1
|
Romano F, De Marco P, Amico G, Mallamaci M, Pavanello M, Piatelli G, Scala M, Zara F, Faravelli F, Severino M, Tortora D, Pasetti F, Castellan L, Buratti S, Capra V. Arteriovenous cerebral high-flow shunts: genetic analysis of patients from a pediatric tertiary care center. Front Genet 2025; 16:1430657. [PMID: 40259928 PMCID: PMC12010119 DOI: 10.3389/fgene.2025.1430657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/20/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Arteriovenous cerebral high-flow shunts include the vein of Galen aneurysmal malformation (VGAM) and vein of Galen dilatation, which are considered secondary to arteriovenous malformations or arteriovenous fistulas. These entities are often sporadic but are found in association with variants of the RASA1 and EPHB4 genes (capillary malformation-arteriovenous malformation, CMAVM; OMIM #608354) or ACVRL1, ENG, and SMAD4 genes (hereditary hemorrhagic telangiectasia, HHT; OMIM #187300). The clinical phenotypes associated with these conditions are highly variable, with incomplete penetrance and mostly dependent on the hemodynamic consequences (including heart failure and cerebral hemorrhage) or management complications rather than anatomical vascular variations per se. The present study aimed to genetically characterize a cohort of 29 patients affected by arteriovenous cerebral high-flow shunts who were treated at a pediatric referral center. Methods The genetic techniques employed include next-generation sequencing, multiplex ligation-dependent probe amplification, and whole-exome sequencing. Results Of the 29 patients, 11 cases were found to have variants in genes associated with vascular functions, five cases received a genetic diagnosis, one case presented with a variant of uncertain significance in the EPHB4 gene, and five cases showed variants in novel genes possibly linked with cerebrovascular disorders. Discussion We provide extensive case descriptions and attempt to infer the genotype-phenotype correlations; variants in all of the known genes associated with arteriovenous cerebral shunts were reported in VGAM patients, while cutaneous angiomas were specific to RASA1 mutations. The genotypic and phenotypic descriptions of the affected individuals may thus have relevant implications in terms of better pathophysiological understanding, genotype-phenotype correlations, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Ferruccio Romano
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Amico
- Human Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marisa Mallamaci
- Neonatal and Pediatric Intensive Care Unit, Acceptance and Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Pavanello
- Neurosurgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Human Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neonatal and Pediatric Intensive Care Unit, Acceptance and Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neurosurgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesca Faravelli
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariasavina Severino
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Tortora
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Pasetti
- Pediatric Radiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucio Castellan
- Neuroradiology Unit, IIRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Buratti
- Neonatal and Pediatric Intensive Care Unit, Acceptance and Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neurosurgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Valeria Capra
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
2
|
Goeser LE, Lalor L, Chiu YE, Muriello M. Second Report of the p.Leu874Pro Missense Variant in EPHB4 in a Family With Capillary Malformation-Arteriovenous Malformation Syndrome (CM-AVM) Syndrome. Am J Med Genet A 2025; 197:e63898. [PMID: 39431828 DOI: 10.1002/ajmg.a.63898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) syndrome is characterized by the presence of multiple small (1-2 cm in diameter) capillary malformations of the skin. This disorder has been described as two distinct entities: CM-AVM1 and CM-AVM2. The diagnosis of these disorders has been associated with pathogenic variants in the RASA1 gene for RASA1-CM-AVM, formerly known as CM-AVM1, and, more recently, the EPHB4 genes for EPHB4-CM-AVM, formerly known as CM-AVM2. Affected patients with either type may also have arteriovenous malformations and fistulas, which can cause life-threatening bleeding, congestive heart failure, or neurologic consequences such as stroke. These syndromes are typically either sporadic or inherited in an autosomal dominant manner with variable expressivity. We report a case series of a father and three daughters who have clinically diagnosed EPHB4-CM-AVM syndrome who were found to have a variant of uncertain significance (VUS) in EPHB4 that has only been reported once prior.
Collapse
Affiliation(s)
- Laura E Goeser
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Leah Lalor
- Department of Dermatology, Division of Pediatric Dermatology, and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yvonne E Chiu
- Department of Dermatology, Division of Pediatric Dermatology, and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Muriello
- Department of Pediatrics, Division of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Paul ME, Chen D, Vish KJ, Lartey NL, Hughes E, Freeman ZT, Saunders TL, Stiegler AL, King PD, Boggon TJ. The C2 domain augments Ras GTPase-activating protein catalytic activity. Proc Natl Acad Sci U S A 2025; 122:e2418433122. [PMID: 39899710 PMCID: PMC11831179 DOI: 10.1073/pnas.2418433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulation of Ras GTPases by GTPase-activating proteins (GAPs) is essential for their normal signaling. Nine of the ten GAPs for Ras contain a C2 domain immediately proximal to their canonical GAP domain, and in RasGAP (p120GAP, p120RasGAP; RASA1) mutation of this domain is associated with vascular malformations in humans. Here, we show that the C2 domain of RasGAP is required for full catalytic activity toward Ras. Analyses of the RasGAP C2-GAP crystal structure, AlphaFold models, and sequence conservation reveal direct C2 domain interaction with the Ras allosteric lobe. This is achieved by an evolutionarily conserved surface centered around RasGAP residue R707, point mutation of which impairs the catalytic advantage conferred by the C2 domain in vitro. In mice, R707C mutation phenocopies the vascular and signaling defects resulting from constitutive disruption of the RASA1 gene. In SynGAP, mutation of the equivalent conserved C2 domain surface impairs catalytic activity. Our results indicate that the C2 domain is required to achieve full catalytic activity of GAPs for Ras.
Collapse
Affiliation(s)
- Maxum E. Paul
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Kimberly J. Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Nathaniel L. Lartey
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Elizabeth Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Zachary T. Freeman
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Amy L. Stiegler
- Department of Pharmacology, Yale University, New Haven, CT06520
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale University, New Haven, CT06520
- Yale Cancer Center, Yale University, New Haven, CT06520
| |
Collapse
|
4
|
Boccara O, Salvan D, Laurian C, Degrugillier-Chopinet C, Degardin N, Dillinger JG, Malloizel-Delaunay J, Mouton S, Munck S, Maruani A, Bisdorff-Bresson A. Diagnosis and management of superficial arteriovenous malformations: French healthcare network's recommendations. Orphanet J Rare Dis 2025; 20:45. [PMID: 39885577 PMCID: PMC11783702 DOI: 10.1186/s13023-024-03413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/13/2024] [Indexed: 02/01/2025] Open
Abstract
Superficial arteriovenous malformations are rare fast-flow lesions. They consist of arteriovenous shunts, without cellular hyperplasia or proliferation, which develop in the surrounding tissues (cutaneous, subcutaneous, muscular, bone). Although benign, they are among the most severe of superficial malformations. Their evolution can be life-threatening in exceptional cases. With the aim of optimizing diagnosis and management worldwide, this protocol offers a state of the art for the diagnosis and management of these diseases. To this end, the French healthcare network specialized in these diseases have drawn on literature data and experience. Developed from the French National Diagnosis and Care Protocol, it presents the patient journeys for initial and differential diagnoses, and personalized therapeutic strategies. This requires a multidisciplinary team, with specialized professionals in handling genetic, treatment and psychosocial issues.
Collapse
Affiliation(s)
- Olivia Boccara
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Dermatology, University Hospital Necker-Enfants Malades, Paris, France
- FIMARAD Network, Paris, France
| | - Didier Salvan
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Otorhinolaryngology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Claude Laurian
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Vascular Surgery, Saint Joseph Hospital, Paris, France
| | - Caroline Degrugillier-Chopinet
- Department of Clinical Physiology and Echocardiography, Heart Valve Clinic, Lille University Hospital Center, CHU Lille, Lille, France
| | - Nathalie Degardin
- Department of Pediatric Plastic Surgery, Centers of Competence for Facial Clefts and Deformities (MAFACE) & Pierre Robin Syndromes and Congenital Sucking-Swallowing Disorders (SPRATON), Timone-Enfant Hospital, Marseille, France
| | - Jean-Guillaume Dillinger
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Cardiology Department, Centre de Référence et d'Education aux Antithrombotiques d'Ile de France (C.R.E.A.T.I.F.), Lariboisière Hospital, APHP, Paris, France
| | | | - Stéphane Mouton
- Department of Clinical Physiology and Echocardiography, Heart Valve Clinic, Lille University Hospital Center, CHU Lille, Lille, France
| | - Stéphane Munck
- Department of Teaching and Research in General Practice, University Côte-d'Azur, Nice, France
| | - Annabel Maruani
- FIMARAD Network, Paris, France
- INSERM 1246-SPHERE, Department of Dermatology, Center of Reference for Rare Vascular Diseases MAGEC-Tours, University of Tours, Tours, France
| | - Annouk Bisdorff-Bresson
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France.
