1
|
Sokol I, Rakas A, Kučić Grgić D, Persoons L, Daelemans D, Gazivoda Kraljević T. Biological assessments of novel ultrasound-synthesized 2-arylbenzimidazole derivatives: antiproliferative and antibacterial effects. RSC Med Chem 2025:d5md00106d. [PMID: 40352670 PMCID: PMC12062833 DOI: 10.1039/d5md00106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025] Open
Abstract
This paper describes ultrasound synthesis, structural characterization and biological activity of new derivatives of 2-arylbenzimidazole 12-27 and 1,2,3-triazole derivatives of 2-arylbenzimidazole 28-33. The tautomeric structures of the prepared target compounds were confirmed by 1H- and 13C-NMR spectroscopy as well as by two-dimensional NOESY, HSQC and HMBC methods. The synthesized compounds underwent in vitro antiproliferative assays, revealing that compound 23 exhibited the highest potency against chronic myeloid leukemia cells (K-562, IC50 = 2.0 μM) and non-Hodgkin's lymphoma cells (Z-138, IC50 = 2.0 μM). Compound 23 was further evaluated for cytotoxicity on normal peripheral blood mononuclear cells (PBMC), and its mechanism of action was investigated. The antibacterial properties of the synthesized compounds were assessed against both Gram-positive and Gram-negative bacterial strains. Derivatives 15-17 exhibited significant selective antibacterial activity against the Gram-positive bacterium Enterococcus faecalis (MIC = 0.25-1 μg mL-1). Additionally, among the 1,2,3-triazole derivatives of 2-arylbenzimidazole, compounds 28 and 30 demonstrated strong selective activity against Enterococcus faecalis (MIC = 0.25 μg mL-1).
Collapse
Affiliation(s)
- Ivana Sokol
- Department of Organic Chemistry, University of Zagreb Faculty of Chemical Engineering and Technology Marulićev trg 20 10000 Zagreb Croatia
| | - Anja Rakas
- Department of Organic Chemistry, University of Zagreb Faculty of Chemical Engineering and Technology Marulićev trg 20 10000 Zagreb Croatia
| | - Dajana Kučić Grgić
- Department of Industrial Ecology, University of Zagreb Faculty of Chemical Engineering and Technology Marulićev trg 19 10000 Zagreb Croatia
| | - Leentje Persoons
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Rega Institute 3000 Leuven Belgium
| | - Dirk Daelemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Rega Institute 3000 Leuven Belgium
| | - Tatjana Gazivoda Kraljević
- Department of Organic Chemistry, University of Zagreb Faculty of Chemical Engineering and Technology Marulićev trg 20 10000 Zagreb Croatia
- Department for Packaging, Recycling and Environmental Protection, University North Trg dr. Žarka Dolinara 1 48000 Koprivnica Croatia
| |
Collapse
|
2
|
Rajeswari M, Nagaraju B, Balaji H, Ali S, Balaji M, Karunakar P, Venkata Rao C, Maddila S. Design, Synthesis, Biological Activity, Molecular Docking and Dynamic Studies of Novel Benzimidazole-Integrated 1,2,3,4-Tetrazole Derivatives. Chem Biodivers 2025:e202500353. [PMID: 40261179 DOI: 10.1002/cbdv.202500353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Intending to design potent antimicrobial and antioxidant agent from the source of benzimidazole-1,2,3,4-tetrazole combined heterocyclic derivatives, novel 2-(4-(2-(5-(4-substituted phenyl)-1H-tetrazol-1-yl)-ethoxy)-3-methoxyphenyl)-1H-benzo[d]-imidazole analogs were synthesized by condensation of o-phenylene diamine with 4-chlorophenyl-1H-tetrazol-1-yl-ethoxy-3-methoxybenzaldehyde as a key step in the presence of sodium meta-bi-sulphide. All newly synthesized compounds (6a-j) were characterized using proton nuclear magnetic resonance (¹H NMR), carbon-13 NMR (¹3C NMR), mass spectrometry, and Fourier-transform infrared spectral analysis. Molecules 6d and 6f exhibited promising antimicrobials and antioxidants and these were found to be the most potent activity molecules when compared with that of standard drugs. Additionally, the molecular docking studies of these molecules were performed and experimented for molecular dynamics.
