1
|
Cai H, Zhang X, Ling D, Zhang M, Pang C, Ren SC, Jin Z, Chi YR. Discovery of novel benzoxazinone derivatives as promising protoporphyrinogen IX oxidase inhibitors. PEST MANAGEMENT SCIENCE 2025. [PMID: 40344475 DOI: 10.1002/ps.8861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) has emerged as a key target for developing new herbicides to protect crops from weeds. Herein, we disclose the development of two types of PPO inhibitors by modification of the benzoxazinone skeleton. RESULTS Two types of structurally novel benzoxazinone derivatives containing hydantoin or 1,2,3-triazole fragments were designed based on active substructure splicing and derivatization strategies. Systematic post-emergence herbicidal activity studies and crop selectivity assessments indicate that some of the compounds exhibit excellent herbicidal activity and crop safety. For instance, compound A1 shows highly effective herbicidal activity against all tested weeds at a dosage of 150 g ai/ha. Particularly, its herbicidal activity against broadleaf weeds is comparable to that of flumioxazin. Meanwhile, compound A1 exhibits superior safety for wheat and maize compared to flumioxazin within the 75-150 g ai/ha dosage range. Molecular docking studies revealed that compound A1 and flumioxazin occupy the same active cave within Nicotiana tabacum PPO (NtPPO). It is noteworthy that the carbonyl group on the oxazolone moiety of both compound A1 and flumioxazin forms beneficial interactions with Arg-98 and Phe-392. CONCLUSION Our research indicates that benzoxazinone derivatives containing either hydantoin or 1,2,3-triazole fragments serve as a promising chemical scaffold for the development of novel PPO-inhibiting herbicides. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Ling
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chen Pang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Alanazi FS, Alkahtani HM, Abdel-Aziz AAM, El-Azab AS, Asiri HH, Bakheit AH, Al-Omary FA. Synthesis, Antitumor Activities, and Apoptosis-Inducing Activities of Schiff's Bases Incorporating Imidazolidine-2,4-dione Scaffold: Molecular Docking Studies and Enzymatic Inhibition Activities. Pharmaceuticals (Basel) 2025; 18:496. [PMID: 40283934 PMCID: PMC12030650 DOI: 10.3390/ph18040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objective: Cancer is the leading cause of death worldwide despite the diversity of antitumor therapies, which highlights the necessity to explore new anticancer agents. Methods: We synthesized 5,5-diphenylhydantoin derivatives including Schiff's bases 7-27 and evaluated their cytotoxicity via the MTT assay. Enzymatic inhibition assays, cell cycle and apoptosis analyses, and molecular docking studies were also conducted. Results: Derivative 24 demonstrated the highest cytotoxic activity, with IC50 values of 12.83 ± 0.9 μM, 9.07 ± 0.8 μM, and 4.92 ± 0.3 μM against the cell lines HCT-116, HePG-2, and MCF-7, respectively. Compounds 10, 13, and 21 showed potent antitumor activities versus the examined cell lines (average IC50 = 13.2, 14.5, and 13.1 μM), respectively; moreover, these compounds also demonstrated promising EGFR and HER2 inhibitory activities, with IC50 values in the range 0.28-1.61 µM. Derivative 24 displayed the highest EGFR and HER2 inhibitory activity values (IC50 = 0.07 and 0.04 µM), respectively, which were close to those of the reference drugs erlotinib and lapatinib. Therefore, compound 24 was selected for further examinations and exhibited an inducing effect on apoptosis via diminishing the anti-apoptotic protein levels of BCL-2 (8.598 ± 0.29 ng/mL) and MCL-1 (261.20 ± 8.97 pg/mL) and promoting cell cycle arrest at the G2/M phase (33.46%). The binding relationships between compound 24 and the active sites of EGFR and HER2, which are similar to the co-crystallized inhibitors, were investigated using a molecular docking approach. Conclusions: These findings provide insights into the potential anticancer activities of the synthesized derivatives for further optimization to achieve therapeutic use.
Collapse
Affiliation(s)
- Fhdah S. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanadi H. Asiri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
3
|
Ganorkar SB, Hadole PM, Patil MR, Pardeshi CV, Bobade PS, Shirkhedkar AA, Vander Heyden Y. Deep eutectic solvents in analysis, delivery and chemistry of pharmaceuticals. Int J Pharm 2025; 672:125278. [PMID: 39875037 DOI: 10.1016/j.ijpharm.2025.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Deep eutectic solvents (DES) have an emerging scientific role, assisting modern pharmaceutics. They are uniquely supporting the resolution of crucial issues, such as the effective extraction and isolation of bio-actives. They act as media and catalysts for pharmaceutical drug synthesis, and as green solvents and modifiers in pharmaceutical analysis. Their role in pharmaceutical formulation and drug delivery is also up-and-coming, for instance, as alternative drug-solubilizing agents, drug stabilizers and functional additives, as therapeutic deep eutectic solvents, deep eutectic API, and monomers and reaction media for the synthesis of biomaterials for advanced drug delivery. The DES also help transforming medicinal/pharmaceutical chemistry. Although DES were described in 1918, their first pharmaceutical use is only reported in 1960. In view of their broad applicability in pharmaceutics, it may be interesting to review their history, origin, evolution, potential advantages, limitations, and specific applications as green solvents. A chronological and comparative study of the literature showed the important role of DES in green approaches for modern pharmaceuticals. The concepts, applications, and outcomes of DES in pharmaceutical analysis, formulation/drug delivery, and pharmaceutical/medicinal chemistry are presented. A comprehensive outline of the atypical applications of DES as effective green solvents in pharmaceutical bioactive extraction was assessed. Efforts to present classifications of DES explored in pharmaceuticals were also made. The present manuscript also covers computational trend, adds on commercial aspects with potential future applications of DES in pharmaceutical sciences.
Collapse
Affiliation(s)
- Saurabh B Ganorkar
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India.
| | - Pranay M Hadole
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Mangesh R Patil
- Tevapharm India Private Limited, Seawoods Grand Central, Seawoods (W), Navi Mumbai 400706 India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Preeti S Bobade
- Department of Pharmaceutical Quality Assurance and Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Atul A Shirkhedkar
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussels (VUB), Laarbeeklaan 103, Brussels 1090 Belgium.
| |
Collapse
|
4
|
Zhu RR, Hou XQ, Du DM. Squaramide-Catalyzed Asymmetric Mannich/Hemiketalization Retro-Henry Cascade Reaction of o-Hydroxy-α-Aminosulfones with α-Nitroketones. J Org Chem 2025; 90:1877-1888. [PMID: 39879666 DOI: 10.1021/acs.joc.4c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A concise and efficient asymmetric Mannich/hemiketalization/retro-Henry cascade reaction between o-hydroxy-α-aminosulfones and α-nitroketones was developed by utilizing a cinchona-derived bifunctional squaramide catalyst. This methodology provided access to β-nitro-substituted amino compounds with up to 95% yield and >99% ee. The practicality was demonstrated by scale-up and diverse derivatizations, including the synthesis of imidazolidinone and amino acid analogs. This is the first report of α-nitroketones in such a cascade reaction, offering a valuable approach for the synthesis of chiral β-nitro amino compounds.
Collapse
Affiliation(s)
- Rong-Rong Zhu
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xi-Qiang Hou
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Da-Ming Du
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Bsoul O, Lampel Y, Rofe M, Pariente-Cohen N, Timsit C, Fischer B. Regioselective N1-ribosylation of hydantoin: synthesis and properties of the first contracted uridine analog. Chem Commun (Camb) 2025; 61:2281-2284. [PMID: 39803794 DOI: 10.1039/d4cc06033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Modified nucleosides are vital in mRNA vaccines. We developed a contracted uridine analog, N1-hydantoinyl-ribose, HR, using steric shields to invert the regioselectivity of the classic Vorbrüggen reaction. We report synthetic routes and explore HR features such as acidity, stability, base pairing/stacking, and crystal/solution conformation compared to uridine.