- INSERM 1246-SPHERE, Department of Dermatology, Center of Reference for Rare Vascular Diseases MAGEC-Tours, University of Tours, Tours, France.
- Department of Neuroradiology, Lariboisière Hospital, APHP, Paris, France.
| |
Collapse
|
5
|
Granier Tournier C, Severino-Freire M, Mazereeuw-Hautier J, Denos C, Piard J, Vabres P, Kuentz P. Biallelic postzygotic RASA1 variants in a germline-negative patient with capillary malformation-arteriovenous malformation. Int J Dermatol 2025. [PMID: 39749805 DOI: 10.1111/ijd.17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Céline Granier Tournier
- Department of Dermatology, Reference Center for Rare Skin Diseases, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Maella Severino-Freire
- Department of Dermatology, Reference Center for Rare Skin Diseases, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Juliette Mazereeuw-Hautier
- Department of Dermatology, Reference Center for Rare Skin Diseases, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Charlene Denos
- Department of Dermatology, Reference Center for Rare Skin Diseases, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Juliette Piard
- Centre de génétique humaine, CHU Besançon, Besançon, France
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Vabres
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
- Centre de Référence des "Maladies Rares de la Peau et des Muqueuses d'origine Génétique" (MAGEC), FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, Besançon, France
| |
Collapse
|
6
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Hume E, Cossio ML, Vargas P, Cubillos MP, Maccioni A, Lay-Son G. Another face of RASA1: Report of familial germline variant in RASA1 with dysmorphic features. Am J Med Genet A 2024; 194:e63711. [PMID: 38934655 DOI: 10.1002/ajmg.a.63711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
RASopathies encompass a diverse set of disorders affecting genes that encode proteins within the RAS-MAPK pathway. RASA1 mutations are the cause of an autosomal dominant disorder called capillary malformation-arteriovenous malformation type 1 (CM-AVM1). Unlike other RASopathies, facial dysmorphism has not been described in these patients. We phenotypically delineated a large family of individuals with multifocal fast-flow capillary malformations, severe lymphatic anomalies of perinatal onset, and dysmorphic features not previously described. Sequencing studies were performed on probands and related family members, confirming the segregation of dysmorphic features in affected members of a novel heterozygous variant in RASA1 (NM_002890.3:c.2366G>A, p.(Arg789Gln)). In this work, we broaden the phenotypic spectrum of CM-AVM type 1 and propose a new RASA1 variant as likely pathogenic.
Collapse
Affiliation(s)
- Esteban Hume
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Laura Cossio
- Department of Dermatology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Vargas
- Centro de Investigación e Innovación Materno Fetal, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Cubillos
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| | - Andrea Maccioni
- Servicio de Neonatología, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
- Departamento de Neonatología, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Lay-Son
- Sección de Genética y Errores Congénitos del Metabolismo, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Genética, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| |
Collapse
|
8
|
Josephs S, Martin L, Josephs T, Hovsepian D. What the Interventional Radiologist Needs to Know about the Genetics of Vascular Anomalies. Semin Intervent Radiol 2024; 41:350-362. [PMID: 39524236 PMCID: PMC11543101 DOI: 10.1055/s-0044-1791204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The purpose of this article is to familiarize the reader with the basic genetics and vascular biology behind the array of vascular anomalies they may encounter in their practice. Individuals with vascular malformations are often referred to multidisciplinary clinics composed of diverse specialists all with the same goal: how to provide the best care possible. The team is typically composed of physicians, nurses, social workers, and technical staff from multiple specialties including diagnostic and interventional radiology, dermatology, hematology/oncology, otolaryngology, plastic surgery, and several additional subspecialties. Imaging plays a crucial role in diagnosis and treatment planning, but increasingly biopsies are needed for more accurate histopathological and genetic information to inform the plan of treatment, as well as for counseling patients and their families on the natural history, heritability, and long-term prognosis of the condition. Understanding the molecular mechanism that gives rise to vascular anomalies is crucial for arriving at the proper diagnosis and choosing among treatment options. As oncological medications are being increasingly repurposed to treat vascular malformations, it is vital for those caring for patients with vascular anomalies to understand how these anomalies develop, and which drug may be appropriate to repurpose for this benign disease.
Collapse
Affiliation(s)
- Shellie Josephs
- Department of Radiology, Texas Children's Hospital North Austin, Austin, Texas
| | - Lynne Martin
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | | | - David Hovsepian
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
9
|
Alpaslan M, Fastré E, Mestre S, van Haeringen A, Repetto GM, Keymolen K, Boon LM, Belva F, Giacalone G, Revencu N, Sznajer Y, Riches K, Keeley V, Mansour S, Gordon K, Martin-Almedina S, Dobbins S, Ostergaard P, Quere I, Brouillard P, Vikkula M. Pathogenic variants in HGF give rise to childhood-to-late onset primary lymphoedema by loss of function. Hum Mol Genet 2024; 33:1250-1261. [PMID: 38676400 PMCID: PMC11227619 DOI: 10.1093/hmg/ddae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available. Thirty-two genes or loci have been linked to PL, and another 22 are suggested, including Hepatocyte Growth Factor (HGF). We searched for HGF variants in 770 index patients from the Brussels PL cohort. We identified ten variants predicted to cause HGF loss-of-function (six nonsense, two frameshifts, and two splice-site changes; 1.3% of our cohort), and 14 missense variants predicted to be pathogenic in 17 families (2.21%). We studied co-segregation within families, mRNA stability for non-sense variants, and in vitro functional effects of the missense variants. Analyses of the mRNA of patient cells revealed degradation of the nonsense mutant allele. Reduced protein secretion was detected for nine of the 14 missense variants expressed in COS-7 cells. Stimulation of lymphatic endothelial cells with these 14 HGF variant proteins resulted in decreased activation of the downstream targets AKT and ERK1/2 for three of them. Clinically, HGF-associated PL was diverse, but predominantly bilateral in the lower limbs with onset varying from early childhood to adulthood. Finally, aggregation study in a second independent cohort underscored that rare likely pathogenic variants in HGF explain about 2% of PL. Therefore, HGF signalling seems crucial for lymphatic development and/or maintenance in human beings and HGF should be included in diagnostic genetic screens for PL.