Collapse
Affiliation(s)
| | - Begari Nagaraju
- Department of Chemistry, Chadalavada Ramanamma Engineering College, Tirupati, India
| | - Hari Balaji
- Department of Biochemistry, S.V. University, Tirupati, India
| | - Subhan Ali
- Department of Biochemistry, S.V. University, Tirupati, India
| | - Meriga Balaji
- Department of Biochemistry, S.V. University, Tirupati, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering Affiliated to Visvesvarava Technological University, Bangalore, India
| | | | - Suresh Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
3
|
Balewski Ł, Gdaniec M, Hering A, Furman C, Ghinet A, Kokoszka J, Ordyszewska A, Kornicka A. Synthesis and Structure of Novel Hybrid Compounds Containing Phthalazin-1(2 H)-imine and 4,5-Dihydro-1 H-imidazole Cores and Their Sulfonyl Derivatives with Potential Biological Activities. Int J Mol Sci 2024; 25:11495. [PMID: 39519047 PMCID: PMC11546079 DOI: 10.3390/ijms252111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
A novel hybrid compound-2-(4,5-dihydro-1H-imidazol-2-yl)phthalazin-1(2H)-imine (5) was synthesized and converted into di-substituted sulfonamide derivatives 6a-o and phthalazine ring opening products-hydrazonomethylbenzonitriles 7a-m. The newly prepared compounds were characterized using elemental analyses, IR and NMR spectroscopy, as well as mass spectrometry. Single crystal X-ray diffraction data were collected for the representative compounds 5, 6c, 6e, 7g, and 7k. The antiproliferative activity of compound 5, sulfonyl derivatives 6a-o and benzonitriles 7a-m was evaluated on approximately sixty cell lines within nine tumor-type subpanels, including leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. None of the tested compounds showed any activity against the cancer cell lines used. The antioxidant properties of all compounds were assessed using the DPPH, ABTS, and FRAP radical scavenging methods, as well as the β-carotene bleaching test. Antiradical tests revealed that among the investigated compounds, a moderate ABTS antiradical effect was observed for sulfonamide 6j (IC50 = 52.77 µg/mL). Benzonitrile 7i bearing two chlorine atoms on a phenyl ring system showed activity in a β-carotene bleaching test (IC50 = 86.21 µg/mL). Finally, the interaction AGE/RAGE in the presence of the selected phthalazinimines 6a, 6b, 6g, 6m, and hydrazonomethylbenzonitriles 7a, 7c-g, and 7i-k was determined by ELISA assay. A moderate inhibitory potency toward RAGE was found for hydrazonomethylbenzonitriles-7d with an electron-donating methoxy group (R = 3-CH3O-C6H4) and 7f, 7k with an electron-withdrawing substituent (7f, R = 2-Cl-C6H4; 7k, R = 4-NO2-C6H4).
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Christophe Furman
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
| | - Alina Ghinet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
4
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
5
|
Soudi A, Bender O, Celik I, El-Hafeez AAA, Dogan R, Atalay A, Elkaeed EB, Alsfouk AA, Abdelhafez EMN, Aly OM, Sippl W, Ali TFS. Discovery and Anticancer Screening of Novel Oxindole-Based Derivative Bearing Pyridyl Group as Potent and Selective Dual FLT3/CDK2 Kinase Inhibitor. Pharmaceuticals (Basel) 2024; 17:659. [PMID: 38794229 PMCID: PMC11124822 DOI: 10.3390/ph17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 μM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 μM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.
