1
|
Bidusenko IA, Schmidt EY, Kvashnina AA, Ushakov IA, Trofimov BA. Base-Mediated Synthesis of Polysubstituted Pyrroles from N-Allyl Ketimines and Alkynes: Interplay of Carbanions. Org Lett 2025. [PMID: 40391395 DOI: 10.1021/acs.orglett.5c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Terminal (het)arylacetylenes react (KOBut/DMSO, 60 °C, 1 h) with N-allyl ketimines to afford 2-(het)aryl-4-(het)arylmetyl-5-ethylpyrroles in up to 71% yield as a result of the interaction of acetylenic and azadienic carbanions with C=N and C≡C bonds. This new reaction opens a one-pot access to synthetically and pharmaceutically prospective compounds.
Collapse
Affiliation(s)
- Ivan A Bidusenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Elena Yu Schmidt
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Anastasia A Kvashnina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Jyoti, Vaishali, Sharma S, Borthakur DP, Deepika, Malakar CC, Singh V. A transition metal-free [3 + 2] cycloaddition approach for the efficient synthesis of trisubstituted pyrrole derivatives from β-chlorovinyl aldehydes. Org Biomol Chem 2025; 23:4735-4742. [PMID: 40259739 DOI: 10.1039/d5ob00351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
A transition metal-free, Cs2CO3-promoted approach has been devised for the efficient synthesis of nitrile-substituted novel pyrrole derivatives from β-chlorovinyl aldehydes. Interestingly, the strategy was also found to be applicable to the synthesis of chromenone-fused pyrrole derivatives. The reaction proceeded through [3 + 2] cycloaddition between diversely substituted aryl propiolonitriles and toluenesulphonylmethyl isocyanide in DMF at ambient temperature. This approach offers several advantages including the use of inexpensive and readily available starting materials, wide substrate scope, operational simplicity, short reaction times (15 min-1.5 h), high atom economy, sustainable reaction conditions and high product yields. The strategy has been found to be amenable for gram-scale synthesis, and the scope of the strategy has been demonstrated for the synthesis of a diverse library of novel pyrrole derivatives with yields of up to 91%. The generated pyrrole derivatives are amenable for late-stage functionalisation and functional group interconversion.
Collapse
Affiliation(s)
- Jyoti
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Vaishali
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144008, Punjab, India
| | - Shreya Sharma
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | | | - Deepika
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144008, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT), Manipur, Imphal, 795004, Manipur, India
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
3
|
Szczolko W, Kryjewski M, Koczorowski T, Zuchowska E, Popenda L, Mlynarczyk DT. Pyrrole dicarboxylate substituted porphyrazine, microwave assisted synthesis and properties. Sci Rep 2025; 15:16668. [PMID: 40360570 PMCID: PMC12075845 DOI: 10.1038/s41598-025-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, a new magnesium(II) porphyrazine derivative tetrasubstituted with dicarboxypyrrolyl moieties was synthesized. Two different approaches were used, utilizing conventional heating and microwave irradiation. The developed three-step processes were compared showing the superior performance of the microwave-assisted organic synthesis. The new macrocycle and the novel maleonitrile derivatives were characterized using spectral techniques (mass spectrometry, NMR spectroscopy, UV-Vis spectrophotometry) and the ability of the porphyrazine to generate singlet oxygen assessed using the method with 1,3-diphenylisobenzofuran. The singlet oxygen generation quantum yields were found to be moderate (ΦΔ = 0.23 and 0.22 in DMF and DMSO, respectively) and no aggregation behavior was noted in a series of dilutions. Additionally, the acute toxicity test using Microtox was performed showing almost no toxicity at the concentration of 10- 5 mol/L. The electrochemical studies revealed three redox processes of targeted porphyrazine with low first oxidation peak, whereas the spectroelectrochemistry showed the formation of both cationic and anionic species at proper potentials.
Collapse
Affiliation(s)
- Wojciech Szczolko
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| | - Michal Kryjewski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Eunice Zuchowska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
4
|
Kumar S L, Servesh A, Chundattu SJ, Tabassum S, Govindaraju S. Elevating pyrrole derivative synthesis: a three-component revolution. Mol Divers 2025; 29:1761-1787. [PMID: 38769226 DOI: 10.1007/s11030-024-10884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole is an essential chemical with considerable relevance as a pharmaceutical framework for many biologically necessary medications. The growing demand for biologically active compounds calls for a simple one-pot method for generating novel pyrrole derivatives. Nots surprisingly, several multicomponent reactions (MCRs) aim to synthesize pyrrole derivatives. However, this review presents the three-component synthesis of pyrrole derivatives, highlighting the significance of multicomponent reaction in synthesizing eclectic multi-functionalised pyrrole covering the selected literature on the three-component synthesis of substituted pyrrole from 2016 to late 2023. Furthermore, this article classifies the reactions based on the starting material with functional groups involved in the pyrrole ring formation.
Collapse
Affiliation(s)
- Lokesh Kumar S
- Department of Chemistry, CHRIST - Deemed to Be University, Bengaluru, 560029, Karnataka, India
| | - Anushka Servesh
- Department of Chemistry, CHRIST - Deemed to Be University, Bengaluru, 560029, Karnataka, India
| | - Sony J Chundattu
- Department of Sciences & Humanities, CHRIST - Deemed to Be University, Bengaluru, 560074, Karnataka, India
| | - Sumaiya Tabassum
- Department of Chemistry, Surana College, Bengaluru, 560074, Karnataka, India
| | - Santhosh Govindaraju
- Department of Sciences & Humanities, CHRIST - Deemed to Be University, Bengaluru, 560074, Karnataka, India.