Collapse
Affiliation(s)
- Murat Alpaslan
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Elodie Fastré
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Sandrine Mestre
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Arie van Haeringen
- Leiden University Medical Center, Albinusdreef 2, Leiden 2333, the Netherlands
| | - Gabriela M Repetto
- Clinica Alemana Universidad del Desarrollo, Av Plaza 680, Las Condes, Lo Barnechea, Región Metropolitana 7710167, Chile
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels 1090, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Florence Belva
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Guido Giacalone
- Department of Lymphatic Surgery, AZ Sint-Maarten Hospital, VASCERN PPL European Reference Centre, Liersesteenweg 435, Mechelen 2800, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Katie Riches
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
| | - Vaughan Keeley
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Rd, Derby DE22 3NE, United Kingdom
- University of Nottingham Medical School, Nottingham, East Block, Lenton, Nottingham NG7 2UH, United Kingdom
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities Hospitals NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Silvia Martin-Almedina
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, Blackshaw Rd, London SW17 0QT, United Kingdom
| | - Isabelle Quere
- Department of vascular medicine, Hospital Saint-Eloi, University Hospital of Montpellier, Avenue Augustin Fliche 80, Montpellier 34090, France
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74, Brussels 1200, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, Wavre 1300, Belgium
| |
Collapse
|
10
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
11
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lin PK, Sun Z, Davis GE. Defining the Functional Influence of Endothelial Cell-Expressed Oncogenic Activating Mutations on Vascular Morphogenesis and Capillary Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:574-598. [PMID: 37838010 PMCID: PMC10988768 DOI: 10.1016/j.ajpath.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/16/2023]
Abstract
This study sought to define key molecules and signals controlling major steps in vascular morphogenesis, and how these signals regulate pericyte recruitment and pericyte-induced basement membrane deposition. The morphogenic impact of endothelial cell (EC) expression of activating mutants of Kirsten rat sarcoma virus (kRas), mitogen-activated protein kinase 1 (Mek1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), Akt serine/threonine kinase 1 (Akt1), Ras homolog enriched in brain (Rheb) Janus kinase 2 (Jak2), or signal transducer and activator of transcription 3 (Stat3) expression versus controls was evaluated, along with EC signaling events, pharmacologic inhibitor assays, and siRNA suppression experiments. Primary stimulators of EC lumen formation included kRas, Akt1, and Mek1, whereas PIK3CA and Akt1 stimulated a specialized type of cystic lumen formation. In contrast, the key drivers of EC sprouting behavior were Jak2, Stat3, Mek1, PIK3CA, and mammalian target of rapamycin (mTor). These conclusions are further supported by pharmacologic inhibitor and siRNA suppression experiments. EC expression of active Akt1, kRas, and PIK3CA led to markedly dysregulated lumen formation coupled to strongly inhibited pericyte recruitment and basement membrane deposition. For example, activated Akt1 expression in ECs excessively stimulated lumen formation, decreased EC sprouting behavior, and showed minimal pericyte recruitment with reduced mRNA expression of platelet-derived growth factor-BB, platelet-derived growth factor-DD, and endothelin-1, critical EC-derived factors known to stimulate pericyte invasion. The study identified key signals controlling fundamental steps in capillary morphogenesis and maturation and provided mechanistic details on why EC activating mutations induced a capillary deficiency state with abnormal lumens, impaired pericyte recruitment, and basement deposition: predisposing stimuli for the development of vascular malformations.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
13
|
Woodis KM, Garlisi Torales LD, Wolf A, Britt A, Sheppard SE. Updates in Genetic Testing for Head and Neck Vascular Anomalies. Oral Maxillofac Surg Clin North Am 2024; 36:1-17. [PMID: 37867039 PMCID: PMC11092895 DOI: 10.1016/j.coms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.
Collapse
Affiliation(s)
- Kristina M Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Alejandro Wolf
- Department of Pathology and ARUP Laboratories, University of Utah, 2000 Circle of Hope, Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA.
| |
Collapse
|
14
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nat Commun 2023; 14:7452. [PMID: 37978175 PMCID: PMC10656524 DOI: 10.1038/s41467-023-43062-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.
Collapse
Affiliation(s)
- Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Martijn A van der Ent
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Prendergast
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
- Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Le Thi Hao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Myron Rolle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Po-Ying Fu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yung-Chun Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Paulina Piwowarczyk
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie Pricola Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Quentin J Moyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Hale
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Stapleton
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mark R Proctor
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Greysson-Wong J, Rode R, Ryu JR, Chan JL, Davari P, Rinker KD, Childs SJ. rasa1-related arteriovenous malformation is driven by aberrant venous signalling. Development 2023; 150:dev201820. [PMID: 37708300 DOI: 10.1242/dev.201820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Arteriovenous malformations (AVMs) develop where abnormal endothelial signalling allows direct connections between arteries and veins. Mutations in RASA1, a Ras GTPase activating protein, lead to AVMs in humans and, as we show, in zebrafish rasa1 mutants. rasa1 mutants develop cavernous AVMs that subsume part of the dorsal aorta and multiple veins in the caudal venous plexus (CVP) - a venous vascular bed. The AVMs progressively enlarge and fill with slow-flowing blood. We show that the AVM results in both higher minimum and maximum flow velocities, resulting in increased pulsatility in the aorta and decreased pulsatility in the vein. These hemodynamic changes correlate with reduced expression of the flow-responsive transcription factor klf2a. Remodelling of the CVP is impaired with an excess of intraluminal pillars, which is a sign of incomplete intussusceptive angiogenesis. Mechanistically, we show that the AVM arises from ectopic activation of MEK/ERK in the vein of rasa1 mutants, and that cell size is also increased in the vein. Blocking MEK/ERK signalling prevents AVM initiation in mutants. Alterations in venous MEK/ERK therefore drive the initiation of rasa1 AVMs.
Collapse
Affiliation(s)
- Jasper Greysson-Wong
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rachael Rode
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jo Li Chan
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paniz Davari
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Kristina D Rinker
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 University Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Clapp A, Shawber CJ, Wu JK. Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e069. [PMID: 37662560 PMCID: PMC10473035 DOI: 10.1097/jova.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
Background Slow-flow vascular malformations include venous, lymphatic, and lymphaticovenous malformations. Recent studies have linked genetic variants hyperactivating either the PI3K/AKT/mTOR and/or RAS/RAF/MAPK signaling pathways with slow-flow vascular malformation development, leading to the use of pharmacotherapies such as sirolimus and alpelisib. It is important that clinicians understand basic and translational research advances in slow-flow vascular malformations. Methods A literature review of basic science publications in slow-flow vascular malformations was performed on Pubmed, using search terms "venous malformation," "lymphatic malformation," "lymphaticovenous malformation," "genetic variant," "genetic mutation," "endothelial cells," and "animal model." Relevant publications were reviewed and summarized. Results The study of patient tissues and the use of primary pathogenic endothelial cells from vascular malformations shed light on their pathological behaviors, such as endothelial cell hyperproliferation and disruptions in vessel architecture. The use of xenograft and transgenic animal models confirmed the pathogenicity of genetic variants and allowed for preclinical testing of potential therapies. These discoveries underscore the importance of basic and translational research in understanding the pathophysiology of vascular malformations, which will allow for the development of improved biologically targeted treatments. Conclusion Despite basic and translation advances, a cure for slow-flow vascular malformations remains elusive. Many questions remain unanswered, including how genotype variants result in phenotypes, and genotype-phenotype heterogeneity. Continued research into venous and lymphatic malformation pathobiology is critical in understanding the mechanisms by which genetic variants contribute to vascular malformation phenotypic features.
Collapse
Affiliation(s)
- Averill Clapp
- Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - June K. Wu
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
17
|
Weinberger M, Ikeda DS, Belverud S, Cho A, Grice G, Willis M, Ravindra VM. Large saccular intracranial aneurysm in a child with RASA1-associated capillary malformation-arteriovenous malformation syndrome: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23362. [PMID: 37728320 PMCID: PMC10555554 DOI: 10.3171/case23362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Large cerebral aneurysms are much less common in children than in adults. Thus, when present, these lesions require careful surgical evaluation and comprehensive genetic testing. RASA1-associated capillary malformation-arteriovenous malformation (RASA1-CM-AVM) syndrome is a rare disorder of angiogenic remodeling known to cause port-wine stains and arteriovenous fistulas but not previously associated with pediatric aneurysms. OBSERVATIONS The authors report the case of a previously healthy 6-year-old boy who presented with seizure-like activity. Imaging demonstrated a lesion in the right ambient cistern with compression of the temporal lobe. Imaging characteristics were suggestive of a thrombosed aneurysm versus an epidermoid cyst. The patient underwent craniotomy, revealing a large saccular aneurysm, and clip ligation and excision were performed. Postoperative genetic analysis revealed a RASA1-CM-AVM syndrome. LESSONS This is a rare case of a RASA1-associated pediatric cerebral aneurysm in the neurosurgical literature. This unique case highlights the need for maintaining a broad differential diagnosis as well as the utility of genetic testing for detecting underlying genetic syndromes in young children presenting with cerebral aneurysms.