Collapse
Affiliation(s)
- Aya Soudi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Omar M. Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
6
|
Ezelarab HAA, Ali TFS, Abbas SH, Sayed AM, Beshr EAM, Hassan HA. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol Divers 2024; 28:563-580. [PMID: 36790582 PMCID: PMC11070402 DOI: 10.1007/s11030-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| |
Collapse
|
7
|
Zhou YH, Wang Y, Zhang HZ. Synthesis, Antimicrobial Evaluation, and Interaction of Emodin Alkyl Azoles with DNA and HSA. Med Chem 2024; 20:422-433. [PMID: 38351695 DOI: 10.2174/0115734064283049240124115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. METHOD The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). RESULTS The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4-16 μg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 μg/mL) and E. coli (MIC = 8 μg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 μg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. CONCLUSION This work may supply useful directions for the exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- School of Medicine, Linyi University, Linyi 276000, China
| | - Ying Wang
- School of Medicine, Linyi University, Linyi 276000, China
| | - Hui-Zhen Zhang
- School of Medicine, Linyi University, Linyi 276000, China
| |
Collapse
|
8
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
9
|
Racané L, Zlatić K, Cindrić M, Mehić E, Karminski-Zamola G, Taylor MC, Kelly JM, Malić SR, Stojković MR, Kralj M, Hranjec M. Synthesis and Biological Activity of 2-Benzo[b]thienyl and 2-Bithienyl Amidino-Substituted Benzothiazole and Benzimidazole Derivatives. ChemMedChem 2023; 18:e202300261. [PMID: 37376962 DOI: 10.1002/cmdc.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Novel benzo[b]thienyl- and 2,2'-bithienyl-derived benzothiazoles and benzimidazoles were synthesized to study their antiproliferative and antitrypanosomal activities in vitro. Specifically, we assessed the impact that amidine group substitutions and the type of thiophene backbone have on biological activity. In general, the benzothiazole derivatives were more active than their benzimidazole analogs as both antiproliferative and antitrypanosomal agents. The 2,2'-bithienyl-substituted benzothiazoles with unsubstituted and 2-imidazolinyl amidine showed the most potent antitrypanosomal activity, and the greatest selectivity was observed for the benzimidazole derivatives bearing isopropyl, unsubstituted and 2-imidazolinyl amidine. The 2,2'-bithiophene derivatives showed most selective antiproliferative activity. Whereas the all 2,2'-bithienyl-substituted benzothiazoles were selectively active against lung carcinoma, the benzimidazoles were selective against cervical carcinoma cells. The compounds with an unsubstituted amidine group also produced strong antiproliferative effects. The more pronounced antiproliferative activity of the benzothiazole derivatives was attributed to different cytotoxicity mechanisms. Cell cycle analysis, and DNA binding experiments provide evidence that the benzimidazoles target DNA, whereas the benzothiazoles have a different cellular target because they are localized in the cytoplasm and do not interact with DNA.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića, 10000, Zagreb, Croatia
| | - Katarina Zlatić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Maja Cindrić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Emina Mehić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Grace Karminski-Zamola
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Silvana Raić Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| |
Collapse
|
10
|
Bender O, Shoman ME, Ali TFS, Dogan R, Celik I, Mollica A, Hamed MIA, Aly OM, Alamri A, Alanazi J, Ahemad N, Gan SH, Malik JA, Anwar S, Atalay A, Beshr EAM. Discovery of oxindole-based FLT3 inhibitors as a promising therapeutic lead for acute myeloid leukemia carrying the oncogenic ITD mutation. Arch Pharm (Weinheim) 2023; 356:e2200407. [PMID: 36403191 DOI: 10.1002/ardp.202200407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-β. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Omar M Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Rep V, Štulić R, Koštrun S, Kuridža B, Crnolatac I, Radić Stojković M, Paljetak HČ, Perić M, Matijašić M, Raić-Malić S. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling. RSC Med Chem 2022; 13:1504-1525. [PMID: 36561067 PMCID: PMC9749923 DOI: 10.1039/d2md00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