Collapse
Affiliation(s)
- Odai Bsoul
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yakir Lampel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Maayan Rofe
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | | - Chen Timsit
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
6
|
Otsuka N, Yamaguchi R, Sawa H, Kadofusa N, Kato N, Nomura Y, Yamaguchi N, Nagano AJ, Sato A, Shirakawa M, Ito T. Small molecules and heat treatments reverse vernalization via epigenetic modification in Arabidopsis. Commun Biol 2025; 8:108. [PMID: 39843724 PMCID: PMC11754793 DOI: 10.1038/s42003-025-07553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring. Exposure to high temperatures following vernalization causes devernalization, which cancels the vernalized state, inhibiting flowering and promoting vegetative growth. In this study, we screened over 16,000 chemical compounds and identified five small molecules (devernalizers; DVRs) that induce devernalization in Arabidopsis thaliana at room temperature without requiring a high-temperature treatment. Treatment with DVRs reactivated the expression of FLOWERING LOCUS C (FLC), a master repressor of flowering, by reducing the deposition of repressive histone modifications, thereby delaying flowering time. Three of the DVRs identified shared two structures: a hydantoin-like region and a spiro-like carbon. Treatment with DVR06, which has a simple chemical structure containing these domains, delayed flowering time and reduced the deposition of repressive histone modifications at FLC. RNA-seq and ChIP-seq analyses revealed both shared and specific transcriptomic and epigenetic effects between DVR06- and heat-induced devernalization. Overall, our extensive chemical screening indicated that hydantoin and spiro are key chemical signatures that reduce repressive histone modifications and promote devernalization in plants.
Collapse
Affiliation(s)
- Nana Otsuka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Ryoya Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Hikaru Sawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nanako Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | | | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
| |
Collapse
|
7
|
Sechoaro K, Aucamp J, Kannigadu C, Janse van Rensburg HD, Suganuma K, N'Da DD. Investigation of Novel Isatinylhydantoin Derivatives as Potential Anti-Kinetoplastid Agents. ChemMedChem 2025; 20:e202400533. [PMID: 39344346 DOI: 10.1002/cmdc.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Neglected tropical diseases are a group of infectious diseases with a high endemicity in developing countries of Africa, Asia, and the Americas. Treatment for these diseases depends solely on chemotherapy, which is associated with severe side effects, toxicity, and the development of parasitic resistance. This highlights a critical need to develop new and effective drugs to curb these diseases. As a result, a series of novel isatinylhydantoin derivatives were synthesized and evaluated for in vitro anti-kinetoplastid activity against seven human- or animal-infective Trypanosoma and two human-infective Leishmania species. The synthesized derivatives were tested for potential cytotoxicity against human, animal, and parasite host-related cell lines. The isatinylhydantoin hybrid 4 b bearing 5-chloroisatin and p-bromobenzyl moieties, showed strong trypanocidal activity against blood-stage T. congolense parasites; however, the promising in vitro trypanocidal potency of 4 b could not be translated to in vivo treatment efficacy in a preliminary animal study. Compounds 5, 2 b, and 5 b, were the most active against amastigotes of L. donovani, showing higher leishmanicidal activity than the reference drug, amphotericin B. These compounds were identified as early antileishmanicidal leads, and future investigations will focus on confirming their antileishmanial potential through in vivo efficacy evaluation as well as their exact mechanism of action.
Collapse
Affiliation(s)
- Keamogetswe Sechoaro
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), Faculty of Health Sciences, North-West University, 11 Hoffmann Street, Potchefstroom, 2520, South Africa
| |
Collapse
|
8
|
Camargo PG, Suzukawa HT, Pereira PML, Silva ML, Macedo F, Albuquerque MG, Rodrigues CR, Yamada-Ogatta SF, da Silva Lima CH, Bispo MDLF. In vitro assays identified thiohydantoins with anti-trypanosomatid activity and molecular modelling studies indicated possible selective CYP51 inhibition. Sci Rep 2025; 15:465. [PMID: 39748011 PMCID: PMC11695927 DOI: 10.1038/s41598-024-84697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC50 against the epimastigote form of T. cruzi. Also, it showed lower cytotoxicity to mammalian cells. THD3 and THD5 (IC50 = 72.4 µg/mL and 115 µg/mL) presented great activity against trypomastigote and amastigote forms (IC50 = 47.7 µg/mL and 34.1 µg/mL). THD5 had high selectivity index (SI = 15.1) against the amastigote form. The molecular docking and molecular dynamics simulations were performed to understand the interaction between the THD and the important target CYP51 enzyme essential to T. cruzi. THD3 and THD5 were found to have strong interactions within the hydrophobic channel of CYP51 due to their aliphatic side chains, leading to favorable binding free energies. Despite the possibility of cross-reactivity between THD5 and human CYP2C9, the results indicate low identity and similarity between the homolog enzymes and possible selectivity of THD5 for the protozoan one, suggesting that these compounds could inhibit sterol biosynthesis, crucial for the parasite's survival. These findings indicate that THD3 and THD5 are promising hits for the development of Chagas disease treatments. To fully validate this potential, carrying out enzymatic and other in vitro and in vivo assays is essential in the future.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil
- Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Tiemi Suzukawa
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Patrícia Morais Lopes Pereira
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Mariana Luiza Silva
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | | | - Carlos Rangel Rodrigues
- Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | | | | |
Collapse
|
9
|
Kovaleva KS, Yarovaya OI, Gatilov YV, Lastovka AV, Chernyshova IA, Dyrkheeva NS, Chepanova AA, Lavrik OI, Salakhutdinov NF. Design, synthesis, and evaluation of dehydroabietyl imidazolidine-2,4-diones, 2,4,5-triones, and 2-thioxoimidazolidine-4,5-diones as TDP1 inhibitors and dual TDP1/TDP2 inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400801. [PMID: 39801260 DOI: 10.1002/ardp.202400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 05/02/2025]
Abstract
Tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes involved in the repair of DNA, are regarded as promising targets for the development of new anticancer drugs. In this study, a series of imidazolidine-2,4-diones, 2,4,5-triones, and 2-thioxoimidazolidine-4,5-diones based on dehydroabietylamine (DHAAm) were synthesized. The inhibitory activity of the new compounds against TDP1 and TDP2, as well as their cytotoxic characteristics, were evaluated. All types of heterocyclic DHAAm derivatives demonstrated effective inhibition of TDP1 in the micromolar range, with IC50 values in the range of 0.63-4.95 µM. It was observed that only the 2-thioxoimidazolidine-4,5-diones were TDP2 inhibitors, representing the first class of dual TDP1/TDP2 inhibitors among DHAAm derivatives. The findings of this study may contribute to an enhanced comprehension of the subsequent design of novel dual TDP1/TDP2 inhibitors for the further development of new antitumor agents.
Collapse
Affiliation(s)
- Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Yuriy V Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Anastasiya V Lastovka
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina A Chernyshova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Arina A Chepanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Fougiaxis V, Barcherini V, Petrovic MM, Sierocki P, Warenghem S, Leroux F, Bou Karroum N, Petit-Cancelier F, Rodeschini V, Roche D, Deprez B, Deprez-Poulain R. First fragment-based screening identifies new chemotypes inhibiting ERAP1-metalloprotease. Eur J Med Chem 2024; 280:116926. [PMID: 39369482 DOI: 10.1016/j.ejmech.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) by small-molecules is being eagerly investigated for the treatment of various autoimmune diseases and in the field of immuno-oncology after its active involvement in antigen presentation and processing. Currently, ERAP1 inhibitors are at different stages of clinical development, which highlights its significance as a promising drug target. In the present work, we describe the first-ever successful identification of several ERAP1 inhibitors derived from a fragment-based screening approach. We applied an enzymatic activity assay to a large library of ∼3000 fragment entries in order to retrieve 32 hits. After a multi-faceted selection process, we prioritized 3 chemotypes for SAR optimization and strategic modifications provided 2 series (2-thienylacetic acid and rhodanine scaffolds) with improved analogues at the low micromolar range of ERAP1 inhibition. We report also evidence of selectivity against homologous aminopeptidase IRAP, combined with complementary in silico docking studies to predict the binding mode and site of inhibition. Our compounds can be the starting point for future fragment growing and rational drug development, incorporating new chemical modalities.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentina Barcherini
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Milena M Petrovic
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Nour Bou Karroum
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Vincent Rodeschini
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Didier Roche
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France.
| |
Collapse
|
11
|
Almeida Júnior ASD, Freitas Viana Leal MM, Marques DSC, Silva ALD, Souza Bezerra RD, Siqueira de Souza YF, Mendonça Silveira ME, Santos FA, Alves LC, de Lima Aires A, Cruz Filho IJD, do Carmo Alves de Lima M. Therapeutic potential of hydantoin and thiohydantoin compounds against Schistosoma mansoni: An integrated in vitro, DNA, ultrastructural, and ADMET in silico approach. Mol Biochem Parasitol 2024; 260:111646. [PMID: 38950658 DOI: 10.1016/j.molbiopara.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
The study aimed to conduct in vitro biological assessments of hydantoin and thiohydantoin compounds against mature Schistosoma mansoni worms, evaluate their cytotoxic effects and predict their pharmacokinetic parameters using computational methods. The compounds showed low in vitro cytotoxicity and were not considered hemolytic. Antiparasitic activity against adult S. mansoni worms was tested with all compounds at concentrations ranging from 200 to 6.25 μM. Compounds SC01, SC02, and SC03 exhibited low activity. Compounds SC04, SC05, SC06 and SC07 caused 100 % mortality within 24 h of incubation at a concentration of 100 and 200 μM. Thiohydantoin SC04 exhibited the highest activity, resulting in 100 % mortality after 24 h of incubation at a concentration of 50 μM and IC50 of 28 µM. In the ultrastructural analysis (SEM), the compound SC04 (200 µM) induced integumentary changes, formation of integumentary blisters, and destruction of tubercles and spicules. Therefore, the SC04 compound shows promise as an antiparasitic against S. mansoni.
