cancer potentials of 1-(4-methoxyphenyl)-5-methyl-N'-(2-oxoindolin-3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide (MAC) using computational approaches. The molecular reactivity descriptors and charge distribution parameters of MAC were studied in gas and water at density functional theory (DFT) at B3LYP/6-311++G(d,p) theory level. The binding and mechanism of interaction between MAC and iron surface was studied using Monte Carlo (MC) and molecular dynamics (MD) simulation in hydrochloric acid medium. From the DFT, MC, and MD simulations, it was observed that MAC interacted spontaneously with iron surface essentially via van der Waal and electrostatic interactions. The near-parallel alignment of the corrosion inhibitor on iron plane facilitates its adsorption and isolation of the metal surface from the acidic solution. Further, the compound was docked in the binding pocket of anaplastic lymphoma kinase (ALK: 4FNZ) protein to assess its anti-cancer potential. The binding score, pharmacokinetics, and drug-likeness of MAC were compared with the reference drug (Crizotinib). The MAC displayed binding scores of -5.729 kcal/mol while Crizotinib has -3.904 kcal/mol. MD simulation of the complexes revealed that MAC is more stable and exhibits more favourable hydrogen bonding with the ALK receptor's active site than Crizotinib.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- School of Chemistry and Physics, University of Kwazulu-Natal, Durban, South Africa
| | - Abdulwasiu Ibrahim
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto Nigeria
| | - Nureni Ipinloju
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adeniyi John Ademoyegun
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | |
Collapse
|
14
|
Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects. Molecules 2023; 28:5765. [PMID: 37570735 PMCID: PMC10420780 DOI: 10.3390/molecules28155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.
Collapse
Affiliation(s)
- Umair Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Saba Bukhari
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| |
Collapse
|
15
|
Cui WH, Liu Q, Ye Z, He Y. Design and Synthesis of Bistetrazole-Based Energetic Salts Bearing the Nitrogen-Rich Fused Ring. Org Lett 2023. [PMID: 37471513 DOI: 10.1021/acs.orglett.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A series of bistetrazole-based energetic salts bearing a nitrogen-rich fused ring were designed and synthesized. Among them, compounds 4-10 showed good detonation properties and excellent thermostability. By treating nitrogen-rich fused ring 3 with concentrated hydrochloric acid, a new type of Dimroth rearrangement was observed that afforded compound 12 efficiently. This new transformation herein constitutes a valuable addition to the Dimroth rearrangement.
Collapse
Affiliation(s)
- Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| |
Collapse
|
16
|
Shehzadi K, Saba A, Yu M, Liang J. Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2. Top Curr Chem (Cham) 2023; 381:22. [PMID: 37318607 DOI: 10.1007/s41061-023-00432-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic since 2019, spreading rapidly and posing a significant threat to human health and life. With over 6 billion confirmed cases of the virus, the need for effective therapeutic drugs has become more urgent than ever before. RNA-dependent RNA polymerase (RdRp) is crucial in viral replication and transcription, catalysing viral RNA synthesis and serving as a promising therapeutic target for developing antiviral drugs. In this article, we explore the inhibition of RdRp as a potential treatment for viral diseases, analysing the structural information of RdRp in virus proliferation and summarizing the reported inhibitors' pharmacophore features and structure-activity relationship profiles. We hope that the information provided by this review will aid in structure-based drug design and aid in the global fight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Afsheen Saba
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China.