Collapse
Affiliation(s)
- Marina Weinberger
- 1Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Daniel S Ikeda
- 2Department of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | | | - Mary Willis
- 6Pediatrics, Naval Medical Center San Diego, San Diego, California
| | - Vijay M Ravindra
- Departments of3Neurosurgery
- 7Department of Neurosurgery, University of California San Diego, San Diego, California
- 8Division of Pediatric Neurosurgery, Rady Children's Hospital, San Diego, California; and
- 9Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Rodríguez RG, Agyemang K, Arias SAM, Cearns MD, Chaddad-Neto F. Importance of Arachnoid Dissection in Arteriovenous Malformation Microsurgery: A Technical Note. World Neurosurg 2023; 173:12. [PMID: 36775233 DOI: 10.1016/j.wneu.2023.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Intracranial arteriovenous malformations (AVMs) are congenital anomalies where arteries and veins connect without a capillary bed. AVMs are the leading cause of nontraumatic intracerebral hemorrhages in people younger than 35 years old.1 The leptomeninges (arachnoid and pia) form from the meninx primitiva.2,3 Endothelial channels produce a vascular plexus in the meninx connected by primitive arachnoid. Remodeling of the plexus in response to changing metabolic demands results in a recognizable pattern of arteries and veins.2,3 Defects at the level of capillaries during arteriovenous specification are most likely responsible for arteriovenous fistula formation.4-6 Interplay between the congenital dysfunction and flow-related maturation in adulthood, when vasculogenesis has stopped, produces the AVM.6,7 The relationship between the primitive arachnoid and aberrant AVM vessels is preserved and forms the basis of microsurgical disconnection discussed in Video 1. Several authors have described dissecting these natural planes to delineate the abnormal AVM vessels, relax the brain, and avoid morbidity during AVM surgery.8-10 We recommend sharp arachnoid dissection with a scalpel or microscissors, occasionally helped by blunt dissection with patties or bipolar forceps. We present a 2-dimensional video of the microsurgical resection of a right parietal AVM. The patient, a healthy 30-year-old female, presented with intermittent headaches and mild impairment of arithmetic and visuospatial ability. Magnetic resonance imaging and digital subtraction angiography showed a compact 3.5-cm supramarginal gyrus AVM supplied by the middle cerebral artery, with superficial drainage. Complete microsurgical resection was performed without morbidity. We demonstrate the principles of arachnoid dissection requisite to disentanglement of the nidus and safe resection of the AVM.
Collapse
Affiliation(s)
- Rony Gómez Rodríguez
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo-SP, Brazil
| | - Kevin Agyemang
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo-SP, Brazil; School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael D Cearns
- Hospital Beneficência Portuguesa de São Paulo, São Paulo-SP, Brazil
| | - Feres Chaddad-Neto
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo-SP, Brazil; Hospital Beneficência Portuguesa de São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
19
|
Cao Y, Evenson MJ, Corliss MM, Schroeder MC, Heusel JW, Neidich JA. Co-existence of 2 clinically significant variants causing disorders of somatic mosaicism. GENETICS IN MEDICINE OPEN 2023; 1:100807. [PMID: 39669237 PMCID: PMC11613713 DOI: 10.1016/j.gimo.2023.100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 12/14/2024]
Abstract
Purpose Disorders of somatic mosaicism (DoSM) are a heterogeneous group of conditions caused by postzygotic variants in genes within the PI3K/AKT/mTOR and RAS/MAPK signaling pathway. The co-existence of 2 activating variants in this disease group is extremely rare. Methods A deep sequencing next-generation sequencing assay for the molecular diagnosis of DoSM was run on 936 individuals with DoSM. Results A single pathogenic or likely pathogenic (P/LP) variant was identified in 584 of 617 (94.8%) positive cases; 33 of 617 (5.2%) cases carried 2 P/LP variants. Of these 33 cases, 22 carried 2 P/LP variants in the same gene, including 8 associated with a loss-of-function disease mechanism and 14 associated with a gain-of-function disease mechanism. Eleven cases had P/LP variants in 2 different genes, including PIKC3A variants in 7 cases and 4 cases with 2 P/LP variants in non-PIK3CA genes. Conclusion To our knowledge, this is the largest cohort with the co-existence of 2 P/LP somatic variants causing DoSM. The study of the co-existence of 2 clinically significant variants in DoSM requires unique considerations regarding variant allelic fractions, the combination of variants, affected tissue types, and the severity of the disease. Investigations into this unique cohort may further our understanding of the disease mechanism and potential therapeutic options.
Collapse
Affiliation(s)
- Yang Cao
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Michael J. Evenson
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Meagan M. Corliss
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Molly C. Schroeder
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jonathan W. Heusel
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Julie A. Neidich
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Le HT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532837. [PMID: 36993588 PMCID: PMC10055230 DOI: 10.1101/2023.03.18.532837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.
Collapse
|
21
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
22
|
Chen D, Van der Ent MA, Lartey NL, King PD. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Pharmaceuticals (Basel) 2023; 16:165. [PMID: 37259315 PMCID: PMC9959185 DOI: 10.3390/ph16020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 08/26/2023] Open
Abstract
Ephrin receptors constitute a large family of receptor tyrosine kinases in mammals that through interaction with cell surface-anchored ephrin ligands regulate multiple different cellular responses in numerous cell types and tissues. In the cardiovascular system, studies performed in vitro and in vivo have pointed to a critical role for Ephrin receptor B4 (EPHB4) as a regulator of blood and lymphatic vascular development and function. However, in this role, EPHB4 appears to act not as a classical growth factor receptor but instead functions to dampen the activation of the Ras-mitogen activated protein signaling (MAPK) pathway induced by other growth factor receptors in endothelial cells (EC). To inhibit the Ras-MAPK pathway, EPHB4 interacts functionally with Ras p21 protein activator 1 (RASA1) also known as p120 Ras GTPase-activating protein. Here, we review the evidence for an inhibitory role for an EPHB4-RASA1 interface in EC. We further discuss the mechanisms by which loss of EPHB4-RASA1 signaling in EC leads to blood and lymphatic vascular abnormalities in mice and the implications of these findings for an understanding of the pathogenesis of vascular anomalies in humans caused by mutations in EPHB4 and RASA1 genes. Last, we provide insights into possible means of drug therapy for EPHB4- and RASA1-related vascular anomalies.
Collapse
Affiliation(s)
| | | | | | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Hongo H, Miyawaki S, Teranishi Y, Mitsui J, Katoh H, Komura D, Tsubota K, Matsukawa T, Watanabe M, Kurita M, Yoshimura J, Dofuku S, Ohara K, Ishigami D, Okano A, Kato M, Hakuno F, Takahashi A, Kunita A, Ishiura H, Shin M, Nakatomi H, Nagao T, Goto H, Takahashi SI, Ushiku T, Ishikawa S, Okazaki M, Morishita S, Tsuji S, Saito N. Somatic GJA4 gain-of-function mutation in orbital cavernous venous malformations. Angiogenesis 2023; 26:37-52. [PMID: 35902510 PMCID: PMC9908695 DOI: 10.1007/s10456-022-09846-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.
Collapse
Affiliation(s)
- Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masakazu Kurita
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoi Kato
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
24
|
The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012199. [PMID: 36293054 PMCID: PMC9603778 DOI: 10.3390/ijms232012199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.
Collapse
|
25
|
A human model of arteriovenous malformation (AVM)-on-a-chip reproduces key disease hallmarks and enables drug testing in perfused human vessel networks. Biomaterials 2022; 288:121729. [PMID: 35999080 PMCID: PMC9972357 DOI: 10.1016/j.biomaterials.2022.121729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 02/09/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene. Our goal was to develop an in vitro model that would allow for simultaneous morphological and functional phenotypic data capture in real time during AVM disease progression. By generating human endothelial cells harboring a clinically relevant mutation found in most human patients (activating mutations within the small GTPase KRAS) and seeding them in a dynamic microfluidic cell culture system that enables vessel formation and perfusion, we demonstrate that vessels formed by KRAS4AG12V mutant endothelial cells (ECs) were significantly wider and more leaky than vascular beds formed by wild-type ECs, recapitulating key structural and functional hallmarks of human AVM pathogenesis. Immunofluorescence staining revealed a breakdown of adherens junctions in mutant KRAS vessels, leading to increased vascular permeability, a hallmark of hemorrhagic stroke. Finally, pharmacological blockade of MEK kinase activity, but not PI3K inhibition, improved endothelial barrier function (decreased permeability) without affecting vessel diameter. Collectively, our studies describe the creation of human KRAS-dependent AVM-like vessels in vitro in a self-assembling microvessel platform that is amenable to phenotypic observation and drug delivery.
