1
|
Drzał W, Trotsko N. Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021-Present). Molecules 2025; 30:2201. [PMID: 40430372 PMCID: PMC12114044 DOI: 10.3390/molecules30102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of mortality worldwide, exacerbated by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains. In the pursuit of novel therapeutic strategies, thiazolidin-4-one derivatives have gained significant attention due to their structural diversity and broad-spectrum biological activities. This review provides a comprehensive summary of recent advances (2021-present) in the synthesis, structure-activity relationship (SAR), and mechanisms of action of thiazolidin-4-one derivatives as promising antitubercular agents. A detailed discussion of synthetic pathways is presented, including classical and multi-component reactions leading to various subclasses such as thiazolidine-2,4-diones, rhodanines, and pseudothiohydantoins. The SAR analysis highlights key functional groups that enhance antimycobacterial activity, such as halogen substitutions and heterocyclic linkers, while molecular docking and in vitro studies elucidate interactions with key Mtb targets including InhA, MmpL3, and DNA gyrase. Several compounds demonstrate potent inhibitory effects with MIC values lower than or comparable to first-line TB drugs, alongside favorable cytotoxicity profiles. These findings underscore the potential of thiazolidin-4-one scaffolds as a valuable platform for the development of next-generation antitubercular therapeutics.
Collapse
Affiliation(s)
- Wiktoria Drzał
- Students Research Group, Department of Organic Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland;
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Sheu-Idrees R, Marques GVDL, Santana PAL, Diniz LA, Resende DDM, Odoma S, Olorunshola O, Ferreira RS, Murta SMF, Maltarollo VG, de Oliveira RB. Investigation of the activity of 4-aminoquinolines as cysteine protease inhibitors with application in the treatment of Chagas disease. Mem Inst Oswaldo Cruz 2025; 120:e240161. [PMID: 39936703 PMCID: PMC11809514 DOI: 10.1590/0074-02760240161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/23/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Chagas disease (CD) is a neglected tropical disease caused by Trypanosoma cruzi. The current drugs used to treat these diseases have limited efficacy and produce severe side effects. 4-aminoquinoline derivatives were shown to be a promising class of inhibitors of cysteine proteases cruzain and TbrCATL. OBJECTIVES To evaluate the trypanocidal activity of a new series of aminoquinolines as potential inhibitors of cruzain and TbrCATL. METHODS Three aminoquinolines were synthesised and their in vitro activity was evaluated against cruzain and TbrCATL as well as against amastigotes and trypomastigotes forms of T. cruzi. In silico studies were also carried out to try to understand the experimental results. FINDINGS Compound 5 showed promising activity against cruzain and TbrCATL, with better performance than E60, the reference drug. Compound 5 inhibited cruzain and TbrCATL at IC50 of 23 µM ±3 and 29 µM ±1, respectively, but this inhibition showed characteristics of promiscuous inhibition by colloidal aggregation. On the other hand, the compound 4 showed to be more promising activity against T. cruzi with IC50 2.57 µM ± 0.03 lower than the reference drug benznidazole 3.8 µM. MAIN CONCLUSIONS The results of this study can guide new drug development for the treatment of trypanosomiasis.