A series of tetrahydropyrimidinyl-substituted benzimidazoles attached to various aliphatic or aromatic residues via phenoxymethylene were synthesised to investigate their antibacterial activities against selected Gram-positive and Gram-negative bacteria. The influence of the type of substituent at the C-3 and C-4 positions of the phenoxymethylene linker on the antibacterial activity was observed, showing that the aromatic moiety improved the antibacterial potency. Of all the evaluated compounds, benzoyl-substituted benzimidazole derivative 15a was the most active compound, particularly against the Gram-negative pathogens E. coli (MIC = 1 μg mL-1) and M. catarrhalis (MIC = 2 μg mL-1). Compound 15a also exhibited the most promising antibacterial activity against sensitive and resistant strains of S. pyogenes (MIC = 2 μg mL-1). Significant stabilization effects and positive induced CD bands strongly support the binding of the most biologically active benzimidazoles inside the minor grooves of AT-rich DNA, in line with docking studies. The predicted physico-chemical and ADME properties lie within drug-like space except for low membrane permeability, which needs further optimization. Our findings encourage further development of novel structurally related 5(6)-tetrahydropyrimidinyl substituted benzimidazoles in order to optimize their antibacterial effect against common respiratory pathogens.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Rebeka Štulić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Sanja Koštrun
- Selvita d.o.oPrilaz baruna Filipovića 2910000 ZagrebCroatia
| | - Bojan Kuridža
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Hana Čipčić Paljetak
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mihaela Perić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mario Matijašić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| |
Collapse
|
12
|
Rep Kaulić V, Racané L, Leventić M, Šubarić D, Rastija V, Glavaš-Obrovac L, Raić-Malić S. Synthesis, Antiproliferative Evaluation and QSAR Analysis of Novel Halogen- and Amidino-Substituted Benzothiazoles and Benzimidazoles. Int J Mol Sci 2022; 23:ijms232415843. [PMID: 36555479 PMCID: PMC9785280 DOI: 10.3390/ijms232415843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Syntheses of 6-halogen-substituted benzothiazoles were performed by condensation of 4-hydroxybenzaldehydes and 2-aminotiophenoles and subsequent O-alkylation with appropriate halides, whereas 6-amidino-substituted benzothiazoles were synthesized by condensation of 5-amidino-2-aminothiophenoles and corresponding benzaldehydes. While most of the compounds from non-substituted and halogen-substituted benzothiazole series showed marginal antiproliferative activity on tested tumor cell lines, amidino benzazoles exhibited stronger inhibitory activity. Generally, imidazolyl benzothiazoles showed pronounced and nonselective activity, with the exception of 36c which had a strong inhibitory effect on HuT78 cells (IC50 = 1.6 µM) without adverse cytotoxicity on normal BJ cells (IC50 >100 µM). Compared to benzothiazoles, benzimidazole structural analogs 45a−45c and 46c containing the 1,2,3-triazole ring exhibited pronounced and selective antiproliferative activity against HuT78 cells with IC50 < 10 µM. Moreover, compounds 45c and 46c containing the methoxy group at the phenoxy unit were not toxic to normal BJ cells. Of all the tested compounds, benzimidazole 45a with the unsubstituted phenoxy central core showed the most pronounced cell growth inhibition on THP1 cells in the nanomolar range (IC50 = 0.8 µM; SI = 70). QSAR models of antiproliferative activity for benzazoles on T-cell lymphoma (HuT78) and non-tumor MDCK-1 cells elucidated the effects of the substituents at position 6 of benzazoles, demonstrating their dependence on the topological and spatial distribution of atomic mass, polarizability, and van der Waals volumes. A notable cell cycle perturbation with higher accumulation of cells in the G2/M phase, and a significant cell increase in subG0/G1 phase were found in HuT78 cells treated with 36c, 42c, 45a−45c and 46c. Apoptotic morphological changes, an externalization of phosphatidylserine, and changes in the mitochondrial membrane potential of treated cells were observed as well.
Collapse
Affiliation(s)
- Valentina Rep Kaulić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovića 28, 10000 Zagreb, Croatia
| | - Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, University Josip Juraj Strossmayer of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, University Josip Juraj Strossmayer of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Correspondence: (L.G.-O.); (S.R.-M.)
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
- Correspondence: (L.G.-O.); (S.R.-M.)