Collapse
|
26
|
Geng X, Srinivasan RS. Molecular Mechanisms Driving Lymphedema and Other Lymphatic Anomalies. Cold Spring Harb Perspect Med 2022; 12:a041272. [PMID: 35817543 PMCID: PMC9341459 DOI: 10.1101/cshperspect.a041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphatic vasculature regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood. Lymphatic vasculature is also critical for lipid absorption and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels, lymphatic valves, and lymphovenous valves. Defects in any of these structures could lead to lymphatic anomalies such as lymphedema, cystic lymphatic malformation, and Gorham-Stout disease. Basic research has led to a deeper understanding of the stepwise development of the lymphatic vasculature. VEGF-C and shear stress signaling pathways have evolved as critical regulators of lymphatic vascular development. Loss-of-function and gain-of-function mutations in genes that are involved in these signaling pathways are associated with lymphatic anomalies. Importantly, drugs that target these molecules are showing outstanding efficacy in treating certain lymphatic anomalies. In this article, we summarize these exciting developments and highlight the future challenges.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, USA
| |
Collapse
|
27
|
Guimaraes MJ, Gomes J, Lopes G, Caldas R, Brito C. Capillary malformation-arteriovenous malformation syndrome associated with basilar artery aneurysm. Pediatr Dermatol 2022; 39:662-663. [PMID: 35503512 DOI: 10.1111/pde.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
A 23-day-old boy with prenatal diagnosis of basilar artery aneurysm presented with multiple congenital red patches consistent with capillary malformations. Genetic testing confirmed the presence of a heterozygous pathogenic variant of the RASA1 gene, confirming the diagnosis of capillary malformation-arteriovenous malformation (CM-AVM) syndrome. This case illustrates an atypical presentation of the RASA1 associated CM-AVM syndrome, with the intracranial vascular malformation diagnosis preceding the identification of the skin lesions. Arterial aneurysms have been associated with CM-AVM syndrome in rare instances but to our knowledge this is the first reported case of an aneurysm of the basilar artery.
Collapse
Affiliation(s)
| | - Joana Gomes
- Department of Dermatology and Venereology, Hospital de Braga, Braga, Portugal
| | - Gabriela Lopes
- Department of Dermatology and Venereology, Hospital de Braga, Braga, Portugal
| | - Regina Caldas
- Department of Dermatology and Venereology, Hospital de Braga, Braga, Portugal
| | - Celeste Brito
- Department of Dermatology and Venereology, Hospital de Braga, Braga, Portugal
| |
Collapse
|
28
|
Brix ATH, Tørring PM, Bygum A. Capillary Malformation-arteriovenous Malformation Type 2: A Case Report and Review. Acta Derm Venereol 2022; 102:adv00662. [PMID: 35088870 PMCID: PMC9558756 DOI: 10.2340/actadv.v102.1126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Capillary malformation-arteriovenous malformation syndrome is a rare genodermatosis with cutaneous capillary malformations and a risk of associated fast-flow malformations. We describe here a four-generation family with a novel heterozygous pathogenic variant in the EPHB4 gene (NM_004444.5 (EPHB4): c.2224G>C, p.(Ala742Pro)). A review of the literature retrieved 127 patients with capillary malformation-arteriovenous malformation syndrome and confirmed variants in EPHB4. Multiple capillary malformations were present in 114 (89.76%) patients, and 12 (9.44%) patients had a solitary capillary malformation. Arteriovenous malformations/fistulas were present in 23 (18.1%) patients, and were located within the central nervous system in 5 (3.9%) patients. Not all papers included description of epistaxis. Telangiectasias were reported in 28 (22%) patients, and Bier spots were described in 20 (15.7%) patients. The clinical characteristics of capillary malformation-arteriovenous malformation syndrome are diverse and often discrete, which can make it difficult to distinguish capillary malformationarteriovenous malformation syndrome from hereditary haemorrhagic telangiectasia.
Collapse
Affiliation(s)
- Anna Trier Heiberg Brix
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløwsvej 19, 3, DK-5000 Odense, Denmark.
| | | | | |
Collapse
|
29
|
Wang K, Zhao S, Xie Z, Zhang M, Zhao H, Cheng X, Zhang Y, Niu Y, Liu J, Zhang TJ, Zhang Y, Wu Z, Chu J, Yang X, Wu N. Exome-wide Analysis of De Novo and Rare Genetic Variants in Patients With Brain Arteriovenous Malformation. Neurology 2022; 98:e1670-e1678. [PMID: 35228337 DOI: 10.1212/wnl.0000000000200114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Brain arteriovenous malformation (bAVM) is a congenital disorder and a leading cause of hemorrhagic stroke. Germline genetic variants play an essential role in the pathogenesis of brain arteriovenous malformation. However, the biological relevance of the disease-associated genes identified in previous studies is elusive. In this study, we aim to systematically investigate the contribution of germline variants to bAVM and explore the critical molecular pathways underlying the pathogenesis of bAVM. METHODS Probands with sporadic bAVM were consecutively recruited into this study from November 2015 to November 2018 and underwent exome sequencing. The controls were aggregated from individuals who were not known to have vascular malformation and underwent exome sequencing for clinical or research purposes. The retained control dataset included 4609 individuals, including 251 individuals with parental samples sequenced. We firstly compared de novo variants in cases and controls and performed a pathway enrichment analysis. A gene-based rare variant association analysis was then performed to identify genes whose variants were significantly enriched in cases. RESULTS We collected an exome-sequenced bAVM cohort consisting of 152 trios and 40 singletons. By firstly focusing on de novo variants, we observed a significant mutational burden of de novo likely gene-disrupting variants in cases versus controls. By performing a pathway enrichment analysis of all nonsynonymous de novo variants identified in cases, we found the angiopoietin-like protein 8 (ANGPTL8) regulatory pathway to be significantly enriched in patients with bAVM. Through an exome-wide rare variant association analysis utilizing 4394 in-house exome data as controls, we identified SLC19A3 as a disease-associated gene for bAVM. In addition, we found that the SLC19A3 variants in cases are preferably located at the N' side of the SLC19A3 protein. These findings implicate a phenotypic extension of SLC19A3-related disorders with a domain-specific effect. DISCUSSION This study provides insights into the biological basis of bAVM by identifying novel molecular pathways and candidate genes.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Sen Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Zhixin Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hengqiang Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Xi Cheng
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Terry Jianguo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Nan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
30
|
Klostranec JM, Krings T. Cerebral neurovascular embryology, anatomic variations, and congenital brain arteriovenous lesions. J Neurointerv Surg 2022; 14:910-919. [PMID: 35169032 DOI: 10.1136/neurintsurg-2021-018607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cerebral neurovascular development is a complex and coordinated process driven by the changing spatial and temporal metabolic demands of the developing brain. Familiarity with the process is helpful in understanding neurovascular anatomic variants and congenital arteriovenous shunting lesions encountered in endovascular neuroradiological practice. Herein, the processes of vasculogenesis and angiogenesis are reviewed, followed by examination of the morphogenesis of the cerebral arterial and venous systems. Common arterial anatomic variants are reviewed with an emphasis on their development. Finally, endothelial genetic mutations affecting angiogenesis are examined to consider their probable role in the development of three types of congenital brain arteriovenous fistulas: vein of Galen malformations, pial arteriovenous fistulas, and dural sinus malformations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- Department of Neuroradiology, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada .,McGill University Health Centre, Montreal, Quebec, Canada
| | - Timo Krings
- Division of Neuroradiology, Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Sun Z, Kemp SS, Lin PK, Aguera KN, Davis GE. Endothelial k-RasV12 Expression Induces Capillary Deficiency Attributable to Marked Tube Network Expansion Coupled to Reduced Pericytes and Basement Membranes. Arterioscler Thromb Vasc Biol 2022; 42:205-222. [PMID: 34879709 PMCID: PMC8792373 DOI: 10.1161/atvbaha.121.316798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We sought to determine how endothelial cell (EC) expression of the activating k-Ras (kirsten rat sarcoma 2 viral oncogene homolog) mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src (Src proto-oncogene, non-receptor tyrosine kinase), Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal-related kinase), and Akt (AK strain transforming) activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. CONCLUSIONS Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.