| |
Collapse
|
5
|
Zhang Y, Liu C, Li Z, Liu Y, Zheng H, Lin Q, Yu L, Boo YJ, Chan BQY, Loh XJ, Wu YL, Song Q, Li P, Chan SY. Microneedle-Mediated Synergistic Photothermal and Chemotherapy for Targeted Melanoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14952-14967. [PMID: 40029948 DOI: 10.1021/acsami.4c20844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Melanoma, a malignant skin tumor originating from melanocytes, is typically treated with surgery in its early stages. However, chemotherapy becomes the primary treatment as the disease progresses to intermediate and advanced stages. The parenteral administration of chemotherapy can cause anxiety, discomfort, and infection risks, especially in immunocompromised cancer patients. Additionally, the circulating drugs can lead to systemic toxicity and side effects. Microneedles (MNs) provide a safer, less invasive alternative to address these issues. Herein, we demonstrated the effectiveness of integrating antimicrobial MNs with combined photothermal and chemotherapy treatment modalities against melanoma, presenting a promising approach to improving cancer treatment outcomes while minimizing associated risks. By leveraging the unique properties of chitosan (CS) and the versatility of poly(vinyl alcohol) (PVA), we fabricated physically cross-linked MNs with inherent antibacterial and antiviral properties. The physical cross-linked network not only accommodated polypyrrole nanoparticles (PPy NPs) for photothermal capabilities but also facilitated drug [doxorubicin hydrochloride (DOX)] loading and release over an extended period. Interestingly, in vitro and in vivo studies revealed that the MNs possess intrinsic antimelanoma properties. Compared to monotherapies, the combination of photothermal therapy and chemotherapy exhibited enhanced effectiveness against melanoma. This research paves the way for safer, more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yanni Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chuyi Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Zhiguo Li
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Yingjia Liu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yun-Long Wu
- Xiamen University, School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
6
|
Sysak S, Wicher B, Kucinska M, Kobylka P, Mlynarczyk DT, Lesyk R, Tykarska E, Murias M, Goslinski T, Szczolko W. Synthesis, physicochemical characterization and biological activity of novel pyrrole flavones. Sci Rep 2025; 15:7385. [PMID: 40033039 PMCID: PMC11876692 DOI: 10.1038/s41598-025-91772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Cancer remains one of the most significant health issues worldwide. By designing compounds with anticancer activity characterized by high selectivity towards cancer cells, medicinal chemistry focuses on the protection of healthy cells and tissues. In this study, we present the hybrid pharmacophore approach, which afforded a series of new pyrrole flavones. The synthetic strategy was based on the Paal-Knorr pyrrole synthesis, starting from aminoflavones through their condensation with 1,4-diketones and leading to 6- and 7-(pyrrol-1-yl) flavones. The isolated products underwent characterization using NMR and UV-VIS spectroscopy, mass spectrometry, TGA, DSC, and Microtox analyses. For all pyrrole flavones, single crystals were obtained and subjected to X-ray diffraction experiments. Their cytotoxic activity was assessed on two human bladder cancer cell lines (5637 and HT-1376) and one non-cancerous (MRC-5) cell line, showing the potential as anticancer agents. Flavone derivative with the 6-(2-methyl-5-phenylpyrrol-1-yl) moiety was active in the MTT assay towards 5637 and HT-1376 cancer cells after 24 h of incubation with IC50 values of 2.97 µM and 5.89 µM, respectively. Notably, flavone derivative with 7-(2-methyl-5-phenylpyrrol-1-yl) revealed cytotoxic activity towards 5637 and HT-1376 cells with IC50 values of 7.39 µM and 13.54 µM, respectively, without any effect on the viability of MRC-5 cells.
Collapse
Affiliation(s)
- Stepan Sysak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznań, Poland
| | - Barbara Wicher
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Paulina Kobylka
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznań, Poland
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225, Rzeszów, Poland
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| | - Wojciech Szczolko
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| |
Collapse
|
7
|
Chakraborty S, Singha Mohapatra A, Saha S, Mandal S, Paul ND. Ligand Assisted Co(II)-Catalyzed Multicomponent Synthesis of Substituted Pyrroles and Pyridines. Chem Asian J 2025; 20:e202401038. [PMID: 39714368 DOI: 10.1002/asia.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/23/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
Herein, we describe a sustainable Co(II)-catalyzed synthesis of pyrroles and pyridines. Using a Co(II)-catalyst [CoII 2(La)2Cl2] (1 a) bearing redox-active 2-(phenyldiazenyl)-1,10-phenanthroline) (La) scaffold, various substituted pyrroles and pyridines were synthesized in good yields, taking alcohol as one of the primary feedstock. Pyrroles were synthesized by the equimolar reaction of 2-amino and secondary alcohols. A series of 2,4,6-substituted symmetrical pyridines were prepared via a three-component reaction of NH4OAc with 1 : 2.2 molar primary and secondary alcohols, respectively. Unsymmetrically substituted 2,4,6-trisubstituted, 2,4,5,6-tetrasubstituted, and 2,3,4,5,6-pentasubstituted pyridines were achieved via a multi-component coupling reaction of alcohols and NH4OAc. Catalyst 1 a showed encouraging results during the gram-scale synthesis of these N-heterocycles. Mechanistic investigation revealed synergistic involvement of cobalt metal and the ligand during the catalytic reactions.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Subhangi Saha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Sutanuva Mandal
- Department of Chemistry, Banwarilal Bhalotia College, Ushagram, Asansol, West Bengal, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| |
Collapse
|
8
|
Pal K, Dash OP, Volla CMR. Rhodium/selenium dual catalysis for accessing 2-aminopyrroles from N-sulfonyl-1,2,3-triazoles. Chem Commun (Camb) 2025; 61:3872-3875. [PMID: 39930873 DOI: 10.1039/d4cc06346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Herein, we report a novel rhodium/selenium dual catalytic process for the synthesis of 2-aminopyrroles from N-sulfonyl-1,2,3-triazoles. The proposed cooperative catalytic mechanism involves Rh(II)-catalyzed formation of Rh-azavinyl carbene from triazole, followed by selenium-catalyzed generation of ylide, which subsequently undergoes annulation with another Rh-azavinyl carbene. The simple and mild dual catalytic strategy accommodates a variety of electron-withdrawing and electron-donating functional groups, affording various 2-aminopyrrole derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Om Prakash Dash
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
9
|
Saleh HA, Ragab TIM, Sayed SSM. Influence of Chlorella vulgaris and Pediastrum boryanum extracts carried on nanocellulose on the immune response of Biomphalaria alexandrina snails against Schistosoma mansoni infection. Int J Biol Macromol 2025; 289:138584. [PMID: 39689788 DOI: 10.1016/j.ijbiomac.2024.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Continuous efforts are made to explore alternative methods for reducing Schistosomiasis. So, this study evaluated the effectiveness of Chlorella vulgaris and Pediastrum boryanum extracts carried on their nanocrystalline cellulose (NCC) as immunostimulants for Biomphalaria alexandrina snails against Schistosoma mansoni infection. The results showed that the lowest cercarial shedding/snail was 340 and 330 with 400 mg/L of C. vulgaris extract and NCC + C. vulgaris extract, respectively. Meanwhile, it was decreased with 200 mg/L of P. boryanum extract and 400 mg/L of NCC + P. boryanum extract, with high survival rates for all treatments. In addition, snails treated with 400 mg/L of C. vulgaris extract and 200 and 400 mg/L of NCC + C. vulgaris extract showed a significant decrease in the contents of hydrogen peroxide (0.639, 0.426, and 0.564 mM/L), respectively, compared to the control group (0.695 mM/L). Furthermore, C. vulgaris extracts induced numerous hemocytes around immature cercariae and sporocysts. P. boryanum extracts showed degenerated sporocysts surrounded by plenty of hemocytes. Nanocellulose carriers improved the delivery of microalgal components within B. alexandrina snails, causing the cercariae to lose their ideal shape. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that C. vulgaris and P. boryanum extracts contained oleic acid, which improved the immunological response of snails, and glutamic acid and flavonoids acted as immune modulators and antioxidants. Ultimately, the toxicity assay indicated that NCC + C. vulgaris extract and NCC + P. boryanum extract were the safest for Artemia salina as a non-target aquatic organism.
Collapse
Affiliation(s)
- Hassnaa A Saleh
- Environmental Research Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Sara S M Sayed
- Environmental Research Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt
| |
Collapse
|
10
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
11
|
Amina B, Redouane B. Green Synthesis of Bioactive Pyrrole Derivatives via Heterogeneous Catalysts Since 2010. Curr Top Med Chem 2025; 25:461-492. [PMID: 39069813 DOI: 10.2174/0115680266307696240708115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 07/30/2024]
Abstract
Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various pyrrole-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.