Collapse
Affiliation(s)
- Antônio Sérgio de Almeida Júnior
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Mayse Manuele Freitas Viana Leal
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil.
| | - Anekécia Lauro da Silva
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Rafael de Souza Bezerra
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Yandra Flaviana Siqueira de Souza
- Department of Medicine, Federal University of Vale do Rio São Francisco (UNIVASF), Avenida da Amizade, s/n, Sal Torrado, Paulo Afonso, BA 48605-780, Brazil
| | - Maria Eduardade Mendonça Silveira
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Fábio Ab Santos
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - Luiz Carlos Alves
- Aggeu Magalhães Institute. Oswaldo Cruz Foundation (IAM-FIOCRUZ), Cidade Universitária, Recife, PE 50670-420, Brazil
| | - André de Lima Aires
- Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE 50740-600, Brazil
| |
Collapse
|
12
|
da Silva Bortoleti BT, Camargo PG, Gonçalves MD, Tomiotto-Pellissier F, Silva TF, Concato VM, Detoni MB, Bidóia DL, da Silva Lima CH, Rodrigues CR, Bispo MDLF, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Effect of a thiohydantoin salt derived from l-Arginine on Leishmania amazonensis and infected cells: Insights from biological effects to molecular docking interactions. Chem Biol Interact 2024; 403:111216. [PMID: 39218371 DOI: 10.1016/j.cbi.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil; State University of Londrina (UEL/PR), Chemistry Department, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Pryscilla Fanini Wowk
- Carlos Chagas Institute (ICC/Fiocruz/PR), Molecular Immunology and Cellular Group, Curitiba, Paraná, Brazil.
| | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
13
|
Fang X, Ju Y, Wang J, Zhang G, Li Y, Li Y. Synthesis of Thiohydantoin Scaffolds on DNA for Focused DNA-Encoded Library Construction. Org Lett 2024; 26:8916-8921. [PMID: 39361509 DOI: 10.1021/acs.orglett.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thiohydantoin represents a significant class of biologically active privileged heterocyclic scaffolds. Herein, we present a convenient and robust DNA-compatible method for constructing a thiohydantoin-focused DNA-encoded library. This reaction can be applied to a wide variety of isothiocyanate partners, arylamine feedstocks, and diverse α-amine acid derivatives, exhibiting excellent conversions, high functional group tolerance, and preservation of DNA tag integrity. Our method allows for easy access to a valuable three-cycle thiohydantoin-focused DNA-encoded library.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Yunzhu Ju
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiayou Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Barrera E, Jerezano AV, Reyes-González UF, Martínez-López D, Escalante CH, López J, Martínez-Mora EI, Gómez-García O, Andrade-Pavón D, Villa-Tanaca L, Delgado F, Tamariz J. (Dimethylamino)methylene hydantoins as building blocks in the synthesis of oxoaplysinopsins and parabanic acids with antifungal activity. Org Biomol Chem 2024; 22:8144-8151. [PMID: 39279334 DOI: 10.1039/d4ob01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A short, efficient, and stereoselective methodology is described for the synthesis of 5-((dimethylamino)methylene)hydantoins and their conversion into oxoaplysinopsins and parabanic acids. A highly convergent one-pot, two-step reaction between methyl N-arylglycinates, isocyanates, and DMFDMA under microwave irradiation provided the corresponding (dimethylamino)methylene hydantoins as a single E-stereoisomer in high overall yields. The synthesis of (S)-1-(1-phenylethyl) chiral hydantoins, which undergo a stereoselective addition of acetic anhydride, aza-heterocycles, and amines, received special attention. The reaction with indole delivered a series of novel oxoaplysinopsins. Meanwhile, parabanic acids were prepared by a new approach, treating (dimethylamino)methylene hydantoins with mCPBA to generate the oxidative fragmentation of the exocyclic methylene. The antifungal evaluation of the prepared products was carried out on a series of Candida spp., finding potent growth inhibition. According to previous docking studies, this activity is probably due to the inhibitory interaction of the derivatives with the active site of the fungal HMGR enzyme.
Collapse
Affiliation(s)
- Edson Barrera
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Alberto V Jerezano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Av. 31 Pte. 1304, Los Volcanes, 72410 Puebla, Pue., Mexico
| | - Ulises F Reyes-González
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Daniela Martínez-López
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Julio López
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Eder I Martínez-Mora
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza e Ing. J. Cárdenas S/N, 25280 Saltillo, Coah., Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, 07738 Mexico City, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| |
Collapse
|
15
|
Busicchia M, Roblin A, Dubois C, Mekranter N, Casaretto N, Archambeau A. Cycloadditions of 5-Vinyloxazolidine-2,4-diones: A Straightforward Access to the (Thio)hydantoin Scaffold. J Org Chem 2024; 89:12370-12377. [PMID: 39180739 DOI: 10.1021/acs.joc.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A palladium-catalyzed (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and (thio)isocyanates is described. Under optimized conditions, an array of (thio)hydantoins was readily prepared, and an enantioselective version of this transformation was then studied. To illustrate the importance of this method, a concise synthesis of two bioactive compounds, nirvanol and mephenytoin, was carried out. This work emphasizes the synthetic potential of VOxD as useful precursors of zwitterionic aza-π-allylpalladiumII intermediates.
Collapse
Affiliation(s)
- Marc Busicchia
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Antoine Roblin
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Carla Dubois
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nagy Mekranter
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
16
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
17
|
Seliem IA. DMF-DMA catalyzed Synthesis, molecular docking, in-vitro, in-silico design, and binding free energy studies of novel thiohydantoin derivatives as antioxidant and antiproliferative agents targeting EGFR tyrosine kinase and aromatase cytochrome P450 enzyme. Bioorg Chem 2024; 150:107601. [PMID: 38991489 DOI: 10.1016/j.bioorg.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
A set of novels 2-thiohydantoin derivatives were synthesized and enaminone function was discussed at position 5 using DMFDMA catalyst which result in formation of pyrazole, isoxazole, benzoxazepine by using reagents such as hydrazine, hydroxylamine and 2-aminothiophenol. These newly synthesized compounds were evaluated for their antioxidant and antiproliferative activity. In vitro studies on the effect of 2-thiohydantoin on scavenging 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) confirmed the free radical scavenging and antioxidant activity of 2-thiohydantoin. The synthesized compounds show significant antioxidant activity. The in vitro antitumor activity of 2-thiohydantoin on MCF7 (breast) and PC3 cells (prostate) was evaluated using MTT assay. Some of the synthesized compounds show significant to moderate antiproliferative properties compared to reference drug erlotinib. Among all, compound 4a exhibit potent antitumor properties against MCF7 and PC3 cancer cell lines with IC50 = 2.53 ± 0.09 /ml & with IC50 = 3.25 ± 0.12 µg/ml respectively and has potent antioxidant activity with IC50 = 10.04 ± 0.49 µg/ml.
Collapse
Affiliation(s)
- Israa A Seliem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
18
|
El Moutaouakil Ala Allah A, Kariuki BM, Alsubari A, Al-Sulami AI, Allehyani BH, Alsulami WO, Mague JT, Ramli Y. Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl-sulfan-yl)-5-oxo-4,4-diphenyl-4,5-di-hydro-1 H-imidazol-1-yl]acetate (thio-phenytoin derivative). Acta Crystallogr E Crystallogr Commun 2024; 80:926-930. [PMID: 39267872 PMCID: PMC11389683 DOI: 10.1107/s2056989024007345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024]
Abstract
The di-hydro-imidazole ring in the title mol-ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro-gen atom is involved in intra-ring π bonding. The methyl-sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C-H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C-H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.