Collapse
Affiliation(s)
- Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Scott S. Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Kalia N. Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
32
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
33
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
El Amm C, Silva-Palacios F, Geng X, Srinivasan RS. Lymphatic vascular anomalies and dysfunction. THE VASCULOME 2022:301-310. [DOI: 10.1016/b978-0-12-822546-2.00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
35
|
Arteriovenous Malformations and Other Vascular Anomalies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Maurus K, Kosnopfel C, Kneitz H, Appenzeller S, Schrama D, Glutsch V, Roth S, Gerhard-Hartmann E, Rosenfeldt M, Möhrmann L, Fröhlich M, Hübschmann D, Stenzinger A, Glimm H, Fröhling S, Goebeler M, Rosenwald A, Kutzner H, Schilling B. Cutaneous epithelioid hemangiomas show somatic mutations in the MAPK pathway. Br J Dermatol 2021; 186:553-563. [PMID: 34726260 DOI: 10.1111/bjd.20869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Epithelioid hemangioma (EH) arising from the skin is a benign vascular tumor with marked inflammatory cell infiltration, which exhibits a high tendency to persist and frequently recurs after resection. So far, the underlying pathogenesis is largely elusive. OBJECTIVES To identify genetic alterations by next-generation-sequencing and/or droplet digital PCR (ddPCR) in cutaneous EH. METHODS DNA and RNA from an EH lesion of an index patient were subjected to whole genome and RNA sequencing. Multiplex PCR-based panel sequencing of genomic DNA isolated from archival formalin-fixed paraffin-embedded (FFPE) tissue of 18 cutaneous EH patients was performed. ddPCR was used to confirm mutations. RESULTS We identified somatic mutations in genes of the MAPK pathway (MAP2K1 and KRAS) in cutaneous EH biopsies. By ddPCR we could confirm the recurrent presence of activating, low-frequency mutations affecting MAP2K1. In total, 9 out of 18 analyzed patients showed activating MAPK pathway mutations, which were mutually exclusive. Comparative analysis of tissue areas enriched for lymphatic infiltrate or aberrant endothelial cells, respectively, revealed an association of these mutations with the presence of endothelial cells. CONCLUSIONS Taken together, our data suggest that EH shows somatic mutations in genes of the MAPK pathway which might contribute to the formation of this benign tumor.
Collapse
Affiliation(s)
- K Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - C Kosnopfel
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - H Kneitz
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - S Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - D Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - V Glutsch
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - S Roth
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - M Rosenfeldt
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - L Möhrmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - M Fröhlich
- Computational Oncology Group, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Hübschmann
- Computational Oncology Group, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - H Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), Dresden, Germany
- Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Fröhling
- German Cancer Consortium (DKTK), Dresden, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - A Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - H Kutzner
- Dermatopathology, Friedrichshafen, Germany
| | - B Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Longo JF, Carroll SL. The RASopathies: Biology, genetics and therapeutic options. Adv Cancer Res 2021; 153:305-341. [PMID: 35101235 DOI: 10.1016/bs.acr.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
38
|
Haefliger S, Adams S, Nandakumar A, Nguyen L, Wargon O. CM-AVM syndrome - A prospective observational study of unrelated paediatric cases. Australas J Dermatol 2021; 62:347-353. [PMID: 34170521 DOI: 10.1111/ajd.13651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The main objective of this study is to describe the clinical spectrum of CM-AVM syndrome as well as radiological and genetic findings. METHODS This is a single-centre prospective observational study performed at Sydney Children's Hospital. Patients under the age of 18 years that presented to our paediatric dermatology clinic or vascular birthmark clinic between January 2015 and September 2020 with one or more geometric shaped pink/ red/ brown macule with a peripheral pallor characteristic of a high-flow vascular stain were included. Children subsequently diagnosed with other diagnosis or family members with CM-AVM syndrome were excluded. RESULTS Sixty children were included, with two subsequently excluded. A third of patients (n = 22, 38%) presented with a single characteristic HFVS, whereas the remaining two thirds (n = 36; 62%) had multiple HFVS. In children with multiple HFVS, one notably larger HFVS was detected in the majority of children (n = 32, 88%). In 33 patients, a brain and spine MRI was performed, which detected a spine AVM in one symptomatic patient with sensorimotor deficits. No cerebral AVM or AVF was picked up in the cohort. A RASA 1 result was available for evaluation in 24, of which 16 (67%) were positive. An EPHB4 result was available in eight, two (25%) of which were positive. CONCLUSIONS One large HFVS often accompanied by multiple small HFVS can be seen in most patients. Despite of the lack of genetic confirmation of diagnosis in single lesions, this phenotype might be of interest and warrants further investigation.
Collapse
Affiliation(s)
- Stefanie Haefliger
- Department of Pediatric Dermatology, Sydney Children's Hospital, Randwick, New South Wales, Australia.,Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Susan Adams
- Department of Pediatric Surgery, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Archana Nandakumar
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Linh Nguyen
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Orli Wargon
- Department of Pediatric Surgery, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The use of genetic models has facilitated the study of the origins and mechanisms of vascular disease. Mouse models have been developed to specifically target endothelial cell populations, with the goal of pinpointing when and where causative mutations wreck their devastating effects. Together, these approaches have propelled the development of therapies by providing an in-vivo platform to evaluate diagnoses and treatment options. This review summarizes the most widely used mouse models that have facilitated the study of vascular disease, with a focus on mouse models of vascular malformations and the road ahead. RECENT FINDINGS Over the past 3 decades, the vascular biology scientific community has been steadily generating a powerful toolkit of useful mouse lines that can be used to tightly regulate gene ablation, or to express transgenic genes, in the murine endothelium. Some of these models inducibly (constitutively) alter gene expression across all endothelial cells, or within distinct subsets, by expressing either Cre recombinase (or inducible versions such as CreERT), or the tetracycline controlled transactivator protein tTA (or rtTA). This now relatively standard technology has been used to gain cutting edge insights into vascular disorders, by allowing in-vivo modeling of key molecular pathways identified as dysregulated across the vast spectrum of vascular anomalies, malformations and dysplasias. However, as sequencing of human patient samples expands, the number of interesting candidate molecular culprits keeps increasing. Consequently, there is now a pressing need to create new genetic mouse models to test hypotheses and to query mechanisms underlying vascular disease. SUMMARY The current review assesses the collection of mouse driver lines that have been instrumental is identifying genes required for blood vessel formation, remodeling, maintenance/quiescence and disease. In addition, the usefulness of these driver lines is underscored here by cataloguing mouse lines developed to experimentally assess the role of key candidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
Collapse
Affiliation(s)
- Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Martin-Almedina S, Ogmen K, Sackey E, Grigoriadis D, Karapouliou C, Nadarajah N, Ebbing C, Lord J, Mellis R, Kortuem F, Dinulos MB, Polun C, Bale S, Atton G, Robinson A, Reigstad H, Houge G, von der Wense A, Becker WH, Jeffery S, Mortimer PS, Gordon K, Josephs KS, Robart S, Kilby MD, Vallee S, Gorski JL, Hempel M, Berland S, Mansour S, Ostergaard P. Janus-faced EPHB4-associated disorders: novel pathogenic variants and unreported intrafamilial overlapping phenotypes. Genet Med 2021; 23:1315-1324. [PMID: 33864021 PMCID: PMC8257501 DOI: 10.1038/s41436-021-01136-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. Methods Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. Results Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype–genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. Conclusion This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.
Collapse
Affiliation(s)
| | - Kazim Ogmen
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Ege Sackey
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Dionysios Grigoriadis
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Christina Karapouliou
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Noeline Nadarajah
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Cathrine Ebbing
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | | | - Rhiannon Mellis
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Fanny Kortuem
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Mary Beth Dinulos
- Departments of Pediatrics - Section of Genetics and Child Development, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Cassandra Polun
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sherri Bale
- GeneDx, 207 Perry Parkway, Gaithersburg, MD, USA
| | - Giles Atton
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Alexandra Robinson
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Hallvard Reigstad
- Neonatal intensive care unit, Children's Department, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Axel von der Wense
- Department of Neonatology and Paediatric Intensive Care, Altona Children's Hospital, Hamburg, Germany
| | | | - Steve Jeffery
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,Dermatology & Lymphovascular Medicine, St George's Universities NHS Foundation Trust, London, UK
| | - Kristiana Gordon
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,Dermatology & Lymphovascular Medicine, St George's Universities NHS Foundation Trust, London, UK
| | - Katherine S Josephs
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.,South West Thames Regional Genetics Service, St George's NHS Foundation Trust, London, UK
| | - Sarah Robart
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mark D Kilby
- The Institute of Metabolism & Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK.,West Midlands Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
| | - Stephanie Vallee
- Departments of Pediatrics - Section of Genetics and Child Development, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jerome L Gorski
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK. .,South West Thames Regional Genetics Service, St George's NHS Foundation Trust, London, UK.