Collapse
Affiliation(s)
- Berrichi Amina
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
- University of Ain Temouchent, BP 284, 46000, Ain Temouchent, Algeria
| | - Bachir Redouane
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
12
|
Galvez-Llompart M, Hierrezuelo J, Blasco M, Zanni R, Galvez J, de Vicente A, Pérez-García A, Romero D. Targeting bacterial growth in biofilm conditions: rational design of novel inhibitors to mitigate clinical and food contamination using QSAR. J Enzyme Inhib Med Chem 2024; 39:2330907. [PMID: 38651823 DOI: 10.1080/14756366.2024.2330907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is a pressing global issue exacerbated by the abuse of antibiotics and the formation of bacterial biofilms, which cause up to 80% of human bacterial infections. This study presents a computational strategy to address AMR by developing three novel quantitative structure-activity relationship (QSAR) models based on molecular topology to identify potential anti-biofilm and antibacterial agents. The models aim to determine the chemo-topological pattern of Gram (+) antibacterial, Gram (-) antibacterial, and biofilm formation inhibition activity. The models were applied to the virtual screening of a commercial chemical database, resulting in the selection of 58 compounds. Subsequent in vitro assays showed that three of these compounds exhibited the most promising antibacterial activity, with potential applications in enhancing food and medical device safety.
Collapse
Affiliation(s)
- Maria Galvez-Llompart
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
- Department of Physical Chemistry, University of Valencia, Burjassot, Spain
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| | - Jesús Hierrezuelo
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| | - Mariluz Blasco
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| | - Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, Burjassot, Spain
| | - Jorge Galvez
- Department of Physical Chemistry, University of Valencia, Burjassot, Spain
| | - Antonio de Vicente
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| | - Alejandro Pérez-García
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| | - Diego Romero
- Department of Microbiology, Faculty of Science, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, IHSM-UMA-CSIC, University of Málaga, Málaga, Spain
| |
Collapse
|
13
|
Rusu A, Oancea OL, Tanase C, Uncu L. Unlocking the Potential of Pyrrole: Recent Advances in New Pyrrole-Containing Compounds with Antibacterial Potential. Int J Mol Sci 2024; 25:12873. [PMID: 39684580 PMCID: PMC11640851 DOI: 10.3390/ijms252312873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Nitrogen heterocycles are valuable structural elements in the molecules of antibacterial drugs approved and used to treat bacterial infections. Pyrrole is a five-atom heterocycle found in many natural compounds with biological activity, including antibacterial activity. Numerous compounds are being develop based on the pyrrole heterocycle as new potential antibacterial drugs. Due to the phenomenon of antibacterial resistance, there is a continuous need to create new effective antibacterials. In the scientific literature, we have identified the most relevant studies that aim to develop new compounds, such as pyrrole derivatives, that are proven to have antibacterial activity. Nature is an endless reservoir of inspiration for designing new compounds based on the structure of pyrrole heterocycles such as calcimycin, lynamycins, marinopyrroles, nargenicines, phallusialides, and others. However, many other synthetic compounds based on the pyrrole heterocycle have been developed and can be optimized in the future. The identified compounds were classified according to the type of chemical structure. The chemical structure-activity relationships, mechanisms of action, and antibacterial effectiveness of the most valuable compounds were highlighted. This review highlights scientific progress in designing new pyrrole-containing compounds and provides examples of lead compounds that can be successfully optimized further.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Livia Uncu
- Scientific Center for Drug Research, Pharmaceutical and Toxicological Chemistry Department, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Bd. Stefan Cel Mare si Sfant, MD-2004 Chisinau, Moldova;
| |
Collapse
|
14
|
Vladimirova S, Hristova R, Iliev I. Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules 2024; 29:5499. [PMID: 39683659 DOI: 10.3390/molecules29235499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Novel pyrrole-based carbohydrazide (1) and hydrazones (1A-D) were synthesized, characterized, and subjected to spectroscopic studies. The hydrazones were obtained by reacting a pyrrole hydrazide with substituted pyrrole aldehydes. The initial carbohydrazide was prepared by selective hydrazinolysis of the obtained N-pyrrolylcarboxylic acid ethyl ester. The biological activity of the newly synthesized compounds was investigated in vitro on a panel of tumor and non-tumor cell lines. Mouse embryonic fibroblasts BALB 3T3 clone A31 were used in the safety test (BALB 3T3 NRU-assay). Antiproliferative activity was determined on keratinocytes (HaCaT) and melanoma (SH-4) cells by MTT dye reduction assay. The safety test of the compounds showed low cytotoxicity and absence of phototoxic potential. Among our novel pyrrole hydrazones, 1C was the most selective (SI = 3.83) in human melanoma cells and exhibited very good antiproliferative activity (IC50 = 44.63 ± 3.51 μM). The cytotoxic effect of 1C correlates with its ability to induce apoptosis and to cause cell cycle arrest in the S phase. In addition, the results show that hydrazones obtained by condensation with β-aldehydes are more bioactive than those obtained by condensation with α-aldehydes.
Collapse
Affiliation(s)
- Stanislava Vladimirova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Rossitsa Hristova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Zhuang Z, Miao YL, Song SS, Leng GT, Zhang XF, He Q, Ding J, He JX, Yang CH. Discovery of pyrrolo[2,3-d]pyrimidin-4-one derivative YCH3124 as a potent USP7 inhibitor for cancer therapy. Eur J Med Chem 2024; 277:116752. [PMID: 39133975 DOI: 10.1016/j.ejmech.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
USP7 is one of the most studied deubiquitinating enzymes, which is involved in the regulation of multiple cell signaling pathways and has been shown to be associated with the occurrence and progression of a variety of cancers. Inhibitors targeting USP7 have been studied by several teams, but most of them lack selectivity and have low activities. Herein, we reported a serious of pyrrole[2,3-d]pyrimidin-4-one derivatives through scaffold hopping of recently reported 4-hydroxypiperidine compounds. The representative compound Z33 (YCH3124) exhibited highly potent USP7 inhibition activity as well as anti-proliferative activity against four kinds of cancer cell lines. Further study revealed that YCH3124 effectively inhibited the downstream USP7 pathway and resulted in the accumulation of both p53 and p21 in a dose-dependent manner. Notably, YCH3124 disrupted cell cycle progression through restricting G1 phase and induced significant apoptosis in CHP-212 cells. In summary, our efforts provided a series of novel pyrrole[2,3-d]pyrimidin-4-one analogs as potent USP7 inhibitors with excellent anti-cancer activity.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Guang-Tong Leng
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jin-Xue He
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Chun-Hao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
16
|
Da Lama A, Pérez Sestelo J, Sarandeses LA, Martínez MM. Indium(III)-Catalyzed Synthesis of Pyrroles and Benzo[ g]indoles by Intramolecular Cyclization of Homopropargyl Azides. J Org Chem 2024; 89:16015-16021. [PMID: 39403027 PMCID: PMC11536385 DOI: 10.1021/acs.joc.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
Pyrroles, privileged structural motifs in drug and material science, have been synthesized by indium(III)-catalyzed intramolecular cyclization of homopropargyl azides. This methodology exhibits a broad substrate scope, providing substituted pyrroles and bispyrroles in good yields. Furthermore, an atom-economical sequential method for the synthesis of benzo[g]indoles has been discovered from azido-diynes using InCl3 as catalyst. The method involves two successive intramolecular indium-catalyzed 5-endo-dig alkyne hydroamination and a hydroarylation reactions with 6-endo-dig regioselectivity.