Collapse
Affiliation(s)
- Rahamah Sheu-Idrees
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Belo Horizonte, MG, Brasil
- Kampala International University, School of Pharmacy, Western Campus, Kampala, Uganda
- Kampala International University, School of Pharmacy, Dar Es Salaam, Tanzania
| | - Gabriel Vitor de Lima Marques
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Belo Horizonte, MG, Brasil
| | - Pedro Augusto Lemos Santana
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Belo Horizonte, MG, Brasil
| | - Lucas Abreu Diniz
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brasil
| | - Daniela de Melo Resende
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| | - Saidi Odoma
- Kampala International University, School of Pharmacy, Western Campus, Kampala, Uganda
- Kogi State University, College of Health Sciences, Department of Pharmacology, Anyigba, Nigeria
| | - Omodamiro Olorunshola
- Kampala International University, School of Pharmacy, Western Campus, Kampala, Uganda
| | - Rafaela Salgado Ferreira
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brasil
| | - Silvane Maria Fonseca Murta
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| | - Vinícius Gonçalves Maltarollo
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Belo Horizonte, MG, Brasil
| | - Renata Barbosa de Oliveira
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Belo Horizonte, MG, Brasil
| |
Collapse
|
3
|
Nunes JA, Santos-Júnior PFDS, Gomes MC, Ferreira LAS, Padilha EKA, Teixeira TR, Stanger EJ, Kaur Y, Silva EBD, Costa CACB, Freitas JDD, Araújo-Júnior JXD, Mendonça-Junior FJB, Giardini MA, Siqueira-Neto JL, Caffrey CR, Zhan P, Cardoso SH, Silva-Júnior EFD. Nanomolar activity of coumarin-3-thiosemicarbazones targeting Trypanosoma cruzi cruzain and the T. brucei cathepsin L-like protease. Eur J Med Chem 2025; 283:117109. [PMID: 39653622 DOI: 10.1016/j.ejmech.2024.117109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) urgently demand innovative drug development due to their impact on public health worldwide. Their cysteine proteases, Cruzain (CRZ) and the T. brucei Cathepsin L-like protease (TbrCATL) are established drug targets for these parasites. In this study, our coumarin-3-thiosemicarbazones demonstrated nanomolar IC50 values (22-698 nM) toward these proteases. Against T. cruzi amastigotes and T. brucei trypomastigotes, LASF-01 displayed a promising result. Herein, MCG-02, the most potent TbrCATL inhibitor, underwent comprehensive analyses, including cytotoxicity assessments and in vitro tests. Molecular dynamics (MD) simulations and a multiscale Quantum Mechanics/Quantum Mechanics (QM/QM) approach were used to generate insights into their binding modes. These suggested that MCG-02 could be a reversible, competitive covalent inhibitor. Further, confirmatory assays were experimentally performed changing different parameters to prove its efficacy. Additionally, the predicted pharmacokinetic profile showed that there is no violation of the Lipinski rule of five. Notably, coumarin-3-thiosemicarbazone hybrids emerged as promising candidates for designing highly active inhibitors against CRZ and TbrCATL. Overall, the integration of in silico and experimental approaches enhanced our understanding regarding the binding modes of MCG-02, which were experimentally corroborated, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Midiane Correa Gomes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Luiz Alberto Santos Ferreira
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil
| | - Emanuelly Karla Araújo Padilha
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily J Stanger
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yashpreet Kaur
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Maceió, Alagoas, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil
| | | | - Miriam A Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca, 57309-005, Brazil.
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil.
| |
Collapse
|
4
|
Varvuolytė G, Řezníčková E, Bieliauskas A, Kleizienė N, Vojáčková V, Opichalová A, Žukauskaitė A, Kryštof V, Šačkus A. Synthesis and photodynamic activity of new 5-[(E)-2-(3-alkoxy-1-phenyl-1H-pyrazol-4-yl)ethenyl]-2-phenyl-3H-indoles. Arch Pharm (Weinheim) 2024; 357:e2400282. [PMID: 38969965 DOI: 10.1002/ardp.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
A series of new indole-pyrazole hybrids 8a-m were synthesized through the palladium-catalyzed ligandless Heck coupling reaction from easily accessible unsubstituted, methoxy- or fluoro-substituted 4-ethenyl-1H-pyrazoles and 5-bromo-3H-indoles. These compounds exerted cytotoxicity to melanoma G361 cells when irradiated with blue light (414 nm) and no cytotoxicity in the dark at concentrations up to 10 µM, prompting us to explore their photodynamic effects. The photodynamic properties of the example compound 8d were further investigated in breast cancer MCF-7 cells. Evaluation revealed comparable anticancer activities of 8d in both breast and melanoma cancer cell lines within the submicromolar range. The treatment induced a massive generation of reactive oxygen species, leading to different types of cell death depending on the compound concentration and the irradiation intensity.