| |
Collapse
|
17
|
Zala M, Vora JJ, Khedkar VM. Synthesis, Characterization, Antitubercular Activity, and Molecular Docking Studies of Pyrazolylpyrazoline-Clubbed Triazole and Tetrazole Hybrids. ACS OMEGA 2023; 8:20262-20271. [PMID: 37323386 PMCID: PMC10268283 DOI: 10.1021/acsomega.2c07267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/31/2023] [Indexed: 06/17/2023]
Abstract
To increase the antitubercular potency, we synthesized a series of novel pyrazolylpyrazoline derivatives (9a-p) using the one-pot multicomponent reaction of the substituted heteroaryl aldehyde (3a,b), 2-acetyl pyrrole/thiazole (4a,b), and substituted hydrazine hydrates (5-8) in the presence of base NaOH as a catalyst in ethanol as the solvent at room temperature. Substituted heteroaryl aldehyde (3a,b) was synthesized from 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-methyl-carbaldehyde on protection with ethylene glycol followed by treatment with 4-amino triazole/5-amino tetrazole and then deprotection using acid. The salient features of the green protocol are the one-pot reaction, shorter reaction time, and straightforward workup procedure. All of the compounds were tested against Mycobacterium tuberculosis H37Rv, wherein compounds 9i, 9k, 9l, 9o, and 9p were found to be most effective. The structures of newly synthesized compounds were determined using spectral methods. Furthermore, molecular docking investigations into the active site of mycobacterial InhA yielded well-clustered solutions for these compounds' binding modalities producing a binding affinity in the range from -8.884 to -7.113. Theoretical results were in good accord with the observed experimental values. The docking score of the most active compound 9o was found to be -8.884, and the Glide energy was -61.144 kcal/mol. and it was found to accommodate well into the active site of InhA, engaging in a network of bonded and nonbonded interactions.
Collapse
Affiliation(s)
- Mayursinh Zala
- Department
of Chemistry, Faculty of Science, M.G. Science
Institute, Affiliated with Gujarat University, Ahmedabad 380009, India
| | - Jwalant J. Vora
- Department
of Chemistry, Faculty of Science, M.G. Science
Institute, Affiliated with Gujarat University, Ahmedabad 380009, India
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune 424001, Maharashtra, India
| |
Collapse
|
18
|
Mazloumi M, Shirini F. Acidic Ionic Liquid Bridge Supported on Nano Rice Husk Ash: An Efficient Promoter for the Conversion of Nitriles to Their Corresponding 5‐Substituted 1
H
‐Tetrazoles and Amides. ChemistrySelect 2023. [DOI: 10.1002/slct.202203554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Masoumeh Mazloumi
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| | - Farhad Shirini
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| |
Collapse
|
19
|
Zaragoza F. Non-Covalent Albumin Ligands in FDA-Approved Therapeutic Peptides and Proteins. J Med Chem 2023; 66:3656-3663. [PMID: 35961011 DOI: 10.1021/acs.jmedchem.2c01021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing number of drugs that consist of a therapeutic peptide or protein linked to an albumin-binding structure are being approved. In this perspective, the pharmacokinetic data of currently marketed drugs of this type will be presented. Acylation with fatty acids or fatty α,ω-dicarboxylic acids has been used successfully to prepare long-acting analogs of insulin, GLP-1, and other peptides but not of larger proteins. With a tetrazole-sulfonylamide fatty acid bioisostere, it has now been possible to prepare a long-acting analog of human growth hormone (191 amino acids), which is suitable for once-weekly administration.
Collapse
|
20
|
Antypenko L, Antypenko O, Karnaukh I, Rebets O, Kovalenko S, Arisawa M. 5,6-Dihydrotetrazolo[1,5-c]quinazolines: Toxicity prediction, synthesis, antimicrobial activity, molecular docking, and perspectives. Arch Pharm (Weinheim) 2023. [PMID: 36864600 DOI: 10.1002/ardp.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Antimicrobial resistance is a never-ending challenge, which should be considered seriously, especially when using unprescribed "over-the-counter" drugs. The synthesis and investigation of novel biologically active substances is among the directions to overcome this problem. Hence, 18 novel 5,6-dihydrotetrazolo[1,5-c]quinazolines were synthesized, their identity, purity, and structure were elucidated by elemental analysis, IR, LC-MS, 1 Н, and 13 C NMR spectra. According to the computational estimation, 15 substances were found to be of toxicity Class V, two of Class IV, and only one of Class II. The in vitro serial dilution method of antimicrobial screening against Escherichia coli, Staphylococcus aureus, Klebsiella aerogenes, Pseudomonas aeruginosa, and Candida albicans determined b3, c1, c6, and c10 as the "lead-compounds" for further modifications to increase the level of activity. Substance b3 demonstrated antibacterial activity that can be related to the calculated high affinity toward all studied proteins: 50S ribosomal protein L19 (PDB ID: 6WQN), sterol 14-alpha demethylase (PDB ID: 5TZ1), and ras-related protein Rab-9A (PDB ID: 1WMS). The structure-activity and structure-target affinity relationships are discussed. The targets for further investigations and the anatomical therapeutic chemical codes of drug similarity are predicted.