Collapse
Affiliation(s)
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Ahlam I Al-Sulami
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Basmah H Allehyani
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Wafa O Alsulami
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in Rabat Morocco
| |
Collapse
|
19
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Binjawhar DN, Al-Salmi FA, Alghamdi MA, Abu Ali OA, Fayad E, Rizzk YW, Ali NM, El-Deen IM, Eltamany EH. In vitro anti-breast cancer study of hybrid cinnamic acid derivatives bearing 2-thiohydantoin moiety. Future Med Chem 2024; 16:1665-1684. [PMID: 38949859 PMCID: PMC11370905 DOI: 10.1080/17568919.2024.2366694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities.Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Fawziah A Al-Salmi
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Youstina William Rizzk
- Department of Chemistry (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Nourhan M Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Mohey El-Deen
- Department of Chemistry (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Elsayed H Eltamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Hassan AA, Aly AA, Ramadan M, Mohamed NK, Youssif BGM, Gomaa HAM, Bräse S, Nieger M, El-Aal ASA. Synthesis of bis-thiohydantoin derivatives as an antiproliferative agents targeting EGFR inhibitory pathway. Mol Divers 2024; 28:1249-1260. [PMID: 37306891 DOI: 10.1007/s11030-023-10653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/17/2023] [Indexed: 06/13/2023]
Abstract
(R)/(S)-the two enantiomers of 3-substituted-1-[2-(5)-3-substituted-4-benzyl-5-oxo-4-phenyl-2-thioxoimid-azolidin-1-yl]ethyl/propyl-5-benzyl-5-phenyl-2-thioxoimidazolidin-4-ones were formed during the diastereoselective reaction between N,N″-1,ω-alkanediylbis[N'-organylthiourea] derivatives and 2,3-diphenylcyclopropenone in refluxing ethanol. The structures of the isolated compounds were confirmed by NMR, IR, mass spectra and elemental analyses. Moreover, single-crystal X-ray structure analysis was also used to elucidate the structure of the isolated compounds. The mechanism describes the reaction was also discussed. The tested compounds showed EGFR inhibitory activity with IC50 values ranging from 90 to 178 nM in comparison to the erlotinib as a reference with IC50 value of 70 nM. Compound 4c (R = allyl, n = 3) was found as the most potent antiproliferative, had the highest inhibitory effect on EGFR with an IC50 value of 90 nM, compared to erlotinib's IC50 value of 70 nM. The second and third-most active compounds were 4e (R = phenyl, n = 3) and 4d (R = ethyl, n = 3) and with IC50 values of 107 nM and 128 nM. These findings imply that the compounds tested had a significant antiproliferative effect as well as the ability to act as an EGFR inhibitor. Docking studies showed that compound 4c showed high affinity to EGFR based on its docking score (S; kcal/mol) within five test compounds.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruher Institut Fur Technologie, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344, Eggenstein Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio I, P.O. Box 55, 00014, Helsinki, Finland
| | - Amal S Abd El-Aal
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia, 61519, Minia, Egypt
| |
Collapse
|
22
|
Abdulwahab HG, Mansour RES, Farghaly TA, El-Sehrawi HM. Discovery of novel benzimidazole derivatives as potent HDACs inhibitors against leukemia with (Thio)Hydantoin as zinc-binding moiety: Design, synthesis, enzyme inhibition, and cellular mechanistic study. Bioorg Chem 2024; 146:107284. [PMID: 38493640 DOI: 10.1016/j.bioorg.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.
Collapse
Affiliation(s)
- Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Hend M El-Sehrawi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
24
|
Chen L, Wang D. A Tunable Cascade Reaction of Ureidomalonates and Alkenyl Azlactones for the Divergent Synthesis of Hydantoins with Distinct Functional Groups. J Org Chem 2024; 89:3365-3382. [PMID: 38363598 DOI: 10.1021/acs.joc.3c02814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A tunable cascade reaction of ureidomalonates and alkenyl azlactones was disclosed, which gave rise to the construction of N-aroyl α-amino acid ester and imide-functionalized hydantoins in moderate to good yields and with excellent diastereoselectivities. The reaction pathway was precisely manipulated by organocatalysis and phase-transfer/sunlight relay catalysis, respectively, to realize the divergent synthesis. The successful gram-scale preparation of representative products exhibited the application potential of this protocol. Mechanistic studies indicated that the exchange and phase transfer of ethoxy anion played a key role in altering the reaction pathway, and sunlight might accelerate the oxidation process at the late stage of the reaction triggered by phase-transfer catalysis.
Collapse
Affiliation(s)
- Lin Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Di Wang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| |
Collapse
|
25
|
Naufal M, Hermawati E, Syah YM, Hidayat AT, Hidayat IW, Al-Anshori J. Structure-Activity Relationship Study and Design Strategies of Hydantoin, Thiazolidinedione, and Rhodanine-Based Kinase Inhibitors: A Two-Decade Review. ACS OMEGA 2024; 9:4186-4209. [PMID: 38313530 PMCID: PMC10832052 DOI: 10.1021/acsomega.3c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024]
Abstract
Cancer is one of the most prominent causes of the rapidly growing mortality numbers worldwide. Cancer originates from normal cells that have acquired the capability to alter their molecular, biochemical, and cellular traits. The alteration of cell signaling enzymes, such as kinases, can initiate and amplify cancer progression. As a curative method, the targeted therapy utilized small molecules' capability to inhibit kinase's cellular function. This review provides a brief history (1999-2023) of Small Molecule Kinase Inhibitors (SMKIs) discovery with their molecular perspective. Furthermore, this current review also addresses the application and the development of hydantoin, thiazolidinedione, and rhodanine-based derivatives as kinase inhibitors toward several subclasses (EGFR, PI3K, VEGFR, Pim, c-Met, CDK, IGFR, and ERK) accompanied by their structure-activity relationship study and their molecular interactions. The present work summarizes and compiles all the important structural information essential for developing hydantoin, thiazolidinedione, and rhodanine-based kinase inhibitors to improve their potency in the future.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Elvira Hermawati
- Department
of Chemistry, Bandung Institute of Technology, Jalan Ganesha Nomor 10, Bandung, Jawa Barat 40132, Indonesia
| | - Yana Maolana Syah
- Department
of Chemistry, Bandung Institute of Technology, Jalan Ganesha Nomor 10, Bandung, Jawa Barat 40132, Indonesia
| | - Ace Tatang Hidayat
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Ika Wiani Hidayat
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Jamaludin Al-Anshori
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
26
|
Kuznetsova JV, Tkachenko VT, Petrovskaya LM, Filkina ME, Shybanov DE, Grishin YK, Roznyatovsky VA, Tafeenko VA, Pestretsova AS, Yakovleva VA, Pokrovsky VS, Kukushkin ME, Beloglazkina EK. [3+2]-Cycloaddition of Nitrile Imines to Parabanic Acid Derivatives-An Approach to Novel Spiroimidazolidinediones. Int J Mol Sci 2023; 25:18. [PMID: 38203188 PMCID: PMC10778941 DOI: 10.3390/ijms25010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Approximately 1,3-Dipolar cycloaddition of imidazolidine derivatives containing exocyclic double bonds is a convenient method of creating spiro-conjugated molecules with promising anticancer activity. In this work, the derivatives of parabanic acid (2-thioxoimidazolidine-4,5-diones and 5-aryliminoimidazolidine-2,4-diones) were first investigated as dipolarophiles in the reactions with nitrile imines. The generation of nitrile imines was carried out either by the addition of tertiary amine to hydrazonoyl chlorides «drop by drop» or using the recently proposed diffusion mixing technique, which led to ~5-15% increases in target compound yields. It was found that the addition of nitrile imines to C=S or C=N exocyclic double bonds led to 1,2,4-thiazolines or triazolines and occurred regioselectively in accordance with the ratio of FMO coefficients of reactants. The yield of the resulting spiro-compound depended on the presence of alkyl substituents in the nitrile imine structure and was significantly decreased in reactions with imines with strong electron donor or electron-withdrawing groups. Some of the obtained compounds showed reasonable in vitro cytotoxicity. IC50 values were calculated for HCT116 (colon cancer) cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test.
Collapse
Affiliation(s)
- Juliana V. Kuznetsova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Varvara T. Tkachenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Lada M. Petrovskaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Maria E. Filkina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Dmitry E. Shybanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Yuri K. Grishin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Vitaly A. Roznyatovsky
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Viktor A. Tafeenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Anna S. Pestretsova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.S.P.); (V.S.P.)
- Occupational Health Risks Lab, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vera A. Yakovleva
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Vadim S. Pokrovsky
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.S.P.); (V.S.P.)