Collapse
Affiliation(s)
- Gabrielė Varvuolytė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Alena Opichalová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
5
|
Elmi A, Said Mohamed A, Mérito A, Charneau S, Amina M, Grellier P, Bouachrine M, Lawson AM, Abdoul-Latif FM, Kordofani MAY. The ethnopharmacological study of plant drugs used traditionally in Djibouti for malaria treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117839. [PMID: 38310984 DOI: 10.1016/j.jep.2024.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Djibouti was a country where malaria has been endemic for centuries. The local population use the plants as repellents or first aid for uncomplicated malaria. AIM OF THE STUDY The aim was, for the first time, to collect and identify plants used by the local population to treat malaria and select the most interesting plants (those that are more commontly used, more available, and have fewer studies). These plants were evaluated for their antiplasmodial activity as well as their cytotoxicity on human cell lines for the most active ones. MATERIALS AND METHODS A semi-structured questionnaire was developed for this study to collect information about the use and identity of botanical drugs used to treat malaria. The use-reports (percentage) of each plant were recorded to determine their use importance. Also, the availability status of the plants was assessed; and those in critical condition were discarded excluded from further study. Fifteen plants, out of the 41 listed, were extracted with hydro alcohol, ethyl acetate, and dichloromethane for biological testing. Chloroquine-resistant strain FcB-1 of P. falciparum and a human diploid embryonic lung cell line were used for the antiplasmodial test, and to assess the cytotoxicity for human cells respectively. Preliminary analysis of extract constituents was carried out using thin layer chromatography (TLC). RESULTS This study identifies 41 plant taxa belonging to 32 families and records their use against malaria. Balanites rodunfolia, belonging to the Zygophyllaceae family, was the most commonly used plant, representing 44 % of use-reports. It was followed by Cadaba rodunfolia (15 %) from the Capparaceae family, and then the three species of Aloe: Aloe djiboutiensis (8.2 %), Aloe ericahenriettae (3.4 %), and Aloe rigens (3.4 %) from the Asphodelaceae family. The leaves are the most commonly used part of the plants to treat malaria, accounting for 76 % of usage. The preparation methods were decoction (52 %), maceration (29 %), and boiling (19 %). The administration routes were by oral (80 %), inhalation 19 %), and bathing (1 %). The best antiplasmodial activities were observed in the dichloromethane extracts of Cymbopogon commutatus and the ethyl acetate extracts of Aloe rigens and Terminalia brownii, with IC50 values of 9.8, 5, and 7.5 μg/mL, respectively. Their toxicity/activity levels were very favorable with selectivity indices of 5.6, 8.1, and 11.8 for C. commutatus, A. rigens, and T. Brownii, respectively. CONCLUSION Forty-one species of botanical drugs were listed as being used to treat malaria in Djibouti. All fifteen selected species showed antiplasmodial activity (IC50 < 50 μg/mL). This work will help guide the valorization of botanical drugs used to treat malaria in Djibouti.
Collapse
Affiliation(s)
- Abdirahman Elmi
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti.
| | - A Said Mohamed
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti
| | - Ali Mérito
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Mohamed Amina
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005, Paris, France
| | - Mohammed Bouachrine
- High School of Technology EST-Khenifra, Sultan Moulay Sliman University, Beni mellal, Morocco
| | - Ata M Lawson
- Normandie Univ., UNILEHAVRE, URCOM, UR 3221, INC3M, FR-CNRS 3038, 76600, Le Havre, France
| | - Fatouma M Abdoul-Latif
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti
| | - Maha A Y Kordofani
- Department of Botany, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| |
Collapse
|
6
|
Abbasi Shiran J, Kaboudin B, Panahi N, Razzaghi-Asl N. Privileged small molecules against neglected tropical diseases: A perspective from structure activity relationships. Eur J Med Chem 2024; 271:116396. [PMID: 38643671 DOI: 10.1016/j.ejmech.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.
Collapse
Affiliation(s)
- J Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran
| | - B Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - N Panahi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Li B, Duan W, Lin G, Ma X, Wen R, Zhang Z. An Effective and Promising Strategy for Plant Protection: Synthesis of L-Carvone-Based Thiazolinone-Hydrazone/Nanochitosan Complexes with Antifungal Activity and Sustained Releasing Performance. Int J Mol Sci 2024; 25:4595. [PMID: 38731815 PMCID: PMC11083649 DOI: 10.3390/ijms25094595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.