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Oleksii Antypenko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Iryna Karnaukh
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Oksana Rebets
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Mieko Arisawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Oxadiazole Schiff Base as Fe 3+ Ion Chemosensor: "Turn-off" Fluorescent, Biological and Computational Studies. J Fluoresc 2023; 33:751-772. [PMID: 36515760 DOI: 10.1007/s10895-022-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Compound, (E)-5-(4-((thiophen-2-ylmethylene)amino)phenyl)-1,3,4-oxadiazole-2-thiol (3) was synthesized via condensation reaction of 5-(4-aminophenyl)-1,3,4-oxadiazole-2-thiol with thiophene-2-carbaldehyde in ethanol. For the synthesis and structural confirmation the FT-IR, 1H, 13C-NMR, UV-visible spectroscopy, and mass spectrometry were carried out. The long-term stability of the probe (3) was validated by the experimental as well as theoretical studies. The sensing behaviour of the compound 3 was monitored with various metal ions (Ca2+, Cr3+, Fe3+, Co2+, Mg2+, Na+, Ni2+, K+) using UV- Vis. and fluorescence spectroscopy techniques by various methods (effect of pH and density functional theory) which showing the most potent sensing behaviour with iron. Job's plot analysis confirmed the binding stoichiometry ratio 1:1 of Fe3+ ion and compound 3. The limit of detection (LOD), the limit of quantification (LOQ), and association constant (Ka) were calculated as 0.113 µM, 0.375 µM, and 5.226 × 105 respectively. The sensing behavior was further confirmed through spectroscopic techniques (FT-IR and 1H-NMR) and DFT calculations. The intercalative mode of binding of oxadiazole derivative 3 with Ct-DNA was supported through UV-Vis spectroscopy, fluorescence spectroscopy, viscosity, cyclic voltammetry, and circular dichroism measurements. The binding constant, Gibb's free energy, and stern-volmer constant were find out as 1.24 × 105, -29.057 kJ/mol, and 1.82 × 105 respectively. The cleavage activity of pBR322 plasmid DNA was also observed at 3 × 10-5 M concentration of compound 3. The computational binding score through molecular docking study was obtained as -7.4 kcal/mol. Additionally, the antifungal activity for compound 3 was also screened using broth dilution and disc diffusion method against C. albicans strain. The synthesized compound 3 showed good potential scavenging antioxidant activity against DPPH and H2O2 free radicals.
Collapse
|
22
|
Design and synthesis of sinomenine D-ring tetrazole-isoxazole and tetrazole-triazole derivatives via 1, 3-dipolar cycloaddition reaction. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Synthesis of 2,4‐dihydrochromeno[3,4‐
d
][1,2,3]triazoles and 5‐(2
H
‐chromen‐3‐yl)‐1
H
‐tetrazoles via regioselective 1,3‐dipolar cycloaddition of 2
H
‐chromene‐3‐carbonitriles with NaN
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
25
|
Alqahtani AM, Abdelazeem AH, El-Din AGS, Abdou R, Amin AH, Arab HH. Novel S-Mercaptotriazolebenzothiazole-Based Derivatives as Antimicrobial
Agents: Design, Synthesis, and In Vitro Evaluation. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220301154851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The search for novel antimicrobial agents effective against the emerging resistant
pathogenic microorganisms to the currently used drugs is a substantial need. Herein, a novel series of
compounds bearing a benzothiazolotriazole scaffold was synthesized and evaluated as potential antimicrobial
agents against a panel of gram +ve, gram -ve bacteria, and fungi species.
Methods:
The new compounds were synthesized via hybridization between the benzothiazolotriazole
scaffold and thiadiazole ring or various substituted aromatic moieties using the tethering technique in
drug discovery.
Results:
The in vitro results revealed that these compounds have significant antifungal activity rather than
antibacterial potential due to their high similarity with tricyclazole. Compound 7b bearing bromo-phenyl
moiety was the most potent derivative with an MIC value of 8 μg/mL against Candida albicans and Penicillium
chrysogenum.