Collapse
Affiliation(s)
- Ana Da Lama
- CICA, Centro Interdisciplinar de Química
e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - José Pérez Sestelo
- CICA, Centro Interdisciplinar de Química
e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - Luis A. Sarandeses
- CICA, Centro Interdisciplinar de Química
e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - M. Montserrat Martínez
- CICA, Centro Interdisciplinar de Química
e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
17
|
Filippov IP, Zakharov TN, Grishin AV, Khlebnikov AF, Novikov MS, Rostovskii NV. DBU-Promoted Cyclizations of Cyclopentyl-Substituted Oxazapolyenes to Cyclopentapyridones and Hydroxypyrroles: Experimental and DFT Study. J Org Chem 2024; 89:15404-15413. [PMID: 39364687 DOI: 10.1021/acs.joc.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
1,1-Di(alkoxycarbonyl)-4-cyclopentyl-2-azabuta-1,3-dienes react with DBU to form two types of heterocyclic products: 1H-cyclopenta[c]pyrid-1-ones and 3-hydroxy-1H-pyrroles. These previously unobserved transformations proceed through the formation of 1-azapentadienyl anion which undergoes 1,6-shift of the alkoxycarbonyl group to the cyclopentyl moiety followed by 1,6-cyclization to form the cyclopentapyridone (path a) and 1,5-cyclization accompanied by 1,3-shift of the methoxy group followed by dialkyl carbonate elimination to afford the hydroxypyrrole (path b). The mechanisms of the reactions were studied using DFT calculations. Pyridones can be synthesized in one pot in three steps via Rh(II)-catalyzed isomerization of 4-cyclopentylisoxazoles to 2H-azirines and their subsequent reaction with diazomalonic esters, followed by heating of the resulting 2-azabuta-1,3-dienes with DBU.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Timofei N Zakharov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Aleksandr V Grishin
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | | | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| |
Collapse
|
18
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
19
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
20
|
Mondal SK, Alam SA, Roymahapatra G, Mandal SM. Anti-MRSA activity of chlorophenyl pyrrolo benzodiazepines compound. J Antibiot (Tokyo) 2024; 77:589-599. [PMID: 38890385 DOI: 10.1038/s41429-024-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Antibiotic resistant is the major concern in public health to control the infectious diseases. MRSA (Methicillin-resistant Staphylococcus aureus) is a significant concern in healthcare settings due to its resistance to many antibiotics, including methicillin and other beta-lactams. MRSA infection difficult to treat and increases the risk of complications. Here, we have tested a series of highly condensed heterocyclic derivatives of pyrrolo[1,2-a][1,4]benzodiazepines. Compounds were tested against both, Gram-positive bacteria, Staphylococcus aureus and S. epidermidis, and Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to assess the antimicrobial efficacy. Compared to Gram-negative bacteria, compounds showed much stronger antibacterial activity against Gram-positive bacteria. SM-5 [Ethyl2-(7-(4-chlorophenyl)-4-methoxy-6,7,8,13-tetrahydro-5H-benzo[e]benzo[5,6][1,4]diazepino[2,1-a]isoindol-15-yl)acetate] derivative was selected as best on the basis of higher therapeutic index among the tested compounds, showed MIC value of 7.81 µg. ml-1 against Staphylococcus strains. Molecular docking analysis between cell wall biosynthesis protein of S. aureus and SM-5 revealed that PBP2a showed the highest binding energy (-8.3 Kcal mol-1), followed by beta-lactam-inducible PBP4 (-7.7 Kcal mol-1), and lipoteichoic acid synthase (-7.5 Kcal mol-1) which is comparably higher than methicillin. Ground state energy calculations by DFT analysis revealed that compound SM-5 and SM-6, almost have equal electronegativity 0.11018 au which also satisfy the quality of the compound reactivity. Analysis of their biofilm inhibition in vitro and in silico toxicity analysis demonstrated their substantial potential to be a kind of future lead antibiotic.
Collapse
Affiliation(s)
- Suresh K Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Sk Aftabul Alam
- Department of Botany, Netaji Mahavidyalaya, Arambagh, Hooghly, WB, India
| | | | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
21
|
Shambalova VE, Larkovich RV, Aldoshin AS, Lyssenko KA, Nechaev MS, Nenajdenko VG. Regioselective Synthesis of Highly Functionalized 2 H-Pyrroles via Dearomative Chlorination of 1 H-Pyrroles. J Org Chem 2024; 89:11394-11407. [PMID: 39058217 DOI: 10.1021/acs.joc.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
An efficient protocol was developed for the synthesis of highly functionalized 2H-pyrroles. This synthetic approach involves the in situ generation of highly reactive 2,5-dichloro-substituted 2H-pyrroles through dearomative chlorination of the corresponding 1H-pyrroles. The resulting reaction mixture is then treated with various amines, leading to the formation of 2,5-diaminated 2H-pyrroles. Subsequent nucleophilic substitution of fluorine with different N-, O-, and S-nucleophiles allows us to introduce additional functionality into a 2H-pyrrole core. The overall outcome of this reaction sequence is the triple nucleophilic modification of pyrroles. All steps of the sequence were found to be highly efficient, regioselective in the preparation of desired di- and trisubstituted derivatives in up to 96% overall yield. In addition, the computational study of this reaction sequence was carried out using density functional theory (DFT). The results of calculations are in perfect agreement with experimental observations.
Collapse
Affiliation(s)
- Victoria E Shambalova
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
| | - Roman V Larkovich
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
| | - Alexander S Aldoshin
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
- National Research University Higher School of Economics, 101000 Moscow, Russian Federation
| | - Mikhail S Nechaev
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russian Federation
| |
Collapse
|
22
|
Manya BS, Kumar MRP, Rajagopal K, Hassan MA, Rab SO, Alshehri MA, Emran TB. Insights into the Biological Activities and Substituent Effects of Pyrrole Derivatives: The Chemistry-Biology Connection. Chem Biodivers 2024; 21:e202400534. [PMID: 38771305 DOI: 10.1002/cbdv.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.
Collapse
Affiliation(s)
- B S Manya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - M R Pradeep Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Md Abul Hassan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
23
|
Aonishi K, Miyao S, Yokoi L, Kitaoka N, Koyama K, Matsuura H, Koseki S. Isolation and Identification of the Antibacterial Compounds Produced by Maillard Reaction of Xylose with Phenylalanine or Proline. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16010-16017. [PMID: 38965162 DOI: 10.1021/acs.jafc.4c04911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.
Collapse
Affiliation(s)
- Kazuho Aonishi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shungo Miyao
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Lisa Yokoi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Naoki Kitaoka
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Kento Koyama
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Hideyuki Matsuura
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shigenobu Koseki
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| |
Collapse
|
24
|
Silva MO, da Costa RF, Bettega MHF. Elastic and Electronically Inelastic Cross Sections for the Scattering of Electrons by Pyrrole. J Phys Chem A 2024; 128:5128-5137. [PMID: 38860841 PMCID: PMC11229005 DOI: 10.1021/acs.jpca.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Integral and differential cross sections for elastic and electronically inelastic electron scattering from the pyrrole molecule are reported. The cross section calculations employed the Schwinger multichannel method with norm-conserving pseudopotentials. The collision dynamics was described according to a model in which up to 209 energetically accessible channels were treated as open. In the elastic channel, calculations carried out in the interval of energies from 0 to 50 eV revealed the presence of four resonances with peaks located at 2.56 eV (π1*), 3.82 eV (π2*), 4.70 eV (σNH*), and between 8.30 and 9.50 eV (σ*) positions which are in good agreement with previous assignments. Moreover, the role of the multichannel coupling effects in obtaining accurate cross sections was evaluated by comparing the present results with theoretical results recently reported in the literature and early measurements performed for elastic electron collisions with furan. Electronic excitation cross sections involving the transitions from ground state to the 13B2, 13A1, 11A2, and 11A1 excited states of pyrrole driven by electron impact are presented for energies from thresholds up to 50 eV and, whenever possible, critically compared with the data available in the literature.