- Department of Biochemistry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maxim E. Kukushkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| | - Elena K. Beloglazkina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (J.V.K.); (V.T.T.); (L.M.P.); (M.E.F.); (D.E.S.); (Y.K.G.); (V.A.R.); (V.A.T.); (M.E.K.)
| |
Collapse
|
27
|
Tian D, Li ZC, Sun ZH, He YP, Xu LP, Wu H. Catalytic Enantioselective Biltz Synthesis. Angew Chem Int Ed Engl 2023; 62:e202313797. [PMID: 37814442 DOI: 10.1002/anie.202313797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The Biltz synthesis establishes straightforward access to 5,5-disubstituted (thio)hydantoins by combining a 1,2-diketone and a (thio)urea. Its appealing features include inherent atom and step economy together with the potential to generate structurally diverse products. However, control of the stereochemistry of this reaction has proven to be a daunting challenge. Herein, we describe the first example of enantioselective catalytic Biltz synthesis which affords more than 40 thiohydantoins with high stereo- and regio-control, irrespective of the symmetry of thiourea structure. A one pot synthesis of corresponding hydantoins is also documented. Remarkably, experimental studies and DFT calculations establish the reaction pathway and origin of stereoselectivity.
Collapse
Affiliation(s)
- Di Tian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Zhuo-Chen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
28
|
Caramiello A, Bellucci MC, Marti-Rujas J, Sacchetti A, Volonterio A. Turn-Mimic Hydantoin-Based Loops Constructed by a Sequential Multicomponent Reaction. J Org Chem 2023; 88:15790-15804. [PMID: 37932902 PMCID: PMC10661056 DOI: 10.1021/acs.joc.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
A collection of peptidomimetics characterized by having an aspartic acid motif embedded in a rigid hydantoin heterocycle are synthesized through a sequential multicomponent domino process followed by standard regioselective deprotection/coupling reactions based on acid-base liquid/liquid purification protocols. 1H nuclear magnetic resonance experiments, molecular modeling, and X-ray analysis showed that the resulting hydantoin-based loops I (in particular) and II (to a lesser extent) can be considered novel β-turn inducer motifs being able to project two peptide-like strands in a U-shaped conformation driven by the formation of intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Alessio
Maria Caramiello
- Department
of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy
| | - Javier Marti-Rujas
- Department
of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandro Sacchetti
- Department
of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
29
|
Oiarbide M, Palomo C. Brønsted Base-Catalyzed Enantioselective α-Functionalization of Carbonyl Compounds Involving π-Extended Enolates. CHEM REC 2023; 23:e202300164. [PMID: 37350363 DOI: 10.1002/tcr.202300164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Chiral Brønsted base (BB) catalyzed asymmetric transformations constitute an important tool for synthesis. A meaningful fraction of these transformations proceeds through transiently generated enolate intermediates, which display quite versatile reactivity against a variety of electrophiles. Some years ago, our group became interested in developing BB-catalyzed asymmetric reactions of enolizable carbonyl substrates that involve π-extended enolates in which, besides control of reaction diastereo and enantioselectivity, the site-selectivity control is an additional issue in most cases. In the examples covered in this account the opportunities deployed, and the challenges posed, by these methods are illustrated, with a focus on the generation of quaternary carbon stereocenters. In the way, new bifunctional BB catalysts as well as achiral templates were developed that may find further applications.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| |
Collapse
|
30
|
Alhasan R, Martins GM, de Castro PP, Saleem RSZ, Zaiter A, Fries-Raeth I, Kleinclauss A, Perrin-Sarrado C, Chaimbault P, da Silva Júnior EN, Gaucher C, Jacob C. Selenoneine-inspired selenohydantoins with glutathione peroxidase-like activity. Bioorg Med Chem 2023; 94:117479. [PMID: 37769443 DOI: 10.1016/j.bmc.2023.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Chronic diseases such as cystic fibrosis, inflammatory bowel diseases, rheumatoid arthritis, and cardiovascular illness have been linked to a decrease in selenium levels and an increase in oxidative stress. Selenium is an essential trace element that exhibits antioxidant properties, with selenocysteine enzymes like glutathione peroxidase being particularly effective at reducing peroxides. In this study, a series of synthetic organoselenium compounds were synthesized and evaluated for their potential antioxidant activities. The new selenohydantoin molecules were inspired by selenoneine and synthesized using straightforward methods. Their antioxidant potential was evaluated and proven using classical radical scavenging and metal-reducing methods. The selenohydantoin derivatives exhibited glutathione peroxidase-like activity, reducing hydroperoxides. Theoretical calculations using Density Functional Theory (DFT) revealed the selenone isomer to be the only one occurring in solution, with selenolate as a possible tautomeric form in the presence of a basic species. Cytocompatibility assays indicated that the selenohydantoin derivatives were non-toxic to primary human aortic smooth muscle cells, paving the way for further biological evaluations of their antioxidant activity. The results suggest that selenohydantoin derivatives with trifluoro-methyl (-CF3) and chlorine (-Cl) substituents have significant activities and could be potential candidates for further biological trials. These compounds may contribute to the development of effective therapies for chronic diseases such cardiovascular diseases.
Collapse
Affiliation(s)
- Rama Alhasan
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Guilherme M Martins
- Department of Chemistry, Federal University of Sao Carlos, UFSCar, 13565-905 São Carlos, SP, Brazil; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | - Pedro P de Castro
- Department of Chemistry, Federal University of Sao Carlos, UFSCar, 13565-905 São Carlos, SP, Brazil
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Sciences and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ali Zaiter
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | | | | | | | | | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, MG, Brazil.
| | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
31
|
Cavalloro V, Soddu F, Baroni S, Robustelli della Cuna FS, Tavazzi E, Martino E, Collina S. Teodorico Borgognoni's Formulary for Thirteenth Century Anesthetic Preparations. Life (Basel) 2023; 13:1913. [PMID: 37763316 PMCID: PMC10532452 DOI: 10.3390/life13091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Teodorico Borgognoni was born in Lucca in 1205 and was appointed bishop of Bitonto and Cervia in 1262 and 1270. Following his father, he learned the art of surgery and collected relevant recipes in his most important work, entitled Cyrurgia seu filia principis. Among the disciplines reported in this work, the most interesting and innovative is anesthesia. The recipes in this field contribute to Borbognoni's consideration as the forerunner of modern anesthesia. Such recipes have been reported in other manuscripts from the Middle Ages, like Manuscript No. 1939. In the present work, we investigate the traditional preparations handed down in this manuscript, focusing on type of preparation and botanical ingredients. The results highlight that exploited ingredients can be divided into three groups: the first comprises plants already known for their narcotic effects, the second includes ingredients acting as an adjuvant for absorption or reducing the metabolism, and the last group includes ingredients not associated with biological activity to explain their presence in anesthetic recipes. This third group is of particular interest for future biological investigations. Our goal is to rekindle attention to the work of Teodorico Borgognoni on traditional preparation for anesthetic purposes: a topic often underestimated by ethnobotanical surveys.
Collapse
Affiliation(s)
- Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Francesca Soddu
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Sandro Baroni
- Maimeri Foundation, Corso Cristoforo Colombo 15, 20144 Milano, Italy;
| | | | - Eleonora Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.S.R.d.C.); (S.C.)
| |
Collapse
|
32
|
Caramiello A, Bellucci MC, Cristina G, Castellano C, Meneghetti F, Mori M, Secundo F, Viani F, Sacchetti A, Volonterio A. Synthesis and Conformational Analysis of Hydantoin-Based Universal Peptidomimetics. J Org Chem 2023; 88:10381-10402. [PMID: 36226862 PMCID: PMC10407853 DOI: 10.1021/acs.joc.2c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The synthesis of a collection of enantiomerically pure, systematically substituted hydantoins as structural privileged universal mimetic scaffolds is presented. It relies on a chemoselective condensation/cyclization domino process between isocyanates of quaternary or unsubstituted α-amino esters and N-alkyl aspartic acid diesters followed by standard hydrolysis/coupling reactions with amines, using liquid-liquid acid/base extraction protocols for the purification of the intermediates. Besides the nature of the α carbon on the isocyanate moiety, either a quaternary carbon or a more flexible methylene group, conformational studies in silico (molecular modeling), in solution (NMR, circular dichroism (CD), Fourier transform infrared (FTIR)), and in solid state (X-ray) showed that the presented hydantoin-based peptidomimetics are able to project their substituents in positions superimposable to the side chains of common protein secondary structures such as α-helix and β-turn, being the open α-helix conformation slightly favorable according to molecular modeling, while the closed β-turn conformation preferred in solution and in solid state.