Conclusion:
Collectively, benzothiazolotriazole-based derivatives are good antifungal leads and should
be further actively pursued to expand treatment options for systemic and topical fungal infections.
Collapse
Affiliation(s)
- Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Pharmacy, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Asmaa G. Safi El-Din
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21514, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
26
|
Devasia J, Nizam A, V. L. V. Azole-Based Antibacterial Agents: A Review on Multistep Synthesis Strategies and Biology. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1938615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Vasantha V. L.
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| |
Collapse
|
27
|
Yadav V, Reang J, Sharma V, Majeed J, Sharma PC, Sharma K, Giri N, Kumar A, Tonk RK. Quinoline-derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review. Chem Biol Drug Des 2022; 100:389-418. [PMID: 35712793 DOI: 10.1111/cbdd.14099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
The quinoline scaffolds are privileged for their numerous biological activities in the pharmaceutical field. This moiety constitutes a well-known space in several marketed preparations. The quinoline scaffolds gained attention in modern days being an important chemical moiety in the identification, designing, and synthesis of novel potent derivatives. The current review is developed to shine the light on critical and significant insights on the quinoline derivatives possessing diverse biological activities such as analgesic, anti-inflammatory, antialzheimer, anti-convulsant, anti-oxidant, antimicrobial, anti-cancer activities and so on. A detailed summary of quinoline ring from its origin to the recent advancements regarding its synthesis, green chemistry approaches, patented methods, and its marketed drugs is presented in the review. We attempted to review the literature compiling the critical information that has potential to encourage fellow researchers and scientists for the design and development of quinoline scaffold based active molecules that have improved therapeutic performance along with profound pharmacological properties.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Jurnal Reang
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Vinita Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Jaseela Majeed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Namita Giri
- College of Pharmacy, Ferris state University, Big Rapids, Michigan, USA
| | - Arun Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
28
|
Synthesis, Structure and Antileishmanial Evaluation of Endoperoxide–Pyrazole Hybrids. Molecules 2022; 27:molecules27175401. [PMID: 36080174 PMCID: PMC9457810 DOI: 10.3390/molecules27175401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Leishmaniases are among the most impacting neglected tropical diseases. In attempts to repurpose antimalarial drugs or candidates, it was found that selected 1,2,4-trioxanes, 1,2,4,5-tetraoxanes, and pyrazole-containing chemotypes demonstrated activity against Leishmania parasites. This study reports the synthesis and structure of trioxolane–pyrazole (OZ1, OZ2) and tetraoxane–pyrazole (T1, T2) hybrids obtained from the reaction of 3(5)-aminopyrazole with endoperoxide-containing building blocks. Interestingly, only the endocyclic amine of 3(5)-aminopyrazole was found to act as nucleophile for amide coupling. However, the fate of the reaction was influenced by prototropic tautomerism of the pyrazole heterocycle, yielding 3- and 5-aminopyrazole containing hybrids which were characterized by different techniques, including X-ray crystallography. The compounds were evaluated for in vitro antileishmanial activity against promastigotes of L. tropica and L. infantum, and for cytotoxicity against THP-1 cells. Selected compounds were also evaluated against intramacrophage amastigote forms of L. infantum. Trioxolane–pyrazole hybrids OZ1 and OZ2 exhibited some activity against Leishmania promastigotes, while tetraoxane–pyrazole hybrids proved inactive, most likely due to solubility issues. Eight salt forms, specifically tosylate, mesylate, and hydrochloride salts, were then prepared to improve the solubility of the corresponding peroxide hybrids and were uniformly tested. Biological evaluations in promastigotes showed that the compound OZ1•HCl was the most active against both strains of Leishmania. Such finding was corroborated by the results obtained in assessments of the L. infantum amastigote susceptibility. It is noteworthy that the salt forms of the endoperoxide–pyrazole hybrids displayed a broader spectrum of action, showing activity in both strains of Leishmania. Our preliminary biological findings encourage further optimization of peroxide–pyrazole hybrids to identify a promising antileishmanial lead.