Collapse
Affiliation(s)
- Murilo O. Silva
- Instituto
Federal do Paraná, Campus Avançado Goioerê, Rodovia Luiz Dechiche, s/no, 87360-000 Goioerê, Paraná, Brazil
- Departamento
de Física, Universidade Federal do
Paraná, Caixa
Postal 19044, 81531-980 Curitiba, Paraná, Brazil
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, 09210-580 Santo André, São Paulo, Brazil
| | - Romarly F. da Costa
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, 09210-580 Santo André, São Paulo, Brazil
| | - Márcio H. F. Bettega
- Departamento
de Física, Universidade Federal do
Paraná, Caixa
Postal 19044, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
25
|
Barth M, Kleiner I, Nguyen HVL. Coupled internal rotations and 14N quadrupole hyperfine structure of 2,4-dimethylpyrrole investigated by microwave spectroscopy and quantum chemistry. J Chem Phys 2024; 160:244303. [PMID: 38912676 DOI: 10.1063/5.0213319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The microwave spectrum of 2,4-dimethylpyrrole was investigated using a Fourier-transform microwave spectrometer in a supersonic expansion. Torsional splittings arising from two inequivalent methyl internal rotors in combination with hyperfine splittings due to the nuclear quadrupole coupling of the 14N nucleus were observed. The experiments were accompanied by quantum chemical calculations. A total of 1561 rotational lines were assigned and fitted in global fits using the programs XIAM and BELGI-Cs-2Tops-hyperfine, both achieved the measurement accuracy of 4 kHz. Local separate fits were also performed to verify the correctness of the assignment. Accurate experimental molecular and internal rotation parameters could be deduced and compared to the calculated ones. The barrier to internal rotation of the 2-methyl rotor was determined to be 277.830(26) cm-1, essentially the same as the value of about 280 cm-1 found for 2-methylpyrrole but lower than the value of 317 cm-1 found for 2,5-dimethylpyrrole. The torsional barrier value of the 4-methyl rotor is 262.210(27) cm-1, slightly higher than the value of 246 cm-1 found for 3-methylpyrrole. Benchmarking the rotational constants for 2,4- and 2,5-dimethylpyrrole revealed that the MP2/6-31G(d,p) level could be helpful to guide the assignment of microwave spectra of pyrrole derivatives.
Collapse
Affiliation(s)
- Mike Barth
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Isabelle Kleiner
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Ha Vinh Lam Nguyen
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Institut Universitaire de France (IUF), 1 rue Descartes, F-75231 Paris, France
| |
Collapse
|
26
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
27
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
28
|
Özaslan MS. Some pyrroles as inhibitors of the pentose phosphate pathways enzymes: An in vitro and molecular docking study. J Mol Recognit 2024; 37:e3083. [PMID: 38514991 DOI: 10.1002/jmr.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
29
|
Zeki NM, Mustafa YF. 6,7-Coumarin-heterocyclic hybrids: A comprehensive review of their natural sources, synthetic approaches, and bioactivity. J Mol Struct 2024; 1303:137601. [DOI: 10.1016/j.molstruc.2024.137601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wang L, Zhang J, Li C, Dang W, Guo W, Xie J, Zhou F, Zhang Q. Access to 2,4-Disubstituted Pyrrole-Based Polymer with Long-Wavelength and Stimuli-Responsive Properties via Copper-Catalyzed [3+2] Polycycloaddition. Macromol Rapid Commun 2024; 45:e2300652. [PMID: 38407457 DOI: 10.1002/marc.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.
Collapse
Affiliation(s)
- Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbo Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junjian Xie
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fengtao Zhou
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
31
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of chalkophomycin biosynthesis reveals N-hydroxypyrrole-forming enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577118. [PMID: 38328124 PMCID: PMC10849742 DOI: 10.1101/2024.01.24.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating an interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologs of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anika K. Chand
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
33
|
Mazin Zeki N, Fakri Mustafa Y. Annulated Heterocyclic[g]Coumarin Composites: Synthetic Approaches and Bioactive Profiling. Chem Biodivers 2024; 21:e202301855. [PMID: 38145315 DOI: 10.1002/cbdv.202301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/26/2023]
Abstract
Coumarins, widely abundant natural heterocyclic compounds, are extensively employed in creating various biologically and pharmacologically potent substances. The hybridization of heterocycles presents a key opportunity to craft innovative multicyclic compounds with enhanced biological activity. Fusing different heterocyclic rings with the coumarin structure presents an intriguing method for crafting fresh hybrid compounds possessing remarkable biological effects. In the pursuit of creating heterocyclic-fused coumarins, a wide range of annulated heterocyclic[g]coumarin composites has been introduced, displaying impressive biological potency. The influence of the linear attachment of heterocyclic rings to the coumarin structure on the biological performance of the resulting compounds has been investigated. This review centers on the synthetic methodologies, structural activity relationship investigation, and biological potentials of annulated heterocyclic[g]coumarin composites. We conducted searches across several databases, including Web of Science, Google Scholar, PubMed, and Scopus. After sieving, we ultimately identified and included 71 pertinent studies published between 2000 and the middle of 2023. This will provide valuable perspectives for medicinal chemists in the prospective design and synthesis of lead compounds with significant therapeutic effects, centered around heterocycle-fused coumarin frameworks.
Collapse
Affiliation(s)
- Nameer Mazin Zeki
- Department of Pharmacology, College of Medicine, NinevahUniversity, 41001, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, 41002, Mosul, Iraq
| |
Collapse
|
34
|
Gotsko MD, Saliy IV, Ushakov IA, Sobenina LN, Trofimov BA. Functionalized 2,3'-Bipyrroles and Pyrrolo[1,2- c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide. Molecules 2024; 29:885. [PMID: 38398639 PMCID: PMC10893325 DOI: 10.3390/molecules29040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3'-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3'-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1).
Collapse
Affiliation(s)
| | | | | | | | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; (M.D.G.); (I.V.S.); (I.A.U.); (L.N.S.)
| |
Collapse
|
35
|
Wei H, Cao Y, Zhao C, Shao Z, Huo X, Pan J, Zhuang R. Design, synthesis, and anticancer evaluation of alkynylated pyrrole derivatives. Chem Biol Drug Des 2024; 103:e14484. [PMID: 38355143 DOI: 10.1111/cbdd.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
A series of alkynylated pyrrole derivatives were meticulously designed, drawing inspiration from the structure of 3-alkynylpyrrole-2,4-dicarboxylates, which were synthesized via a cyclization process involving methylene isocyanides and propiolaldehydes under mild conditions. These derivatives were subsequently subjected to evaluation for their anticancer properties against a panel of cell lines, including U251, A549, 769-P, HepG2, and HCT-116. According to the detailed analysis of structure-activity relationship, compound 12l emerged as the most promising molecule, with IC50 values of 2.29 ± 0.18 and 3.49 ± 0.30 μM toward U251 and A549 cells, respectively. Subsequent mechanistic investigations revealed that compound 12l exerts its effects by arresting the cell cycle in the G0/G1 phase and inducing apoptosis specifically in A549 cells. These innovative alkynylated pyrrole derivatives hold the potential to serve as a valuable template for the discovery of novel anticancer molecules.