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St George's University of London, London, UK.
| |
Collapse
|
41
|
Peterson K, Coffman S, Zehri A, Anzalone A, Xiang Z, Wolfe S. Somatic Mosaicism in the Pathogenesis of de novo Cerebral Arteriovenous Malformations: A Paradigm Shift Implicating the RAS-MAPK Signaling Cascade. Cerebrovasc Dis 2021; 50:231-238. [PMID: 33556951 DOI: 10.1159/000512800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are leading causes of lesional hemorrhagic stroke in both the pediatric and young adult population, with sporadic AVMs accounting for the majority of cases. Recent evidence has identified somatic mosaicism in key proximal components of the RAS-MAPK signaling cascade within endothelial cells collected from human sporadic cerebral AVMs, with early preclinical models supporting a potential causal role for these mutations in the pathogenesis of these malformations. Germline mutations that predispose to deregulation of the RAS-MAPK signaling axis have also been identified in hereditary vascular malformation syndromes, highlighting the key role of this signaling axis in global AVM development. Herein, we review the most recent genomic and preclinical evidence implicating somatic mosaicism in the RAS-MAPK signaling pathway in the pathogenesis of sporadic cerebral AVMs. Also, we review evidence for RAS-MAPK dysregulation in hereditary vascular malformation syndromes and present a hypothesis suggesting that this pathway is central for the development of both sporadic and syndrome-associated AVMs. Finally, we examine the clinical implications of these recent discoveries and highlight potential therapeutic targets within this signaling pathway.
Collapse
Affiliation(s)
- Keyan Peterson
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,
| | - Stephanie Coffman
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Aqib Zehri
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Anzalone
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhidan Xiang
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stacey Wolfe
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
42
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
43
|
Hoeger PH. Genes and phenotypes in vascular malformations. Clin Exp Dermatol 2020; 46:495-502. [PMID: 33368487 DOI: 10.1111/ced.14513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Vascular malformations (VMs) are caused by localized defects of vascular development. Most VMs are due to sporadic, postzygotic mutations, while some are the result of autosomal dominant germline mutations. Genotype-phenotype correlation is influenced by many factors. Individual genes can induce different phenotypes (pleiotropy), and similar phenotypes can be due to different genes/mutations (redundancy). The phenotypic spectrum of somatic mutations is wide, and depends on variant allele frequency, timing during embryogenesis, cell type(s) involved and type of mutation. The phenotype of germline mutations is determined by penetrance and expressivity, and is influenced by epigenetic factors (DNA methylation, histone modification) or 'second-hit' somatic mutations. Except for disorders with pathognomonic phenotypes such as Proteus syndrome or a characteristic constellation of symptoms such as CLOVES [congenital lipomatous (fatty) overgrowth, vascular malformations, epidermal naevi and scoliosis/skeletal/spinal anomalies] or PIK3CA-related overgrowth spectrum syndrome, differential diagnosis of VM is therefore difficult. It will be greatly facilitated with increasing analytic sensitivity of sequencing techniques such as next-generation sequencing. High-sensitivity molecular techniques are a prerequisite for targeted pharmacotherapy, i.e. selective therapeutic inhibition of activating mutations underlying VM, which has shown promising results in preliminary studies.
Collapse
Affiliation(s)
- P H Hoeger
- Department of Paediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| |
Collapse
|
44
|
Rujiwetpongstorn R, Phowthongkum P, Panchaprateep R. Multiple lentigines in RASA1-associated capillary malformation-arteriovenous malformation syndrome. JAAD Case Rep 2020; 7:47-49. [PMID: 33319004 PMCID: PMC7727297 DOI: 10.1016/j.jdcr.2020.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Rujira Rujiwetpongstorn
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Phowthongkum
- Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ratchathorn Panchaprateep
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Correspondence to: Ratchathorn Panchaprateep, MD, PhD, Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathum Wan, Pathum Wan District, Bangkok 10330, Thailand.
| |
Collapse
|
45
|
Chen D, Geng X, Lapinski PE, Davis MJ, Srinivasan RS, King PD. RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice. Development 2020; 147:dev192351. [PMID: 33144395 PMCID: PMC7746672 DOI: 10.1242/dev.192351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
RASA1, a negative regulator of Ras-MAPK signaling, is essential for the development and maintenance of lymphatic vessel valves. However, whether RASA1 is required for the development and maintenance of lymphovenous valves (LVV) and venous valves (VV) is unknown. In this study, we show that induced disruption of Rasa1 in mouse embryos did not affect initial specification of LVV or central VV, but did affect their continued development. Similarly, a switch to expression of a catalytically inactive form of RASA1 resulted in impaired LVV and VV development. Blocked development of LVV was associated with accumulation of the basement membrane protein, collagen IV, in LVV-forming endothelial cells (EC), and could be partially or completely rescued by MAPK inhibitors and drugs that promote collagen IV folding. Disruption of Rasa1 in adult mice resulted in venous hypertension and impaired VV function that was associated with loss of EC from VV leaflets. In conclusion, RASA1 functions as a negative regulator of Ras signaling in EC that is necessary for EC export of collagen IV, thus permitting the development of LVV and the development and maintenance of VV.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65102, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Valdivielso-Ramos M, Martin-Santiago A, Azaña JM, Hernández-Nuñez A, Vera A, Perez B, Tercedor J, Feito M, Vicente A, Prat C, Lopez-Gutierrez JC, Garnacho G, Baselga E, Roe E, Palencia S, Cordero P, Moreno R, Agudo A, de la Cueva P, Torrelo A. Capillary malformation-arteriovenous malformation syndrome: a multicentre study. Clin Exp Dermatol 2020; 46:300-305. [PMID: 32840927 DOI: 10.1111/ced.14428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Capillary malformation-arteriovenous malformation (CM-AVM) syndrome is a rare syndrome with characteristic skin lesions that are associated with fast-flow vascular malformations (FFVMs) in one-third of patients. Few case series have been described, and none in Spain. AIM To identify the prevalence of dermatological parameters, FFVMs and associated features in a large series of patients with CM-AVM. METHODS We conducted an observational study of patients with CM-AVM syndrome diagnosed in 15 Spanish hospitals over 3 years. The main clinical, radiological, genetic findings and associated diseases were analysed. RESULTS In total, 64 patients were assessed. In 26.5% of cases, the diagnosis was incidental. In 75% of patients, there was one significantly larger macule, which we termed the 'herald patch'. FFVMs were detected in 34% of the patients, with 30% located on the skin, 7.8% in the brain and in 1.5% in the spine. There was a positive family history in 65% of the 64 patients. Genetic analysis was performed for RASA1 mutations in 57 patients, of whom 42 (73%) had a positive result. All 4 patients tested for EPHB4 mutations had a positive result. No tumour lesions were detected in the series, except for five infantile haemangiomas. CONCLUSIONS Our data on clinical lesions, associated FFVM, family history and genetics are similar to those previously published in the literature. An extensive data analysis failed to demonstrate any statistically significant association between the presence of an FFVM and any clinical, familial or genetic parameter that could predict its onset, although a link between the presence of a herald patch on the midline face and the presence of a brain FFVM was observed. We did not detect any genotype-phenotype correlation.