Collapse
|
29
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
30
|
Jasim SA, Tanjung FA, Sharma S, Mahmoud MZ, Kadhim SB, Kazemnejadi M. Ultrasound and microwave irradiated sustainable synthesis of 5- and 1-substituted tetrazoles in TAIm[I] ionic liquid. RESEARCH ON CHEMICAL INTERMEDIATES 2022; 48:3547-3566. [DOI: 10.1007/s11164-022-04756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
31
|
Saikia RA, Dutta A, Sarma B, Thakur AJ. Metal-Free Regioselective N 2-Arylation of 1 H-Tetrazoles with Diaryliodonium Salts. J Org Chem 2022; 87:9782-9796. [PMID: 35849501 DOI: 10.1021/acs.joc.2c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a simple, metal-free regioselective N2-arylation strategy for 5-substituted-1H-tetrazoles with diaryliodonium salts to access 2-aryl-5-substituted-tetrazoles. Diaryliodonium salts with a wide range of both electron-rich and previously challenged electron-deficient aryl groups are applicable in this method. Diversely functionalized tetrazoles are tolerable also. We have devised a one-pot system to synthesize 2,5-diaryl-tetrazoles directly from nitriles. The synthetic utility of this method is furthered extended to late-stage arylation of two biologically active molecules.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Anurag Dutta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
32
|
Verma A, Kaur B, Venugopal S, Wadhwa P, Sahu S, Kaur P, Kumar D, Sharma A. Tetrazole: A privileged scaffold for the discovery of anti-cancer agents. Chem Biol Drug Des 2022; 100:419-442. [PMID: 35713482 DOI: 10.1111/cbdd.14103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Carcinoma, characterized by abnormal growth of cells and tissue, is a ubiquitously leading cause of mortality across the globe due to some carcinogenic factors. Currently, several anticancer agents are commercially available in the global market. However, due to their resistance and cost, researchers are gaining more interest in developing newer novel potential anticancer agents. In the search for new drugs for clinical use, the tetrazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules. Among the various heterocyclic agents, tetrazole-containing compounds have shown significant promise in the treatment of a wide range of diseases, particularly cancer. Here, in this review, we focused on several synthetic approaches for the synthesis of tetrazole analogues, their targets for treating cancer along with the biological activity of some of the recently reported tetrazole-containing anticancer agents.
Collapse
Affiliation(s)
- Anil Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Paranjeet Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
33
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
34
|
Abstract
Lead optimization represents the tedious process of fine-tuning lead compounds from biologically active hits to suitable drug candidates for clinical trials. By chemically modifying a hit structure, an improved compound can be obtained in terms of activity, selectivity, and pharmacokinetic ADME (absorption, distribution, metabolism, and excretion) properties. The carboxylic acid moiety is known to be a crucial functionality in many pharmaceutically active compounds. Despite its common use as a key functionality in drugs, its presence in a lead molecule is often associated with poor pharmacokinetic properties and toxicity. In this literature overview, we discuss how the shortcomings of a carboxylic acid can be circumvented by replacing this functionality with bioisosteres. In this way, the positive aspects of this moiety, such as its activity, for example, by virtue of its capacity to form hydrogen bonds, can be maintained or even improved. To that end, we provide an overview of the most promising carboxylic acid bioisosteres and discuss a selection of synthetic routes towards the main functionalities.
Collapse
|
35
|
Avello MG, Moreno-Latorre M, de la Torre MC, Casarrubios L, Gornitzka H, Hemmert C, Sierra MA. β-Lactam and penicillin substituted mesoionic metal carbene complexes. Org Biomol Chem 2022; 20:2651-2660. [PMID: 35293422 DOI: 10.1039/d2ob00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,3-Triazolylidene MIC M-complexes (M = Au, Pd, Pt) having 2-azetidinones and penicillin G substituents at the triazole ring were prepared by CuAAC on 2-azetidinones having a terminal alkyne tethered at N1, followed by alkylation of the 1,2,3-triazole ring and transmetallation [Au(I), Pd(II) and Pt(II)]. The Au-MIC complexes efficiently catalyze the regioselective cycloisomerization of enynes, while the Pt-MIC complexes were efficient catalysts in hydrosilylation reactions.