Collapse
Affiliation(s)
- Hegeng Wei
- Zhejiang Yongtai Technol Co. Ltd, Taizhou, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, China
| | - Chungang Zhao
- Medical Department of Jingchu University of Technology, Jingmen, China
| | | | - Xiaoli Huo
- Hangzhou Zhongmei Huadong Pharmaceutical Co. Ltd, Hangzhou, China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, China
| |
Collapse
|
36
|
Abdessadak O, Kandwal P, Alaqarbeh M, Tabti K, Sbai A, Ajana MA, Lakhlifi T, Bouachrine M. Exploring azomethine ylides reactivity with acrolein through cycloaddition reaction and computational antiviral activity assessment against hepatitis C virus. J Mol Model 2024; 30:23. [PMID: 38177613 DOI: 10.1007/s00894-023-05818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
CONTEXT The regioselectivity and diastereoselectivity of the 1,3-dipolar cycloaddition reaction between azomethine ylides and acrolein were investigated. The DFT studies revealed that the favored pathway leads to the formation of cis-cycloadduct pyrrolidine and these computational findings align with experimental observations. The cis-cycloadduct pyrrolidine product serves as an advanced intermediate in the synthesis of a hepatitis C virus inhibitor. For this, the antiviral activity of cis-cycloadduct pyrrolidine against cyclophilin A, the co-factor responsible for hepatitis C virus, was also evaluated through molecular docking simulations which revealed intriguing interactions and a high C-score, which were further confirmed by molecular dynamics simulations, demonstrating stability over a 100-ns simulation period. Furthermore, the cis-cycloadduct pyrrolidine exhibits favorable drug-like properties and a better ADMET profile compared to hepatitis C virus inhibitor. METHODS Chemical reactivity studies were performed using DFT method by the functional B3LYP at 6-31G (d, p) computational level by GAUSSIAN 16 program. Frontal molecular orbitals theory used to investigate HOMO/LUMO interactions between azomethine ylides and acrolein. Findings of this approach were confirmed by global reactivity indices and electron displacement was investigated based on Fukui functions. Furthermore, the activation energies were determined after frequency calculations using TS Berny algorithm and transition states were confirmed by the presence of a single imaginary frequency. Moreover, antiviral activity of cis-cycloadduct was explored through molecular docking using Surflex-Dock suite SYBYL X 2.0, and molecular dynamics simulation using GROMACS program. Finally, drug-like properties were investigated with SwissADME and ADMETlab 2.0.
Collapse
Affiliation(s)
- Oumayma Abdessadak
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Pankaj Kandwal
- Department of Chemistry, National Institute of Technology, Dehradun, Uttarakhand, 246174, India
| | - Marwa Alaqarbeh
- Basic Science Department, Prince Al Hussein bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Kamal Tabti
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco.
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, 23000, Beni-Mellal, Morocco
| |
Collapse
|
37
|
Li F, Yang Q, Liu MY, An PX, Du YL, Wang YB. Ag(I)-Mediated Annulation of 2-(2-Enynyl)pyridines and Propargyl Amines to Access 1-(2 H-Pyrrol-3-yl)indolizines. J Org Chem 2024; 89:304-312. [PMID: 38126126 DOI: 10.1021/acs.joc.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An effective Ag(I)-mediated annulation of 2-(2-enynyl)pyridines and propargyl amines was developed, unexpectedly affording a broad range of functionalized 1-(2H-pyrrol-3-yl)indolizines in moderate to excellent yields. The developed method is characterized by operational simplicity, ready availability of starting materials, high regioselectivity, and broad substrate scope under mild reaction conditions. The Ag(I)-promoted cyclization of 2-(2-enynyl)pyridines and propargyl amines possibly results in the formation of the spiroindolizine, the ring-opening rearrangement of which may give the 1-(2H-pyrrol-3-yl)indolizine. Furthermore, a gram-scale reaction and synthetic transformations are also studied.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Qing Yang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ming-Yue Liu
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Pei-Xuan An
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Long Du
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Bo Wang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
38
|
Tong Z, Smith PJ, Pickford HD, Christensen KE, Anderson EA. Gold-Catalyzed Cyclization of Yndiamides with Isoxazoles via α-Imino Gold Fischer Carbenes. Chemistry 2023; 29:e202302821. [PMID: 37767940 PMCID: PMC10947298 DOI: 10.1002/chem.202302821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Gold catalysis is an important method for alkyne functionalization. Here we report the gold-catalyzed formal [3+2] aminative cyclization of yndiamides and isoxazoles in a direct synthesis of polysubstituted diaminopyrroles, which are important motifs in drug discovery. Key to this process is the formation, and subsequent cyclization, of an α-imino gold Fischer carbene, which represents a new type of gold carbene intermediate. The reaction proceeds rapidly under mild conditions, with high regioselectivity being achieved by introducing a subtle steric bias between the nitrogen substituents on the yndiamide. DFT calculations revealed that the key to this regioselectivity was the interconversion of isomeric gold keteniminiun ions via a low-barrier π-complex transition state, which establishes a Curtin-Hammett scenario for isoxazole addition. By using benzisoxazoles as substrates, the reaction outcome could be switched to a formal [5+2] cyclization, leading to 1,4-oxazepines.
Collapse
Affiliation(s)
- Zixuan Tong
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Philip J. Smith
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Helena D. Pickford
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Kirsten E. Christensen
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward A. Anderson
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
39
|
Sadowski B, Gryko DT. Dipyrrolonaphthyridinedione - (still) a mysterious cross-conjugated chromophore. Chem Sci 2023; 14:14020-14038. [PMID: 38098709 PMCID: PMC10718078 DOI: 10.1039/d3sc05272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Dipyrrolonaphthyridinediones (DPNDs) entered the chemical world in 2016. This cross-conjugated donor-acceptor skeleton can be prepared in two steps from commercially available reagents in overall yield ≈15-20% (5 mmol scale). DPNDs can be easily and regioselectively halogenated which opens an avenue to numerous derivatives as well as to π-expansion. Although certain synthetic limitations exist, the current derivatization possibilities provided impetus for numerous explorations that use DPNDs. Structural modifications enable bathochromic shift of the emission to deep-red region and reaching the optical brightness 30 000 M-1 cm-1. Intense absorption and strong emission of greenish-yellow light attracted the interest which eventually led to the discovery of their strong two-photon absorption, singlet fission in the crystalline phase and triplet sensitization. Dipyrrolonaphthyridinedione-based twistacenes broadened our knowledge on the influence of twisting angle on the fate of the molecule in the excited state. Collectively, these findings highlight the compatibility of DPNDs with various applications within organic optoelectronics.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw S. Banacha 2c 02-097 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
40
|
Kavi Bharathi A, Christopher Jeyaseelan S, Hussain S, Milton Franklin Benial A. Spectroscopic investigations, quantum chemical, drug likeness and molecular docking studies of methyl 1-methyl-4-nitro-pyrrole-2-carboxylate: A novel ovarian cancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123074. [PMID: 37418904 DOI: 10.1016/j.saa.2023.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Density functional theory (DFT) calculation was used to analyse the structural and vibrational properties of Methyl 1-Methyl-4-nitro-pyrrole-2-carboxylate (MMNPC) using the cc-pVTZ basis set. The potential energy surface scan and the most stable molecular structure were optimized using Gaussian 09 program. A potential energy distribution calculation was used to calculate and assign vibrational frequencies using the VEDA 4.0 program package. The Frontier Molecular Orbitals (FMOs) were analysed to determine their related molecular properties. Ab initio density functional theory (B3LYP/cc-pVTZ) method with basis set was used to calculate 13C NMR chemical shift values of MMNPC in the ground state. Fukui function and molecular electrostatic potential (MEP) analysis confirmed the bioactivity of the MMNPC molecule. The charge delocalization and stability of the title compound were studied using natural bond orbital analysis. All experimental spectral values from FT-IR, FT-Raman, UV-VIS, and 13C NMR are in good agreement with the value calculated by the DFT. Molecular docking analysis was carried out to find the MMNPC compound that can be used as a potential drug development candidate for ovarian cancer.