Collapse
Affiliation(s)
- Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Xianli Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Rongzhu Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Zhaolei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| |
Collapse
|
8
|
Pyrih A, Łapiński A, Zięba S, Mizera A, Lesyk R, Gzella AK, Jaskolski M. Proton tautomerism and stereoisomerism in 5-[(dimethylamino)methylidene]-4-[3/4-(trifluoromethylphenyl)amino]-1,3-thiazol-2(5H)-ones: synthesis, crystal structure and spectroscopic studies. Acta Crystallogr C Struct Chem 2023; 79:480-490. [PMID: 37874207 DOI: 10.1107/s2053229623009087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
5-[(Dimethylamino)methylidene]-4-{[3-(trifluoromethyl)phenyl]amino}-1,3-thiazol-2(5H)-one and the [4-(trifluoromethyl)phenyl]amino derivative, both C13H12F3N3OS, with the trifluoromethyl group substituted at the arene ring at the meta and para positions, were synthesized to study the structural changes associated with proton tautomerism of the amidine system. The studied compounds were found to be in the amine tautomeric form in both the solid and the liquid (dimethyl sulfoxide solutions) phase. In both isomers, the [(trifluoromethyl)phenyl]amino residue assumes a synperiplanar conformation with respect to the thiazolone system, while the 5-[(dimethylamino)methylidene] residue adopts the Z configuration. Density functional theory (DFT) calculations correctly predicted that the synperiplanar arrangement is favoured in both isomers. In the crystal, the whole independent molecule of the para compound is disordered over two alternative positions, with occupancy factors of 0.926 (3) and 0.074 (3).
Collapse
Affiliation(s)
- Andrii Pyrih
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Sylwia Zięba
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Andrzej K Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Cox Holanda de Barros Dias M, Souza Barbalho M, Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Lima Leite AC, da Silva Santos AC, Cristovão Silva AC, Accioly Brelaz de Castro MC, Maria Nascimento Moura D, Gomes Rebello Ferreira LF, Zaldini Hernandes M, de Freitas E Silva R, Rêgo Alves Pereira V. 1,3-Thiazole derivatives as privileged structures for anti-Trypanosoma cruzi activity: Rational design, synthesis, in silico and in vitro studies. Eur J Med Chem 2023; 257:115508. [PMID: 37267753 DOI: 10.1016/j.ejmech.2023.115508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Chagas disease is a deadly and centenary neglected disease that is recently surging as a potential global threat. Approximately 30% of infected individuals develop chronic Chagas cardiomyopathy and current treatment with the reference benznidazole (BZN) is ineffective for this stage. We presently report the structural planning, synthesis, characterization, molecular docking prediction, cytotoxicity, in vitro bioactivity and mechanistic studies on the anti-T. cruzi activity of a series of 16 novel 1,3-thiazoles (2-17) derived from thiosemicarbazones (1a, 1b) in a two-step and reproducible Hantzsch-based synthesis approach. The anti-T. cruzi activity was evaluated in vitro against the epimastigote, amastigote and trypomastigote forms of the parasite. In the bioactivity assays, all thiazoles were more potent than BZN against epimastigotes. We found that the compounds presented an overall increased anti-tripomastigote selectivity (Cpd 8 was 24-fold more selective) than BZN, and they mostly presented anti-amastigote activity at very low doses (from 3.65 μM, cpd 15). Mechanistic studies on cell death suggested that the series of 1,3-thiazole compounds herein reported cause parasite cell death through apoptosis, but without compromising the mitochondrial membrane potential. In silico prediction of physicochemical properties and pharmacokinetic parameters showed promising drug-like results, being all the reported compounds in compliance with Lipinski and Veber rules. In summary, our work contributes towards a more rational design of potent and selective antitripanosomal drugs, using affordable methodology to yield industrially viable drug candidates.
Collapse
Affiliation(s)
- Mabilly Cox Holanda de Barros Dias
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| | - Mayara Souza Barbalho
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670- 420, Recife, Pernambuco, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
10
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
11
|
Ghous F, Shukla S, Singh R, Parveen S, Banerjee M, Bishnoi A. Synthesis, Crystal Structure, Computational Investigation, Molecular Docking Analysis and Anti-lung Cancer Activity of Novel (Z)-3-amino-2-(cyclohexylidenehydrazono)thiazolidin-4-one. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Screening the Pathogen Box to Discover and Characterize New Cruzain and TbrCatL Inhibitors. Pathogens 2023; 12:pathogens12020251. [PMID: 36839523 PMCID: PMC9967275 DOI: 10.3390/pathogens12020251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.