Collapse
Affiliation(s)
- Marta G Avello
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María Moreno-Latorre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María C de la Torre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Miguel A Sierra
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
36
|
Novel 1,2,3-Triazole-Coumarin Hybrid Glycosides and Their Tetrazolyl Analogues: Design, Anticancer Evaluation and Molecular Docking Targeting EGFR, VEGFR-2 and CDK-2. Molecules 2022; 27:molecules27072047. [PMID: 35408446 PMCID: PMC9000887 DOI: 10.3390/molecules27072047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
This study represents the design and synthesis of a new set of triazole-coumarin-glycosyl hybrids and their tetrazole hybrid analogues possessing various sugar moieties and modified analogues. All the newly synthesized derivatives were screened for their cytotoxic activities against a panel of human cancer cell lines. The coumarin derivatives 10, 13 and 15 derivatives revealed potent cytotoxic activities against Paca-2, Mel-501, PC-3 and A-375 cancer cell lines. These promising analogues were further examined for their inhibitory assessment against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases. The coumarin-tetrazole 10 displayed broad superior inhibitory activity against all screened enzymes compared with the reference drugs, erlotinib, sorafenib and roscovitine, respectively. The impact of coumarin-tetrazole 10 upon cell cycle and apoptosis induction was determined to detect its mechanism of action. Additionally, it upregulated the levels of casp-3, casp-7 and cytochrome-c proteins and downregulated the PD-1 level. Finally, molecular docking study was simulated to afford better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes, which could be used as an optimum lead for further modification in the anticancer field.
Collapse
|
37
|
Synthesis and characterization of magnetic Fe3O4@Creatinine@Zr nanoparticles as novel catalyst for the synthesis of 5-substituted 1H-tetrazoles in water and the selective oxidation of sulfides with classical and ultrasonic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
|
39
|
Biological evaluation and photocatalytic activities of diaquabis pyrazine tetrazole metal complexes synthesised by microwave activation. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-02023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Aali E, Gholizadeh M, Noroozi-Shad N. 1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Swami S, Shrivastava R, Sharma N, Agarwala A, Verma VP, Singh AP. An ultrasound-assisted solvent and catalyst-free synthesis of structurally diverse pyrazole centered 1,5-disubstituted tetrazoles via one-pot four-component reaction. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211220094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
1,5-Disubstituted tetrazoles are vital drug-like scaffold usually encountered as valuable bioisosteres of cis-amide bond. In this article, we reported synthesis of some novel medicinally relevant pyrazole centered 1,5-disubstituted tetrazoles using ultrasound irradiation via a one-pot 4-C reaction from various pyrazole originated aldehyde, amine, isocyanide, and sodium azide. All the synthesized derivatives were characterized by IR, 1H NMR, 13C NMR, spectroscopic techniques, and mass analysis. This ultrasound-assisted green protocol has several advantages like mild reaction condition, high yield, catalyst and solvent-free reaction protocol, 15 minutes reaction time and easy workup.
Collapse
Affiliation(s)
- Suman Swami
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007, India
| | - Arunava Agarwala
- Department of Chemistry, Malda College, Malda, West Bengal, India
| | | | - Atul Pratap Singh
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
43
|
Aly AA, Abd El-Aziz M, Elshaier YA, Brown AB, Fathy HM, Bräse S, Nieger M, Ramadan M. Regioselective formation of new 3-S-alkylated-1,2,4-triazole-quinolones. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.2006659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohamed Abd El-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Yaseen A.M.M. Elshaier
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Alan B. Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL, USA
| | - Hazem M. Fathy
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
44
|
Baulina TV, Kudryavtsev IY, Bykhovskaya OV, Pasechnik MP, Anikina LV, Vologzhanina AV, Kochmarik VA, Brel VK. Tripodal Phosphine Oxide Ligand with Tetrazole Functionality. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Tris[2-(3′-cyanopropoxy)phenyl]phosphine oxide has been obtained via the alkylation of tris(2hydroxyphenyl)phosphine oxide with 4-bromobutyronitrile in the presence of K2CO3. The product structure has been elucidated by means of X-ray diffraction analysis. The terminal cyano groups in the obtained phosphine oxide have been converted into tetrazole rings via the click-reaction with NH4N3 to give a new hybrid tripodal propeller ligand, tris{2-[3′-(tetrazol-5′′-yl)propoxy]phenyl}phosphine oxide. Palladium(II) complexes of the prepared ligand and its short-linker analog, tris[2-(tetrazol-5′-ylmethoxy)phenyl]phosphine oxide, have been synthesized. Cytotoxicity of the ligands and their Pd(II) complexes has been studied.