Collapse
Affiliation(s)
- A Kavi Bharathi
- P.G. & Research Department of Physics, N.M.S.S.V.N. College, Madurai 625019, Tamil Nadu, India
| | - S Christopher Jeyaseelan
- PG Department of Physics, Mannar Thirumalai Naicker College, Pasumalai, Madurai 625 004, Tamil Nadu, India
| | - Shamima Hussain
- UGC-DAE CSR, Kalpakkam Node, Via Kokilamedu gate, Kokilamedu 603104, Tamil Nadu, India
| | | |
Collapse
|
41
|
Barghi Lish A, Foroumadi A, Kolvari E, Safari F. Synthesis and Biological Evaluation of 12-Aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3- d]pyridazine-8(9 H)-one Derivatives as Potential Cytotoxic Agents. ACS OMEGA 2023; 8:42212-42224. [PMID: 38024677 PMCID: PMC10653054 DOI: 10.1021/acsomega.3c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 μM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.
Collapse
Affiliation(s)
- Azam Barghi Lish
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1417614411, Iran
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Eskandar Kolvari
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Fatemeh Safari
- Department
of Biology, Faculty of Science, University
of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
42
|
Yu Z, Li J, Cao Y, Dong T, Xiao Y. 3-Trifluoromethyl Pyrrole Synthesis Based on β-CF 3-1,3-Enynamides. J Org Chem 2023; 88:15501-15506. [PMID: 37852275 DOI: 10.1021/acs.joc.3c01790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new metal-free method for the rapid, productive, and scalable preparation of 3-trifluoromethyl pyrroles has been developed. It is based on the electrophilic nature of the double bond of β-CF3-1,3-enynamides due to the electron-withdrawing characteristics of the trifluoromethyl groups and the strong nucleophilic nature of alkyl primary amines. Evidence for the highly regioselective 1,4-hydroamination was observed after the isolation and characterization of the allenamide intermediate.
Collapse
Affiliation(s)
- Zongxiang Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Jintong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuxuan Cao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tingwei Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
43
|
Moreno-Suárez E, Avila-Acosta R, Sánchez-Ramírez K, Castillo JC, Macías MA. Crystallographic, spectroscopic and thermal studies of 1-(4-bromophenyl)-5-(2,5-dimethyl-1H-pyrrol-1-yl)-3-methyl-1H-pyrazole. Acta Crystallogr C Struct Chem 2023; 79:472-479. [PMID: 37874208 DOI: 10.1107/s2053229623009221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
The new title pyrrole-pyrazole derivative, C16H16BrN3, was synthesized through a citric acid-catalyzed Paal-Knorr reaction between acetonylacetone and 1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-amine under mild reaction conditions. This synthetic protocol is noteworthy for its utilization of stoichiometric amounts of the reactants, an ecofriendly solvent and a cost-effective, non-toxic and biodegradable organocatalyst. A comprehensive understanding of the molecular structure was gained through spectroscopic, thermal and X-ray crystallographic analyses. The crystal structure is characterized by weak interactions, where only C-H...π connections contribute to the hydrogen-bond contacts. The supramolecular assembly is controlled by dispersion forces. However, the energy frameworks demonstrate that these forces act in three dimensions, providing enough stability, as observed in TGA-DSC (thermogravimetric analysis-differential scanning calorimetry) studies.
Collapse
Affiliation(s)
- Erika Moreno-Suárez
- Disciplinary Elective V, Escuela de Ciencias Química, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Rafael Avila-Acosta
- Disciplinary Elective V, Escuela de Ciencias Química, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Karen Sánchez-Ramírez
- Disciplinary Elective V, Escuela de Ciencias Química, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Juan Carlos Castillo
- Disciplinary Elective V, Escuela de Ciencias Química, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia
| | - Mario A Macías
- Crystallography and Chemistry of Materials, CrisQuimMat, Chemistry Department, Universidad de Los Andes, Cra. 1 No. 18A-12, Bogotá 111711, Colombia
| |
Collapse
|
44
|
Borrel J, Waser J. Azido-alkynylation of alkenes through radical-polar crossover. Chem Sci 2023; 14:9452-9460. [PMID: 37712015 PMCID: PMC10498506 DOI: 10.1039/d3sc03309k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
We report an azido-alkynylation of alkenes allowing a straightforward access to homopropargylic azides by combining hypervalent iodine reagents and alkynyl-trifluoroborate salts. The design of a photocatalytic redox-neutral radical polar crossover process was key to develop this transformation. A variety of homopropargylic azides possessing electron-rich and -poor aryls, heterocycles or ether substituents could be accessed in 34-84% yield. The products are synthetically useful building blocks that could be easily transformed into pyrroles or bioactive amines.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
45
|
Hilmy KMH, Kishk FNM, Shahen EBA, Sobh EA, Hawata MA. New pyrrole derivatives as DNA gyrase and 14α-demethylase inhibitors: Design, synthesis, antimicrobial evaluation, and molecular docking. Drug Dev Res 2023; 84:1204-1230. [PMID: 37165799 DOI: 10.1002/ddr.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023]
Abstract
An efficient one-pot reaction utilizing readily available chemical reagents was used to prepare novel 2-amino-1,5-diaryl-1H-pyrrole-3-carbonitrile derivatives and the structures of these compounds were validated by spectroscopic data and elemental analyses. All the synthetic compounds were evaluated for their antimicrobial activities (MZI assay). The tested compounds proved high activities on Staphylococcus aureus (Gram-positive bacteria) and Candida albicans (Pathogenic fungi). However, they did not show any activity on Escherichia coli (Gram-negative bacteria). The most effective compounds in MZI assay 7c, 9a, 9b, 11a, and 11b were selected to determine their MIC on S. aureus and C. albicans. Furthermore, DNA gyrase and 14-α demethylase inhibitory assays were performed to study the inhibitory activities of 7c, 9a, 9b, 11a, and 11b. The results illustrated that compound 9b was the most DNA gyrase inhibitor (IC50 of 0.0236 ± 0.45 µM, which was 1.3- fold higher than gentamicin reference IC50 values of 0.0323 ± 0.81 µM). In addition, compound 9b demonstrated the highest 14-α demethylase inhibitory effect with IC50 of 0.0013 ± 0.02 µM, compared to ketoconazole (IC50 of 0.0008 ± 0.03 µM) and fluconazole (IC50 of 0.00073 ± 0.01 µM), as antifungal reference drugs. Lastly, docking studies were performed to rationalize the dual inhibitory activities of the highly active compounds on both DNA gyrase and 14-α demethylase enzymes.