Collapse
Affiliation(s)
| | | | - J M Azaña
- Department of Dermatology, Hospital Albacete, Albacete, Spain
| | | | - A Vera
- Department of Dermatology, Hospital Materno-Infantil, Málaga, Spain
| | - B Perez
- Department of Dermatology, Hospital Ramón y Cajal, Madrid, Spain
| | - J Tercedor
- Department of Dermatology, Hospital Virgen de las Nieves, Granada, Spain
| | - M Feito
- Departments of, Department of, Dermatology, Hospital La Paz, Madrid, Spain
| | - A Vicente
- Department of Dermatology, Hospital San Joan de Deu, Barcelona, Spain
| | - C Prat
- Department of Dermatology, Hospital San Joan de Deu, Barcelona, Spain
| | | | - G Garnacho
- Department of Dermatology, Hospital Reina Sofia, Córdoba, Spain
| | - E Baselga
- Department of Dermatology, Hospital San Pau, Barcelona, Spain
| | - E Roe
- Department of Dermatology, Hospital San Pau, Barcelona, Spain
| | - S Palencia
- Department of Dermatology, Hospital Doce de Octubre, Madrid, Spain
| | - P Cordero
- Department of Dermatology, Hospital Universitario de Valencia, Valencia, Spain
| | - R Moreno
- Department of Dermatology, Hospital del Henares, Madrid, Spain
| | - A Agudo
- Department of Dermatology, Hospital Can Misses, Ibiza, Spain
| | - P de la Cueva
- Department of Dermatology, Hospital Infanta Leonor, Madrid, Spain
| | - A Torrelo
- Department of Dermatology, Hospital Niño Jesús, Madrid, Spain
| |
Collapse
|
47
|
Flores Daboub JA, Grimmer JF, Frigerio A, Wooderchak-Donahue W, Arnold R, Szymanski J, Longo N, Bayrak-Toydemir P. Parkes Weber syndrome associated with two somatic pathogenic variants in RASA1. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005256. [PMID: 32843429 PMCID: PMC7476407 DOI: 10.1101/mcs.a005256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022] Open
Abstract
Parkes Weber syndrome is associated with autosomal dominant inheritance, caused by germline heterozygous inactivating changes in the RASA1 gene, characterized by multiple micro arteriovenous fistulas and segmental overgrowth of soft tissue and skeletal components. The focal nature and variable expressivity associated with this disease has led to the hypothesis that somatic “second hit” inactivating changes in RASA1 are necessary for disease development. We report a 2-yr-old male with extensive capillary malformation and segmental overgrowth of his lower left extremity. Ultrasound showed subcutaneous phlebectasia draining the capillary malformation; magnetic resonance imaging showed overgrowth of the extremity with prominence of fatty tissues, fatty infiltration, and enlargement of all the major muscle groups. Germline RASA1 testing was normal. Later somatic testing from affected tissue showed two pathogenic variants in RASA1 consistent with the c.934_938del, p.(Glu312Argfs*14) and the c.2925del, p.(Asn976Metfs*20) with variant allele fractions of 3.6% and 4.2%, respectively. The intrafamilial variability of Parkes Weber syndrome involving segmental overgrowth of soft tissue, endothelium, and bone is strongly suggestive of a somatic second-hit model. There are at least two reports of confirmed second somatic hits in RASA1. To our knowledge, this is the first report of an individual with two somatic pathogenic variants in the RASA1 gene in DNA from a vascular lesion.
Collapse
Affiliation(s)
- Josue A Flores Daboub
- Division of Pediatric Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - Johanes Fred Grimmer
- Division of Ear, Nose, and Throat, University of Utah, Salt Lake City, Utah 84108, USA
| | - Alice Frigerio
- Division of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - Whitney Wooderchak-Donahue
- Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA.,ARUP Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Ryan Arnold
- Primary Children's Hospital Interventional Radiology, Salt Lake City, Utah 84113, USA
| | - Jeff Szymanski
- Department of Radiation Oncology, Washington University, St. Louis, Missouri 63130, USA
| | - Nicola Longo
- Division of Pediatric Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA.,ARUP Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| |
Collapse
|
48
|
D'Amours G, Brunel-Guitton C, Delrue MA, Dubois J, Laberge S, Soucy JF. Prenatal pleural effusions and chylothorax: An unusual presentation for CM-AVM syndrome due to RASA1. Am J Med Genet A 2020; 182:2454-2460. [PMID: 32776686 DOI: 10.1002/ajmg.a.61779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Guylaine D'Amours
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Canada
| | | | - Marie-Ange Delrue
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
| | - Josée Dubois
- Département d'Imagerie Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Canada
| | - Sophie Laberge
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
- Service de Pneumologie, CHU Sainte-Justine, Montréal, Canada
| | - Jean-François Soucy
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
49
|
Fish JE, Flores Suarez CP, Boudreau E, Herman AM, Gutierrez MC, Gustafson D, DiStefano PV, Cui M, Chen Z, De Ruiz KB, Schexnayder TS, Ward CS, Radovanovic I, Wythe JD. Somatic Gain of KRAS Function in the Endothelium Is Sufficient to Cause Vascular Malformations That Require MEK but Not PI3K Signaling. Circ Res 2020; 127:727-743. [PMID: 32552404 PMCID: PMC7447191 DOI: 10.1161/circresaha.119.316500] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. Objective: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. Methods and Results: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. Conclusions: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients.
Collapse
Affiliation(s)
- Jason E Fish
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Peter Munk Cardiac Centre (J.E.F.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Carlos Perfecto Flores Suarez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Emilie Boudreau
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Alexander M Herman
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Dakota Gustafson
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Peter V DiStefano
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Meng Cui
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Zhiqi Chen
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Karen Berman De Ruiz
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Taylor S Schexnayder
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Christopher S Ward
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Ivan Radovanovic
- Krembil Research Institute (I.R.), University Health Network, Canada.,Division of Neurosurgery, Sprott Department of Surgery (I.R.), University Health Network, Canada.,Department of Surgery (I.R.), University of Toronto, Canada
| | - Joshua D Wythe
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
50
|
Valdivielso-Ramos M, Torrelo A, Martin-Santiago A, Hernández-Nuñez A, Azaña JM, Campos M, Berenguer B, Garnacho G, Moreno R, Colmenero I. Histopathological hallmarks of cutaneous lesions of capillary malformation-arteriovenous malformation syndrome. J Eur Acad Dermatol Venereol 2020; 34:2428-2435. [PMID: 32124491 DOI: 10.1111/jdv.16326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/06/2020] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Capillary malformation-arteriovenous malformation (CM-AVM) syndrome is a recently described syndrome with distinctive cutaneous lesions. Very little is known about the histopathology of these lesions. OBJECTIVE The purpose of the study was to evaluate the histopathological characteristics of the pink macules of the CM-AVM syndrome and to investigate if these pink macules could be classified as capillary malformations or arteriovenous malformations based on their histopathological features. DESIGN-SETTINGS-PARTICIPANTS We conducted a retrospective multicenter study involving eight hospitals in Spain. Fifteen biopsies from pink macules of the CM-AVM syndrome were analysed and compared with five biopsies of diverse capillary malformations and three stage I arteriovenous malformations. RESULTS Pink macules' biopsies of the CM-AVM syndrome showed similar features including a high vascular density encompassing capillaries and numerous thick-walled arterioles mainly located in the superficial dermis, a predominance of elongated over round vessels, scarce or absent erythrocytes within the lumina and discrete perivascular inflammation. CMs were characterized by an increased number of capillary-type vessels mostly rounded and located in the upper dermis. AVMs were composed by highly increased numbers of vessels with a branching pattern involving the full thickness of the dermis, without erythrocytes within the lumina. Wilms tumour 1 protein was positive in the endothelial cells both in pink macules of the CM-AVM and in arteriovenous malformations. CONCLUSIONS AND RELEVANCE Pink macules of the CM-AVM syndrome seem to be different from capillary malformations. Our results suggest that histologically and immunohistochemically they are closer to incipient arteriovenous malformations than to capillary malformations. A deepened knowledge about the nature of these skin lesions will contribute to the better understanding of capillary malformation-arteriovenous malformation syndrome, and will open the possibility of new and more specific treatments in the future.
Collapse
Affiliation(s)
| | - A Torrelo
- Dermatology Department, Hospital Niño Jesus, Madrid, Spain
| | | | | | - J M Azaña
- Dermatology Department, Hospital Albacete, Albacete, Spain
| | - M Campos
- Dermatology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - B Berenguer
- Plastic Surgery Department, Hospital Gregorio Marañón, Madrid, Spain
| | - G Garnacho
- Dermatology Department, Hospital Reina Sofia, Córdoba, Spain
| | - R Moreno
- Dermatology Department, Hospital del Henares, Madrid, Spain
| | - I Colmenero
- Pathology Department, Hospital Niño Jesus, Madrid, Spain
| |
Collapse
|