Collapse
|
45
|
Jenifer VR, Muthuvel P, Das TM. Rational Design of Heterocyclic Moieties Incorporated in [1,2,3]Sugar‐Triazole Derivatives for Antioxidant Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- V. Rabecca Jenifer
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu (CUTN) Thiruvarur 610 005 INDIA
| | - Panneerselvam Muthuvel
- Department of Organic Chemistry University of Madras, Guindy Campus Chennai 600 025 INDIA
| | - Thangamuthu Mohan Das
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu (CUTN) Thiruvarur 610 005 INDIA
- Department of Organic Chemistry University of Madras, Guindy Campus Chennai 600 025 INDIA
| |
Collapse
|
46
|
Secrieru A, Oumeddour R, Cristiano MLS. Substituent Effects on EI-MS Fragmentation Patterns of 5-Allyloxy-1-aryl-tetrazoles and 4-Allyl-1-aryl-tetrazole-5-ones; Correlation with UV-Induced Fragmentation Channels. Molecules 2021; 26:molecules26113282. [PMID: 34072370 PMCID: PMC8199304 DOI: 10.3390/molecules26113282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/29/2023] Open
Abstract
1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.
Collapse
Affiliation(s)
- Alina Secrieru
- CCMAR and Department of Chemistry and Pharmacy, FCT, Campus de Gambelas, University of Algarve, 8005-039 Faro, Portugal; (A.S.); (R.O.)
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Rabah Oumeddour
- CCMAR and Department of Chemistry and Pharmacy, FCT, Campus de Gambelas, University of Algarve, 8005-039 Faro, Portugal; (A.S.); (R.O.)
- Laboratory of Industrial Analysis and Materials Science, Faculty MISM, University 8 Mai 1945, Guelma 24000, Algeria
| | - Maria L. S. Cristiano
- CCMAR and Department of Chemistry and Pharmacy, FCT, Campus de Gambelas, University of Algarve, 8005-039 Faro, Portugal; (A.S.); (R.O.)
- Correspondence: ; Tel.: +351-289-800-953
| |
Collapse
|
47
|
Sonkar C, Malviya N, Sinha N, Mukherjee A, Pakhira S, Mukhopadhyay S. Selective anticancer activities of ruthenium(II)-tetrazole complexes and their mechanistic insights. Biometals 2021; 34:795-812. [PMID: 33900532 DOI: 10.1007/s10534-021-00308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Ruthenium-based metallotherapeutics is an interesting alternative for platinum complexes acting as anticancer agents after the entry of KP1019, NAMI-A, and TLD1339 in clinical trials. Herein, we have synthesized three new arene ruthenium(II)-tetrazole complexes viz. [Ru2(η6-p-cymene)2(2-pytz)2Cl2] (1), [Ru2(η6-p-cymene)2(3-pytz)Cl3] (2), [Ru2(η6-p-cymene)2(4-pytz)Cl3] (3) [2-pytzH = 2-pyridyl tetrazole; 3-pytzH = 3-pyridyl tetrazole; 4-pytzH = 4-pyridyl tetrazole] which have been characterized by different analytical techniques. To aid the understanding of the complex formation, reactions of the arene ruthenium(II) dimer with tetrazoles were investigated using the first principles-based Density Functional Theory (DFT) B3LYP method. Electronic structures, equilibrium geometries of the reactants and products with the first-order saddle points, reactions mechanism, the changes of enthalpy (∆H) and free energy (∆G), chemical stability, and reaction barriers of the complexes were computed using the B3LYP DFT approach. The in vitro cytotoxicity of these complexes was investigated by MTT assay on different cancer cell lines which reveal complex 2 as the most significant cytotoxic agent toward the HeLa cell line. The complexes have also shown a strong binding affinity towards CT-DNA and albumin proteins (HSA and BSA) as analyzed through spectroscopic techniques. Investigation of the mechanism of cell death by complex 2 was further performed by various staining techniques, flow cytometry, and gene expression analysis by RT-PCR. Inhibition of cell migration study has been also revealed the possibility of complex 2 to act as a prospective anti-metastatic agent.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Novina Malviya
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Nilima Sinha
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India
| | - Attreyee Mukherjee
- Department of Chemistry, Ananda Mohan College, Kolkata, WB, 700 009, India
| | - Srimanta Pakhira
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India.