Collapse
Affiliation(s)
- Alessio
M. Caramiello
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133Milano, Italy
| | - Gaetano Cristina
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Carlo Castellano
- Department
of Chemistry, Università degli Studi
di Milano, via Golgi
19, 20133Milano, Italy
| | - Fiorella Meneghetti
- Department
of Pharmaceutical Sciences, Università
degli Studi di Milano, via Mangiagalli 25, 20133Milano, Italy
| | - Matteo Mori
- Department
of Pharmaceutical Sciences, Università
degli Studi di Milano, via Mangiagalli 25, 20133Milano, Italy
| | - Francesco Secundo
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| | - Fiorenza Viani
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| | - Alessandro Sacchetti
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| |
Collapse
|
33
|
Mani S, Bouchnak H, Pradeloux S, Kraiem J, Soulet D, Messaoudi I. 3-aminohydantoin derivate as a promising scaffold in dopaminergic neuroprotection and neurorescue in the in vivo and in vitro 6-hydroxydopamine models of Parkinson's disease. Clin Exp Pharmacol Physiol 2023. [PMID: 37331719 DOI: 10.1111/1440-1681.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra, for which no disease-modifying treatments are available yet. Thus, developing new neuroprotective drugs with the potential to delay or stop the natural course of the disease is necessary. The aim of the present study was to evaluate the neuroprotective effects of a newly synthesized 3-aminohydantoin derivative named 3-amino-5-benzylimidazolidine-2,4-dione (PHAH). The possible neuroprotective and neurorescue effects of the synthesized compound were tested: (i) in N27 dopaminergic and BV-2 microglial cell lines treated with 6-hydroxydopamine (6-OHDA) and (ii) in the 6-OHDA rat model of PD. PHAH administration reduced proinflammatory markers, including nitric oxide synthase and interleukin-1β, in BV-2 cells activated by lipopolysaccharide. Although PHAH did not restore cell death induced by 6-OHDA, it was not cytotoxic for dopaminergic cells since cell viability, under the effect of the two concentrations, remained comparable to that of the control cells. Most interestingly, PHAH restored 6-OHDA-induced dopaminergic neurodegeneration in the substantia nigra and striatum and ameliorated 6-OHDA-induced oxidative stress in the rat brain. In summary, we have proven that in PD models, PHAH has neuroprotective effects in vivo and anti-inflammatory effects in vitro; however, these effects remain to be confirmed by carrying out certain specific behavioural tests as well as by exploring other neuroinflammatory markers. The present work also suggests that PHAH is a promising scaffold that can serve as the basis for the design and synthesis of other derivatives that can be potent antiparkinsonian agents.
Collapse
Affiliation(s)
- Sahar Mani
- Institut supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Université de Monastir, Monastir, Tunisia
| | - Houda Bouchnak
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Solène Pradeloux
- Centre de Recherche du CHU de Québec, Neuroscience Axis, Québec City, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada
| | - Jamil Kraiem
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Neuroscience Axis, Québec City, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada
| | - Imed Messaoudi
- Institut supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
34
|
Li Y, Zhang T, Ma H, Xu L, Zhang Q, He L, Jiang J, Zhang Z, Zhao Z, Wang M. Design, Synthesis, and Antifungal/Antioomycete Activity of Thiohydantoin Analogues Containing Spirocyclic Butenolide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6249-6267. [PMID: 37058604 DOI: 10.1021/acs.jafc.2c09144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Novel fungicidal agents were designed based on the combination of two privileged scaffolds, thiohydantoin and spirocyclic butenolide, which are widely found in natural products. The synthesized compounds were characterized by 1H NMR, 13C NMR, and high-resolution electrospray ionisation mass spectrometry. The in vitro antioomycete activity evaluation showed that most of the compounds exhibited excellent inhibitory activities against different developmental stages in the life cycle of pathogenic oomycete Phytophthora capsici. Compound 5j could inhibit the mycelial growth, sporangium production, zoospore release, and cystospore germination significantly with EC50 values of 0.38, 0.25, 0.11, and 0.026 μg/mL, respectively. The in vivo antifungal/antioomycete bioassay results revealed that the series of compounds generally showed outstanding control efficacies against the pathogenic oomycete Pseudoperonospora cubensis, and compounds 5j, 5l, 7j, 7k, and 7l possessed broad-spectrum antifungal activities against the test phytopathogens. The in vivo protective and curative efficacies against P. capsici of the representative compound 5j were excellent, which were better than those of azoxystrobin. More prominently, 5j significantly promoted the biomass accumulation of the root system and reinforced the cell wall by callose deposition. The pronounced upregulation of immune response-related genes indicated that the active oomycete inhibitor 5j also functioned as a plant elicitor. Transmission electron microscopy observation and the enzyme activity test demonstrated that the mechanism of action of 5j was to bind to the pivotal protein, complex III on the respiratory chain, which resulted in a shortage of energy supply. Molecular docking results exhibited that compound 5j appropriately matched with the Qo pocket and had no interaction with the most commonly mutated site Gly-142, which may be of significant benefit in Qo fungicide resistance management. Compound 5j showed great advantages and potential in oomycete control, resistance management, and induction of disease resistance. A further investigation of 5j with a unique structure might have direct implications for the creation of novel oomycete inhibitors against plant-pathogenic oomycetes.
Collapse
Affiliation(s)
- Yihao Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Leichuan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhenhua Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Vinogradova EE, Alekseenko AL, Popkov SV, Kolotyrkina NG, Kravchenko AN, Gazieva GA. Synthesis and Evaluation on the Fungicidal Activity of S-Alkyl Substituted Thioglycolurils. Int J Mol Sci 2023; 24:ijms24065756. [PMID: 36982829 PMCID: PMC10051383 DOI: 10.3390/ijms24065756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
A series of S-alkyl substituted thioglycolurils was prepared through the alkylation of corresponding thioglycolurils with halogenoalkanes and tested for their fungicidal activity against six phytopathogenic fungi from different taxonomic classes: Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, and Sclerotinia sclerotiorum, and two pathogenic yeasts: Candida albicans and Cryptococcus neoformans var. grubii. A number of S-alkyl substituted thioglycolurils exhibited high activity against Venturia inaequalis and Rhizoctonia solani (85–100% mycelium growth inhibition), and moderate activity against other phytopathogens. S-Ethyl substituted thioglycolurils possessed a high activity against Candida albicans. Additionally, the hemolytic and cytotoxic properties of promising derivatives were determined using human red blood cells and human embryonic kidney cells, respectively. Two S-ethyl derivatives possessed both low cytotoxicity against normal human cells and high fungicidal activity against Candida albicans.
Collapse
Affiliation(s)
- Ekaterina E. Vinogradova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Anna L. Alekseenko
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Preparations, Mendeleev University of Chemical Technology, 9 Miusskaya Sq., Moscow 125047, Russia
| | - Sergey V. Popkov
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Preparations, Mendeleev University of Chemical Technology, 9 Miusskaya Sq., Moscow 125047, Russia
| | - Natalya G. Kolotyrkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Angelina N. Kravchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
| | - Galina A. Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia
- Correspondence:
| |
Collapse
|
36
|
Jiang Y, Liu R, Huang L, Huang Q, Liu M, Liu S, Li J. Spiroleiferthione A and Oleiferthione A: Two Unusual Isothiocyanate-Derived Thioketone Alkaloids from Moringa oleifera Lam. Seeds. Pharmaceuticals (Basel) 2023; 16:ph16030452. [PMID: 36986551 PMCID: PMC10054748 DOI: 10.3390/ph16030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Spiroleiferthione A (1), with a 2-thiohydantoin a heterocyclic spiro skeleton, and oleiferthione A (2), an imidazole-2-thione derivative, were isolated from the aqueous extract of Moringa oleifera Lam. seeds. The unprecedented structures of 1 and 2 were elucidated by extensive spectroscopic data, X-ray diffraction, and gauge-independent atomic orbital (GIAO) NMR calculation, as well as electronic circular dichroism (ECD) calculation. The structures of 1 and 2 were determined to be (5R,7R,8S)-8-hydroxy-3-(4′-hydroxybenzyl)-7-methyl-2-thioxo-6-oxa-1, 3-diazaspiro [4.4] nonan-4-one, and 1-(4′-hydroxybenzyl)-4,5-dimethyl-1,3-dihydro-2H-imidazole-2-thione, respectively. Biosynthetic pathways for 1 and 2 have been proposed. Compounds 1 and 2 are considered to have originated from isothiocyanate and then undergone a series of oxidation and cyclization reactions to form 1 and 2. Compounds 1 and 2 demonstrated weak inhibition rates of NO production, 42.81 ± 1.56% and 33.53 ± 2.34%, respectively, at a concentration of 50 μM. Additionally, Spiroleiferthione A demonstrated moderate inhibitory activity against high glucose-induced human renal mesangial cell proliferation in a dosage-dependent manner. A wider range of biological activities, and the diabetic nephropathy protective activity of Compound 1 in vivo and its mechanism of action, need further investigation after the sufficient enrichment of Compound 1 or total synthesis.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Huang
- College of Pharmacy, Dali University, Dali 671000, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (S.L.); (J.L.)