| |
Collapse
|
13
|
Slavchev IM, Mitrev Y, Shivachev B, Valcheva V, Dogonadze M, Solovieva N, Vyazovaya A, Mokrousov I, Link W, Jiménez L, Cautain B, Mackenzie TA, Portugal I, Lopes F, Capela R, Perdigão J, Dobrikov GM. Synthesis, Characterization and Complex Evaluation of Antibacterial Activity and Cytotoxicity of New Arylmethylidene Ketones and Pyrimidines with Camphane Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202201339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivaylo M. Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Yavor Mitrev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography Bulgarian Academy of Sciences, bl. 107, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Violeta Valcheva
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences bl. 26, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Lucía Jiménez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Bastien Cautain
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Isabel Portugal
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Francisca Lopes
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Rita Capela
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - João Perdigão
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| |
Collapse
|
14
|
Maračić S, Grbčić P, Shammugam S, Radić Stojković M, Pavelić K, Sedić M, Kraljević Pavelić S, Raić-Malić S. Amidine- and Amidoxime-Substituted Heterocycles: Synthesis, Antiproliferative Evaluations and DNA Binding. Molecules 2021; 26:molecules26227060. [PMID: 34834151 PMCID: PMC8625065 DOI: 10.3390/molecules26227060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
The novel 1,2,3-triazolyl-appended N- and O-heterocycles containing amidine 4–11 and amidoxime 12–22 moiety were prepared and evaluated for their antiproliferative activities in vitro. Among the series of amidine-substituted heterocycles, aromatic diamidine 5 and coumarine amidine 11 had the most potent growth-inhibitory effect on cervical carcinoma (HeLa), hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (SW620), with IC50 values in the nM range. Although compound 5 was toxic to non-tumor HFF cells, compound 11 showed certain selectivity. From the amidoxime series, quinoline amidoximes 18 and 20 showed antiproliferative effects on lung adenocarcinoma (A549), HeLa and SW620 cells emphasizing compound 20 that exhibited no cytostatic effect on normal HFF fibroblasts. Results of CD titrations and thermal melting experiments indicated that compounds 5 and 10 most likely bind inside the minor groove of AT-DNA and intercalate into AU-RNA. Compounds 6, 9 and 11 bind to AT-DNA with mixed binding mode, most probably minor groove binding accompanied with aggregate binding along the DNA backbone.
Collapse
Affiliation(s)
- Silvija Maračić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
| | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Ulica Radmile Matejčić 2, HR-51000 Rijeka, Croatia;
| | - Suresh Shammugam
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, HR-10000 Zagreb, Croatia;
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, HR-51000 Rijeka, Croatia;
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| |
Collapse
|
15
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
16
|
Racané L, Rep V, Kraljević Pavelić S, Grbčić P, Zonjić I, Radić Stojković M, Taylor MC, Kelly JM, Raić-Malić S. Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. J Enzyme Inhib Med Chem 2021; 36:1952-1967. [PMID: 34455887 PMCID: PMC8409973 DOI: 10.1080/14756366.2021.1959572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.
Collapse
Affiliation(s)
- Livio Racané
- Faculty of Textile Technology, Department of Applied Chemistry, University of Zagreb, Zagreb, Croatia
| | - Valentina Rep
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Petra Grbčić
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Iva Zonjić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Silvana Raić-Malić
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Ning ZW, Zhang HZ, Zhou CH. Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazole-incorporated Naphthalimide Derivatives As Salmonella typhimurium DNA Intercalators, and Combination Researches. Med Chem 2021; 18:544-557. [PMID: 34254924 DOI: 10.2174/1573406417666210712105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A series of novel benzimidazole-incorporated naphthalimide derivatives were designed and prepared to overcome the increasing antibiotic resistance. METHOD The target novel benzimidazole-incorporated naphthalimide derivatives were synthesized from commercial 4-bromo-1,8-naphthalic anhydride and o-phenylene diamine by aminolysis, N-alkylation, and so on. The antimicrobial activity of the synthesized compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of compound 10g with Salmonella typhimurium DNA was studied using UV-vis spectroscopic methods. RESULTS Compound 10g bearing a 2,4-dichlorobenzyl moiety exhibited the best antimicrobial activities in this series relatively, especially it gave the comparable action against Salmonella typhimurium compared to the reference drug Norfloxacin (MIC = 4 mg/mL). Further research showed that compound 10g could effectively intercalate into the Salmonella typhimurium DNA to form the 10g-DNA complex, which might correlate with the inhibitory activity. Molecular docking results demonstrated that naphthalimide compound 10g could interact with base-pairs of DNA hexamer duplex by p-p stacking. Additionally, the combinations of the solid active combination with clinical drugs gave better antimicrobial efficiency with less dosage and broader antimicrobial spectrum than the separated use alone. Notably, these combined systems were more sensitive to Fluconazole-insensitive M. ruber. CONCLUSION This work opened up a good starting point to optimize the structures of benzimidazole-incorporated naphthalimide derivatives as potent antimicrobial agents.
Collapse
Affiliation(s)
- Zhi-Wei Ning
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Hui-Zhen Zhang
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|