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
- Centre for Advanced Electronics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
48
|
Mittal R, Kumar A, Awasthi SK. Practical scale up synthesis of carboxylic acids and their bioisosteres 5-substituted-1 H-tetrazoles catalyzed by a graphene oxide-based solid acid carbocatalyst. RSC Adv 2021; 11:11166-11176. [PMID: 35423636 PMCID: PMC8695831 DOI: 10.1039/d1ra01053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Herein, catalytic application of a metal-free sulfonic acid functionalized reduced graphene oxide (SA-rGO) material is reported for the synthesis of both carboxylic acids and their bioisosteres, 5-substituted-1H-tetrazoles. SA-rGO as a catalytic material incorporates the intriguing properties of graphene oxide material with additional benefits of highly acidic sites due to sulfonic acid groups. The oxidation of aldehydes to carboxylic acids could be efficiently achieved using H2O2 as a green oxidant with high TOF values (9.06-9.89 h-1). The 5-substituted-1H-tetrazoles could also be effectively synthesized with high TOF values (12.08-16.96 h-1). The synthesis of 5-substituted-1H-tetrazoles was corroborated by single crystal X-ray analysis and computational calculations of the proposed reaction mechanism which correlated well with experimental findings. Both of the reactions could be performed efficiently at gram scale (10 g) using the SA-rGO catalyst. SA-rGO displays eminent reusability up to eight runs without significant decrease in its productivity. Thus, these features make SA-rGO riveting from an industrial perspective.
Collapse
Affiliation(s)
- Rupali Mittal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Amit Kumar
- Department of Chemistry, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
49
|
Pathak P, Novak J, Shukla PK, Grishina M, Potemkin V, Verma A. Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin-1,2,4-triazole scaffolds. Arch Pharm (Weinheim) 2021; 354:e2000473. [PMID: 33656194 DOI: 10.1002/ardp.202000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
Abstract
Bacterial infections are a serious threat to human health due to the development of resistance against the presently used antibiotics. The problem of growing and widespread antibiotic resistance is only getting worse with the shortage of new classes of antibiotics, creating a substantial unmet medical need in the treatment of serious bacterial infections. Therefore, in the present work, we report 18 novel hybrid thiazolidine-1,2,4-triazole derivatives as DNA gyrase inhibitors. The derivatives were synthesized by multistep organic synthesis and characterized by spectroscopic methods (1 H and 13 C nuclear magnetic resonance and mass spectroscopy). The derivatives were tested for DNA gyrase inhibition, and the result emphasized that the synthesized derivatives have a tendency to inhibit the function of DNA gyrase. Furthermore, the compounds were also tested for antibacterial activity against three Gram-positive (Bacillus subtilis [NCIM 2063], Bacillus cereus [NCIM 2156], Staphylococcus aureus [NCIM 2079]) and two Gram-negative (Escherichia coli [NCIM 2065], Proteus vulgaris [NCIM 2027]) bacteria. The derivatives showed a significant-to-moderate antibacterial activity with noticeable antibiofilm efficacy. Quantitative structure-activity relationship (QSAR), ADME (absorption, distribution, metabolism, elimination) calculation, molecular docking, radial distribution function, and 2D fingerprinting were also performed to elucidate fundamental structural fragments essential for their bioactivity. These studies suggest that the derivatives 10b and 10n have lead antibacterial properties with significant DNA gyrase inhibitory efficacy, and they can serve as a starting scaffold for the further development of new broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Jurica Novak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Parjanya K Shukla
- Krishnarpit Institute of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Prayagraj, Uttar Pradesh, India.,Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
50
|
Bagherzadeh N, Sardarian AR, Eslahi H. Sustainable and recyclable magnetic nanocatalyst of 1,10-phenanthroline Pd(0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|