Collapse
|
13
|
Pyrih A, Łapiński A, Zięba S, Lesyk R, Jaskolski M, Gzella AK. Proton tautomerism and stereoisomerism of 4-amino-1,3-thiazol-2(5H)-one derivatives bearing substituents with opposite electronic effects: Synthesis, structure and spectroscopic studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
3-Substituted-2,3-Dihydrothiazole as a promising scaffold to design EGFR inhibitors. Bioorg Chem 2022; 129:106172. [DOI: 10.1016/j.bioorg.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
15
|
Nunes JA, Ferreira da Silva-Júnior E. Hybrid-Compounds Against Trypanosomiases. Curr Drug Targets 2022; 23:1319-1329. [PMID: 35579157 DOI: 10.2174/1389450123666220509202352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023]
Abstract
Neglected tropical diseases (NTDs) are a global public health problem associated with approximately 20 conditions. Among these, Chagas disease (CD), caused by Trypanosoma cruzi, and human African trypanosomiasis (HAT), caused by T. brucei gambiense or T. brucei rhodesiense, affect mainly the populations of the countries from the American continent and sub- Saharan Africa. Pharmacological therapies used for such illnesses are not yet fully effective. In this context, the search for new therapeutic alternatives against these diseases becomes necessary. A drug design tool, recently recognized for its effectiveness in obtaining ligands capable of modulating multiple targets for complex diseases, concerns molecular hybridization. Therefore, this review aims to demonstrate the importance of applying molecular hybridization in facing the challenges of developing prototypes as candidates for the treatment of parasitic diseases. Therefore, studies involving different chemical classes that investigated and used hybrid compounds in recent years were compiled in this work, such as thiazolidinones, naphthoquinones, quinolines, and others. Finally, this review covers several applications of the exploration of molecular hybridization as a potent strategy in the development of molecules potentially active against trypanosomiases, in order to provide information that can help in designing new drugs with trypanocidal activity.
Collapse
Affiliation(s)
- Jessica Alves Nunes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Brazil.,Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Brazil
| |
Collapse
|
16
|
From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds. Eur J Med Chem 2022; 244:114876. [DOI: 10.1016/j.ejmech.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
17
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010319. [PMID: 35011552 PMCID: PMC8746838 DOI: 10.3390/molecules27010319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/06/2023]
Abstract
Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.
Collapse
|
19
|
Singh R, Kumar P, Sindhu J, Devi M. Synthesis and exploration of configurational dynamics in equilibrating E/ Z 2-aryliminothiazolidin-4-ones using NMR and estimation of thermodynamic parameters. NEW J CHEM 2022. [DOI: 10.1039/d1nj06109g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NMR based in-depth exploration of stereodynamic behavior in equilibrating E/Z 2-aryliminothiazolidin-4-ones and determination of kinetic and thermodynamic parameters.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar-125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| |
Collapse
|
20
|
Kryshchyshyn-Dylevych A, Radko L, Finiuk N, Garazd M, Kashchak N, Posyniak A, Niemczuk K, Stoika R, Lesyk R. Synthesis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorg Med Chem 2021; 50:116453. [PMID: 34634616 DOI: 10.1016/j.bmc.2021.116453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
A series of novel indole-azolidinone hybrids has been synthesized via Knoevenagel reaction of 5-fluoro-3-formyl-1H-indole-2-carboxylic acid methyl ester and some azolidinones differing in heteroatoms in positions 1, 2 and 4. Their anticancer activity in vitro was screened towards MCF-7 (breast cancer), HCT116 (colon cancer), HepG2 (hepatoma), HeLa (cervical cancer), A549 (lung cancer), WM793 (melanoma) and THP-1 (leukemia) cell lines, and a highly active 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester (3a) was identified and subjected to in-depth investigation of cytotoxicity mechanisms. This compound was found to possess the highest cytotoxic action towards tumor cells comparing with the action of other derivatives (1, 3b, 3c, 3d, 3e). Compound 3a exhibited toxicity toward MCF-7, HCT116, and A549, HepG2 cancer cells, while the non-malignant cells (human keratinocytes of HaCaT line and murine embryonic fibroblasts of Balb/c 3T3 line) possessed moderate sensitivity to it. The compound 3a induced apoptosis in studied tumor cells via caspase 3-, PARP1-, and Bax-dependent mechanisms; however, it did not affect the G1/S transition in HepG2 cells. The compound 3a impaired nuclear DNA in HepG2, HCT116, and MCF-7 cells without intercalating this biomolecule, but much less DNA damage events were induced by 3a in normal Balb/c 3T3 fibroblasts compared with HepG2 carcinoma cells. Thus, 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester 3a was shown to trigger DNA damage and induce apoptosis of human tumor cells and it might be considered as an anticancer agent perspective for in-depth studies.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | | | - Nataliya Kashchak