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (S.L.); (J.L.)
| |
Collapse
|
37
|
Xie L, Sun L, Wu P, Wang Z, Zhao C, Wu L, Li X, Gao Z, Liu W, Nie SZ. Organocatalytic cascade nucleophilic/aza-Michael addition reactions: metal-free catalytic strategy for the synthesis of hydantoins. Org Biomol Chem 2023; 21:2295-2300. [PMID: 36825465 DOI: 10.1039/d2ob01825j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lewis base-catalyzed cascade nucleophilic/aza-Michael addition reaction of N-alkoxy β-oxo-acrylamides with isocyanates has been developed to afford various highly functionalized hydantoin derivatives in 80-98% yields under mild reaction conditions. The intriguing features of this method include metal-free reaction conditions, low catalyst loading, broad substrate scope and short reaction time.
Collapse
Affiliation(s)
- Lei Xie
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Lei Sun
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Ping Wu
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Zhaoxue Wang
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Chenyi Zhao
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Lingang Wu
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Xiaojing Li
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Zhenzhen Gao
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| | - Wanxing Liu
- The Non-Public Enterprise Service Center of Liaocheng, Liaocheng 252000, Shandong, P. R. China.
| | - Shao-Zhen Nie
- Address here. School of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P. R. China. xieleilcu.edu.cn
| |
Collapse
|
38
|
Abd El-Fattah W, Abu Ali OA, Alfaifi MY, Shati AA, Eldin I. Elbehairi S, Abu Almaaty AH, Elshaarawy RF, Fayad E. New Mn(III)/Fe(III) complexes with thiohydantoin-supported imidazolium ionic liquids for breast cancer therapy. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
39
|
Villaescusa L, Hernández I, Azcune L, Rudi A, Mercero JM, Landa A, Oiarbide M, Palomo C. Rigidified Bis(sulfonyl)ethylenes as Effective Michael Acceptors for Asymmetric Catalysis: Application to the Enantioselective Synthesis of Quaternary Hydantoins. J Org Chem 2023; 88:972-987. [PMID: 36630318 PMCID: PMC10013931 DOI: 10.1021/acs.joc.2c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic, enantio- and diastereoselective addition of hydantoin surrogates II to "rigidified" vinylidene bis(sulfone) reagents is developed, thus overcoming the inability of commonly employed β-substituted vinylic sulfones to react. Adducts are transformed in enantioenriched 5,5-disubstituted hydantoins through hydrolysis and reductive desulfonylation processes providing new structures for eventual bioassays. Density functional theory studies that rationalize the observed reactivity and stereoselectivity trends are also provided.
Collapse
Affiliation(s)
- Leire Villaescusa
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Iker Hernández
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Laura Azcune
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Ainhoa Rudi
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - José M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) & Donostia International Physics Center (DIPC), Donostia 20018, Spain
| | - Aitor Landa
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Mikel Oiarbide
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| |
Collapse
|
40
|
Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020602. [PMID: 36677661 PMCID: PMC9866919 DOI: 10.3390/molecules28020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.
Collapse
|
41
|
Al-Shawi AAA, El-Arabey AA, Mutlaq DZ, Eltayb WA, Iriti M, Abdalla M. Study on Molecular Anti-tumor Mechanism of 2-Thiohydantoin Derivative based on Molecular Docking and Bioinformatic Analyses. Curr Top Med Chem 2023; 23:440-452. [PMID: 36617706 DOI: 10.2174/1568026623666230106121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Several methods for synthesizing 2-thiohydantoin derivatives have been devised and exploited, and they have found widespread application as antioxidants, antimicrobials, antivirals, and anticancer agents. As a result, we tried to understand the underlying processes of the 2- thiohydantoin derivative's anti-LIHC activity. METHODS We predicted the anticancer mechanism of N-(4-oxo-5-(2-oxo-2-(p-tolylamino)ethyl)-3- phenyl-2-thioxoimidazolidin-1-yl)benzamide as a derivative of 2-thiohydantoin by utilizing molecular docking and molecular dynamic simulation. Furthermore, based on the results of molecular dynamic modelling, we employed bioinformatics to anticipate the immunotherapy of this molecule in the tumor microenvironment (TME) of Liver Hepatocellular Carcinoma (LIHC) patients. Next, we examined how this derivative affected proliferation, cell cycle progression, reactive oxygen species production, and apoptosis in HepG2 cancer cells. RESULTS Substantially, our investigation revealed that the IC50 value was 2.448 μM and that it arrested the cell cycle of HepG2 in the S phase. Furthermore, molecular docking and dynamics studies revealed a worthy interaction of this compound with AKT1 and CDK2 proteins. Considerably, AKT1 and CDK2 have negative affinity energies of -10.4 kcal/mol and -9.6 kcal/mol, respectively. Several bioinformatic tools were used in this investigation to provide insight into the future clinical application of this derivative as a novel candidate to target immune cells such as macrophages, neutrophils, eosinophils, and CD8+ T cells. CONCLUSION The relevance of this 2-thiohydantoin derivative was demonstrated by our experimental tests, docking studies, and bioinformatics analysis, and it may be investigated as a lead molecule for anticancer medicines, notably as AKT1 and CKD2 inhibitors.
Collapse
Affiliation(s)
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Dakhil Zughayir Mutlaq
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, Nher Anile, Sudan
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, 250022, China
| |
Collapse
|
42
|
Moskalik MY. Sulfonamides with Heterocyclic Periphery as Antiviral Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010051. [PMID: 36615245 PMCID: PMC9822084 DOI: 10.3390/molecules28010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Sulfonamides are the basic motifs for a whole generation of drugs from a large group of antibiotics. Currently, research in the field of the new sulfonamide synthesis has received a "second wind", due to the increase in the synthetic capabilities of organic chemistry and the study of their medical and biological properties of a wide spectrum of biological activity. New reagents and new reactions make it possible to significantly increase the number of compounds with a sulfonamide fragment in combination with other important pharmacophore groups, such as, for example, a wide class of N-containing heterocycles. The result of these synthetic possibilities is the extension of the activity spectrum-along with antibacterial activity, many of them exhibit other types of biological activity. Antiviral activity is also observed in a wide range of sulfonamide derivatives. This review provides examples of the synthesis of sulfonamide compounds with antiviral properties that can be used to develop drugs against coxsackievirus B, enteroviruses, encephalomyocarditis viruses, adenoviruses, human parainfluenza viruses, Ebola virus, Marburg virus, SARS-CoV-2, HIV and others. Since over the past three years, viral infections have become a special problem for public health throughout the world, the development of new broad-spectrum antiviral drugs is an extremely important task for synthetic organic and medicinal chemistry. Sulfonamides can be both sources of nitrogen for building a nitrogen-containing heterocyclic core and the side chain substituents of a biologically active substance. The formation of the sulfonamide group is often achieved by the reaction of the N-nucleophilic center in the substrate molecule with the corresponding sulfonylchloride. Another approach involves the use of sulfonamides as the reagents for building a nitrogen-containing framework.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
43
|
Kochetkov KA, Gorunova ON, Bystrova NA, Dudina PV, Akimov MG. Synthesis and physiological activity of new imidazolidin-2-one bis-heterocyclic derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Novotortsev VK, Kuandykov DM, Kukushkin ME, Zyk NV, Beloglazkina EK. Synthesis of 5-methylidene-2-thio- and 2-selenohydantoins from isothiocyanates or isoselenocyanates and l-serine. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ismail LA, Zakaria R, Hassan EM, Alfaifi MY, Shati AA, Elbehairi SEI, El-Bindary AA, Elshaarawy RFM. Novel imidazolium-thiohydantoin hybrids and their Mn(iii) complexes for antimicrobial and anti-liver cancer applications. RSC Adv 2022; 12:28364-28375. [PMID: 36320495 PMCID: PMC9533479 DOI: 10.1039/d2ra05233d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