Collapse
Affiliation(s)
- Khaled M H Hilmy
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Fawzya N M Kishk
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Esmat B A Shahen
- Depatment of Biochemistry, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shebin El-Kom, Egypt
| | - Mohamed A Hawata
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
46
|
Xu G, Li L, Xu B, Fang Z, Duan J, Guo K. Copper-catalyzed three-component annulation toward pyrroles via the cleavage of two C-C bonds in 1,3-dicarbonyls. Chem Commun (Camb) 2023; 59:10636-10639. [PMID: 37580978 DOI: 10.1039/d3cc02681g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The first copper-catalyzed three-component annulation of α,β-unsaturated ketoximes, 1,3-dicarbonyls and paraformaldehyde has been documented. This novel strategy achieved the two C-C bond cleavage of 1,3-dicarbonyl compounds directly as a single-carbon synthon and provided a new and highly efficient method for the synthesis of 2,3-disubstituted pyrroles in moderate to good yields with broad functional group compatibility.
Collapse
Affiliation(s)
- Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Luchao Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Binyan Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
47
|
Cui J, Sun Y, Wang L, Tan W, Guo Z. Preparation of chitosan derivatives containing aromatic five-membered heterocycles for efficient antimicrobial and antioxidant activities. Int J Biol Macromol 2023; 247:125850. [PMID: 37460067 DOI: 10.1016/j.ijbiomac.2023.125850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
In this study, nine chitosan derivatives containing aromatic five-membered heterocycles were prepared and the effects of different grafting methods on the biological activities of chitosan derivatives were investigated. The structures of all the compounds were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, while the antioxidant, antifungal and antibacterial activities of the chitosan derivatives were tested. The experimental data suggested that the chitosan derivatives had outstanding inhibitory ability against Fusarium graminearum, Fusarium oxysporum f.sp.cucumbrum, Staphylococcus aureus and Escherichia coli. At the same time, some of the compounds showed strong scavenging ability against DPPH radical and superoxide radical. Cytotoxicity experiments have demonstrated that some chitosan derivatives are non-toxic to L929 cells. More importantly, compared to chitosan, these chitosan derivatives have good water solubility and can be used as potential polymers for antifungal and antibacterial biomaterials in agriculture.
Collapse
Affiliation(s)
- Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linqing Wang
- School of Chemical and Materials Science, Ludong University, Yantai 264025, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Ivan BC, Barbuceanu SF, Hotnog CM, Olaru OT, Anghel AI, Ancuceanu RV, Mihaila MA, Brasoveanu LI, Shova S, Draghici C, Nitulescu GM, Dumitrascu F. Synthesis, Characterization and Cytotoxic Evaluation of New Pyrrolo[1,2- b]pyridazines Obtained via Mesoionic Oxazolo-Pyridazinones. Int J Mol Sci 2023; 24:11642. [PMID: 37511401 PMCID: PMC10380841 DOI: 10.3390/ijms241411642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed by acidification. The structures of the compounds were confirmed by elemental analyses and IR, 1H-NMR, 13C-NMR, and X-ray diffraction data. The regioselectivity of cycloaddition was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were evaluated for their cytotoxicity on plant cells (Triticum aestivum L.) and crustacean animal cells (Artemia franciscana Kellogg and Daphnia magna Straus). The results indicated that the tested compounds exhibited low toxicity on the plant cell (IC50 values higher than 200 µM), while on Artemia nauplii no lethality was observed. Daphnia magna assay showed that pyrrolo[1,2-b]pyridazines 5a and 5c could exhibit toxic effects, whereas, for the other compounds, toxicity was low to moderate. Also, the cytotoxic effects of the compounds were tested on three human adenocarcinoma-derived adherent cell lines (colon LoVo, ovary SK-OV-3, breast MCF-7). The in vitro compound-mediated cytotoxicity assays, performed by the MTS technique, demonstrated dose- and time-dependent cytotoxic activity for several compounds, the highest anti-tumor activity being observed for 5a, 2c, and 5f, especially against colon cancer cells.
Collapse
Affiliation(s)
- Beatrice-Cristina Ivan
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Stefania-Felicia Barbuceanu
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Mia Hotnog
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adriana Iuliana Anghel
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Robert Viorel Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Antonela Mihaila
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania
- Laboratory of Advanced Materials in Biofarmaceutics and Technics, Moldova State University, 2009 Chişinău, Moldova
| | - Constantin Draghici
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Florea Dumitrascu
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| |
Collapse
|
49
|
Amărandi RM, Al-Matarneh MC, Popovici L, Ciobanu CI, Neamțu A, Mangalagiu II, Danac R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals (Basel) 2023; 16:865. [PMID: 37375812 DOI: 10.3390/ph16060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Five new series of pyrrolo-fused heterocycles were designed through a scaffold hybridization strategy as analogs of the well-known microtubule inhibitor phenstatin. Compounds were synthesized using the 1,3-dipolar cycloaddition of cycloimmonium N-ylides to ethyl propiolate as a key step. Selected compounds were then evaluated for anticancer activity and ability to inhibit tubulin polymerization in vitro. Notably, pyrrolo[1,2-a]quinoline 10a was active on most tested cell lines, performing better than control phenstatin in several cases, most notably on renal cancer cell line A498 (GI50 27 nM), while inhibiting tubulin polymerization in vitro. In addition, this compound was predicted to have a promising ADMET profile. The molecular details of the interaction between compound 10a and tubulin were investigated through in silico docking experiments, followed by molecular dynamics simulations and configurational entropy calculations. Of note, we found that some of the initially predicted interactions from docking experiments were not stable during molecular dynamics simulations, but that configurational entropy loss was similar in all three cases. Our results suggest that for compound 10a, docking experiments alone are not sufficient for the adequate description of interaction details in terms of target binding, which makes subsequent scaffold optimization more difficult and ultimately hinders drug design. Taken together, these results could help shape novel potent antiproliferative compounds with pyrrolo-fused heterocyclic cores, especially from an in silico methodological perspective.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Maria-Cristina Al-Matarneh
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Lăcrămioara Popovici
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Catalina Ionica Ciobanu
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Andrei Neamțu
- TRANSCEND Research Center, Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
50
|
Evans C, Berkey WJ, Jones CW, France S. Zr-Catalyzed Synthesis of Tetrasubstituted 1,3-Diacylpyrroles from N-Acyl α-Aminoaldehydes and 1,3-Dicarbonyls. J Org Chem 2023. [PMID: 37294689 DOI: 10.1021/acs.joc.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A Zr-catalyzed synthesis of tetrasubstituted 1,3-diacylpyrroles is reported that employs the direct use of N-acyl α-aminoaldehydes with 1,3-dicarbonyl compounds. The products were formed in up to 88% yield and shown to be hydrolytically and configurationally stable under the reaction conditions (THF/1,4-dioxane and H2O). The N-acyl α-aminoaldehydes were readily prepared from the corresponding α-amino acids. The reaction tolerates a wide array of substrate types including alkyl-, aryl-, heteroaryl-, and heteroatom-containing groups on the aminoaldehyde side chain. A variety of 1,3-dicarbonyls proved amenable to the reaction along with an aldehyde derived from a l,l-dipeptide, an aldehyde generated in situ, and an N-acylated glucosamine.
Collapse
Affiliation(s)
- Caria Evans
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William J Berkey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|