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Krzysztof Niemczuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
21
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
22
|
Modeling the DFT structural and reactivity studies of a pyrimidine -6-carboxylate derivative with reference to its wavefunction-dependent, MD simulations and evaluation for potential antimicrobial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Arshad M, Khan MS, Nami SAA, Ahmad SI, Kashif M, Anjum A. Synthesis, characterization, biological, and molecular docking assessment of bioactive 1,3-thiazolidin-4-ones fused with 1-(pyrimidin-2-yl)-1H-imidazol-4-yl) moieties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
25
|
Yang B, Si H, Zhai H. QSAR Studies on the IC50 of a Class of Thiazolidinone/Thiazolide Based Hybrids as Antitrypanosomal Agents. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201102200015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Trypanosomiasis is a widespread zoonotic disease and the existing drugs are
not enough to prevent and treat it.
Objective::
This study aimed to build a quantitative structure-activity relationship model by the chemical
structures of a class of thiazolidone/thiazolidamide based hybrids. The model was used to screen new
antitrypanosomal agents and predict the properties of composite molecules.
Methods::
All compounds were randomly divided into a training set and a test set. A large number of
descriptors were calculated by the software, then some of the best descriptors were selected to build the
models. The linear model was built by the heuristic method and the nonlinear model was built by gene
expression programming method.
Results::
In the heuristic method, the correlation coefficients ,R2, R2cv, F and S2 were 0.581, 0.457,
14.053 and 15.311, respectively. In gene expression programming, the R2 and S2 were 0.715, 10.997
in the training set and 0.617, 22.778 in the test set. The results showed that the relative number of S atoms
and the minimum bond order of an H atom had a significant positive contribution to IC50. Meanwhile,
the relative number of double bonds and the count of hydrogen-bonding acceptor sites had a great
negative impact on IC50.
Conclusion::
Both the heuristic method and gene expression programming had a good predictive performance.
By contrast, the gene expression programming method fitted well with the experimental values
and it was expected to be beneficial in the synthesis of new antitrypanosomal drugs.
Collapse
Affiliation(s)
- Bo Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095,China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao 266071,China
| | - Honglin Zhai
- Department of Chemistry, Lanzhou University, Lanzhou 730000,China
| |
Collapse
|
26
|
Trotsko N. Antitubercular properties of thiazolidin-4-ones - A review. Eur J Med Chem 2021; 215:113266. [PMID: 33588179 DOI: 10.1016/j.ejmech.2021.113266] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
Thiazolidin-4-one scaffold has great potential for medicinal chemistry and is of interest to scientists in view of wide spectrum of biological activity. This scaffold is often used for designing of small molecules with various biological activity including antituberculosis activity. The presented review is an attempt to gather, analyze and systemize data about antitubercular properties of thiazolidine-4-ones from two last decades. Some of them have promising antitubercular activity which is significantly higher than that of the reference drugs. Among them compounds 82c, 82d and 84 that were active against M. tuberculosis H37Rv strain with MICs in the range of 0.05-0.2 μg/mL and compound 108 exhibited activity with MIC = 0.36 μM. Compounds 115a-115c and 116a-116c were very effective against M. tuberculosis H37Ra with MIC values in the range of 0.031-0.125 μg/mL. Acidomycin was showed activity against seven MDR M. tuberculosis strains with MICs in the range of 0.6-0.62 μM and against two XDR M. tuberculosis strains with MICs 0.096 and 1.2 μM. The structure-activity relationship (SAR) of some groups of compounds, as well as some potential molecular targets were also discussed.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093, Lublin, Poland.