We present the effective synthesis and structural characterization of three novel imidazolium-thiohydantoin ligands (IMTHs, 5a–c) and their Mn(iii) complexes (Mn(iii)IMTHs, 6a–c) in this study. The findings of elemental analyses, spectral analyses and magnetic measurements will be used to infer the stoichiometry, coordination styles, and geometrical aspects of Mn(iii)IMTHs. The new compounds were evaluated for their chemotherapeutic potential against ESKAPE pathogens and liver cancer (HepG2). According to the MIC and MBC values, the bactericidal and bacteriostatic activities of IMTHs have been significantly improved following coordination with the Mn(iii) ion. The MTT assay results showed that all Mn(iii)IMTHs had the potential to reduce the viability of liver carcinoma (HepG2) cells in a dose-dependent manner, with the BF4-supported complex (6b) outperforming its counterparts (6a and 6c) as well as a clinical anticancer drug (VBL). Additionally, Mn-IMTH2 (6b) showed the highest level of selectivity (SI = 32.05) for targeting malignant cells (HepG2) over healthy cells (HL7702). We present the effective synthesis and structural characterization of three novel imidazolium-thiohydantoin ligands (IMTHs, 5a–c) and their Mn(iii) complexes (Mn(iii)IMTHs, 6a–c) in this study.![]()
Collapse
Affiliation(s)
- Lamia A. Ismail
- Department of Chemistry, Faculty of Science, Port Said UniversityPort Said 42526Egypt
| | - R. Zakaria
- Department of Chemistry, Faculty of Science, Port Said UniversityPort Said 42526Egypt
| | - Eman M. Hassan
- Department of Chemistry, Faculty of Science, Port Said UniversityPort Said 42526Egypt
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid UniversityAbha 9004Saudi Arabia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid UniversityAbha 9004Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid UniversityAbha 9004Saudi Arabia,Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company)Giza 12311Egypt
| | - A. A. El-Bindary
- Chemistry Department, Faculty of Science, Damietta UniversityDamietta34517Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez UniversitySuez 43533Egypt,Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität DüsseldorfDüsseldorfGermany
| |
Collapse
|
46
|
Development of Novel 1,3-Disubstituted-2-Thiohydantoin Analogues with Potent Anti-Inflammatory Activity; In Vitro and In Silico Assessments. Molecules 2022; 27:molecules27196271. [PMID: 36234810 PMCID: PMC9573447 DOI: 10.3390/molecules27196271] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation is the main cause of several autoimmune diseases, including type I diabetes, rheumatoid arthritis, bullous pemphigoid, paraneoplastic pemphigoid, and multiple sclerosis. Currently, there is an urgent demand for the discovery of novel anti-inflammatory drugs with potent activity but also safe for long-term application. Toward this aim, the present study reported the design, synthesis, and characterization of a set of novel 1,3-disubstituted-2-thiohydantoins derivatives. The anti-inflammatory activity of synthesized compounds was assessed against murine leukemia cell line (RAW264.7) by evaluating the cytotoxicity activity and their potency to prevent nitric oxide (NO) production. The results revealed that the synthesized compounds possess a considerable cytotoxic activity together with the ability to reduce the NO production in murine leukemia cell line (RAW264.7). Among synthesized compounds, compound 7 exhibited the most potent cytotoxic activity with IC50 of 197.68 μg/mL, compared to celecoxib drug (IC50 value 251.2 μg/mL), and demonstrated a significant ability to diminish the NO production (six-fold reduction). Exploring the mode of action responsible for the anti-inflammatory activity revealed that compound 7 displays a significant and dose-dependent inhibitory effect on the expression of pro-inflammatory cytokines IL-1β. Furthermore, compound 7 demonstrated the ability to significantly reduce the expression of the inflammatory cytokines IL-6 and TNF-α at 50 μg/mL, as compared to Celecoxib. Finally, detailed molecular modelling studies indicated that compound 7 exhibits a substantial binding affinity toward the binding pocket of the cyclooxygenase 2 enzyme. Taken together, our study reveals that 1,3-disubstituted-2-thiohydantoin could be considered as a promising scaffold for the development of potent anti-inflammatory agents.
Collapse
|
47
|
Bansagi J, Wilson-Konderka C, Debrauwer V, Narayanan P, Batey RA. N-Alkyl Carbamoylimidazoles as Isocyanate Equivalents: Exploration of the Reaction Scope for the Synthesis of Ureas, Hydantoins, Carbamates, Thiocarbamates, and Oxazolidinones. J Org Chem 2022; 87:11329-11349. [PMID: 35968929 DOI: 10.1021/acs.joc.2c00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of the HCl or trifluoroacetic acid salts of primary amines with carbonyldiimidazole (CDI) is shown to be a preparatively useful method for forming monosubstituted carbamoylimidazoles (28 examples) without the formation of symmetrical urea side products. The utility of these air- and water-stable crystalline carbamoylimidazole reagents was demonstrated by their reactions as blocked or masked isocyanate equivalents. Reaction with various classes of nucleophiles provides access to useful functional groups including ureas, carbamates, thiocarbamates, hydantoins, and oxazolidinones. A parallel synthesis library of 30 ureas was generated by the reaction of 6× carbamoylimidazole intermediates with 5× amines and triethylamine. The unsymmetrical urea-containing natural products macaurea A and pygmaniline A were also prepared in good yields (95% over four steps and 79% over three steps, respectively) using this approach. The reaction of carbamoylimidazoles with amino acid methyl esters followed by microwave irradiation in aqueous media gives hydantoins in high yields, further demonstrating the ability of carbamoylimidazoles as isocyanate surrogates. Three hydantoin-containing natural products including macahydantoin D and meyeniihydantoin A were prepared in nearly quantitative yields from proline methyl ester and carbamoylimidazoles. The reaction of carbamoylimidazoles with alcohols and thiols under basic conditions affords carbamates and thiocarbamates, respectively, in good yields. Lastly, a method for the preparation of chiral oxazolidinone heterocycles from chiral epoxy alcohols is demonstrated using a double displacement approach. The reactions occur with high regio- and stereoselectivity (dr ≥ 15:1 by 1H NMR) via a domino attack of the corresponding alkoxides with carbamoylimidazoles followed by an intramolecular attack of the in situ generated urea anion at the proximal position of the epoxide group.
Collapse
Affiliation(s)
- Jazmin Bansagi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada, M5S 3H6
| | - Cody Wilson-Konderka
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada, M5S 3H6
| | - Vincent Debrauwer
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada, M5S 3H6
| | - Pournima Narayanan
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada, M5S 3H6
| | - Robert A Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada, M5S 3H6
| |
Collapse
|
48
|
Whitely C, Li Y. One-Pot High-throughput Synthesis of N3-Substituted 5-Arylidene-2-Thiohydantoin Amides and Acids. Tetrahedron Lett 2022; 103:153983. [PMID: 36777034 PMCID: PMC9910623 DOI: 10.1016/j.tetlet.2022.153983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-pot high-throughput solid-phase method for the synthesis of N3-substituted 5-arylidene-2-thiohydantoin amide and acid has been developed. A tandem ring-closure and ring-open pathway is proposed as the mechanism of forming the two products.
Collapse
Affiliation(s)
- Chelsi Whitely
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina
| | - Yangmei Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina
| |
Collapse
|
49
|
Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. SEPARATIONS 2022. [DOI: 10.3390/separations9070157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The enantioseparation of syn- and anti-3,5-disubstituted hydantoins 5a–i was investigated on three immobilized polysaccharide-based columns (CHIRAL ART Amylose-SA, CHIRAL ART Cellulose-SB, CHIRAL ART Cellulose-SC) by high performance liquid chromatography (HPLC) using n-hexane/2-PrOH (90/10, v/v) or 100% dimethyl carbonate (DMC) as mobile phases, respectively, and by supercritical fluid chromatography (SFC) using CO2/alcohol (MeOH, EtOH, 2-PrOH; 80/20, v/v) as a mobile phase. The chromatographic parameters, such as separation and resolution factors, have indicated that Amylose-SA is more suitable for enantioseparation of the most analyzed syn- and anti-3,5-disubstituted hydantoins than Celullose-SB and Cellulose-SC in both HPLC and SFC modalities. All three tested columns showed better enantiorecognition ability toward anti-hydantoins compared to syn-hydantoins, both in HPLC and SFC modes. We have demonstrated that environmentally friendly solvent DMC can be efficiently used as the mobile phase in HPLC mode for enantioseparation of hydantoins on the immobilized polysaccharide-based chiral stationary phases.
Collapse
|
50
|
Finko AV, Guk DA, Saakian AS, Moiseeva AA, Tafeenko VA, Shiryaeva ES, Pergushov VI, Ya Melnikov M, Komlev AS, Beloglazkin AA, Borisov RS, Zyk NV, Majouga AG, Beloglazkina EK. Structurally similar mixed-valent coordination compounds formed during the interaction of bis-5-pyridylmethylene-2-thioimidazolone with CuBr2 и CuCl2. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|