| |
Collapse
|
27
|
Schadich E, Kryshchyshyn-Dylevych A, Holota S, Polishchuk P, Džubak P, Gurska S, Hajduch M, Lesyk R. Assessing different thiazolidine and thiazole based compounds as antileishmanial scaffolds. Bioorg Med Chem Lett 2020; 30:127616. [PMID: 33091607 DOI: 10.1016/j.bmcl.2020.127616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The compounds from eight different thiazolidine and thiazole series were assessed as potential antileishmanial scaffolds. They were tested for antileishmanial activity against promastigotes of Leishmania major using in vitro primary screen and dose response assays. The compounds from six thiazolidine and thiazole series were identified as the hits with antileishmanial activity against L. major. However, the analyses of structure-activity relations (SARs) showed that the interpretable SARs were obtained only for phenyl-indole hybrids (compounds C1, C2, C3 and C5) as the most effective compounds against L. major promastigotes (IC50 < 10 µM) with low toxicity to human fibroblasts. For the scaffold of these compounds, the most significant SAR patterns were: free N3 position of thiazolidinone core, absence of big fragments at the C5 position of thiazolidinone core and presence of halogen atoms or nitro group in the phenyl ring of phenyl-indole fragment. As previous studies showed that these compounds also have activity against the two Trypanosoma species, Trypanosoma brucei and Trypanosoma gambiense, their scaffold could be associated with a broader antiparasitic activity.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Serhiy Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
28
|
Kryshchyshyn-Dylevych A, Garazd M, Karkhut A, Polovkovych S, Lesyk R. Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)-1H-indole-carboxylic acids derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1786124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Andrew Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Sviatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
29
|
Pepe DA, Toumpa D, André-Barrès C, Menendez C, Mouray E, Baltas M, Grellier P, Papaioannou D, Athanassopoulos CM. Synthesis of Novel G Factor or Chloroquine-Artemisinin Hybrids and Conjugates with Potent Antiplasmodial Activity. ACS Med Chem Lett 2020; 11:921-927. [PMID: 32435406 DOI: 10.1021/acsmedchemlett.9b00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022] Open
Abstract
A series of novel hybrids of artemisinin (ART) with either a phytormone endoperoxide G factor analogue (GMeP) or chloroquine (CQ) and conjugates of the same compounds with the polyamines (PAs), spermidine (Spd), and homospermidine (Hsd) were synthesized and their antiplasmodial activity was evaluated using the CQ-resistant P. falciparum FcB1/Colombia strain. The ART-GMeP hybrid 5 and compounds 9 and 10 which are conjugates of Spd and Hsd with two molecules of ART and one molecule of GMeP, were the most potent with IC50 values of 2.6, 8.4, and 10.6 nM, respectively. The same compounds also presented the highest selectivity indexes against the primary human fibroblast cell line AB943 ranging from 16 372 for the hybrid 5 to 983 for the conjugate 10 of Hsd.
Collapse
Affiliation(s)
- Dionissia A. Pepe
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Dimitra Toumpa
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Christiane André-Barrès
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Christophe Menendez
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Elisabeth Mouray
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Michel Baltas
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Philippe Grellier
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Dionissios Papaioannou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | | |
Collapse
|
30
|
Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1759060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yulia Shepeta
- Department of Pharmaceutical Сhemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marta Sulyma
- Department of General, Inorganic and Bioinorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ihor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
31
|
Salhi L, Achouche-Bouzroura S, Nechak R, Nedjar-Kolli B, Rabia C, Merazig H, Poulain-Martini S, Dunach E. Synthesis of functionalized dihydroimidazo[1,2-A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1699933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lydia Salhi
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Samia Achouche-Bouzroura
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Rosa Nechak
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Bellara Nedjar-Kolli
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Chérifa Rabia
- Laboratory of Natural Gas Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Hocine Merazig
- Chemistry Research Unit of Environmental and Molecular Structural (CHEMS), Faculty of Exact Sciences, Department of Chemistry, University of Constantine, Constantine, Algeria
| | | | - Elisabet Dunach
- Chemistry Institute of Nice, Université Côte d'Azur, CNRS, Nice Cedex 2, France
| |
Collapse
|