1
|
Ilyas M, Rehman AU, Tayyab M, Nawaz Malik M, Ahmed N, Fatima H. Box-Behnken based furosemide-nanostructured lipid carriers (NLCs) delivery system for improving oral bioavailability. Drug Dev Ind Pharm 2025; 51:219-230. [PMID: 39873437 DOI: 10.1080/03639045.2025.2460062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
OBJECTIVE The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system. SIGNIFICANCE The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems. The lipophilicity of the FSM makes it favorable to partition with triglyceride-based Compritol 888 ATO and oleic acid with minimized drug expulsion, high drug payload, and sustained release over extended time frames. METHODS The Organic and aqueous phases of the microemulsion were stabilized using Tween 80, a hydrophilic surfactant. Box-Behnken design-based optimization was done using alteration in various formulation variables to obtain nano-formulation with the lowest particle size and polydispersity, maximal zeta potential and entrapment efficiency. RESULTS Design-Expert yielded several optimized formulations with the desirability function. Maximum desirability was obtained at a particle size of around 178 nm, a surface charge of -19.6 mV, and an EE of above 85%.The in vitro release profile depicted 86.5% of cumulative release after 24 h whereas, in vivo pharmacokinetic study revealed an increase in Cmax from 0.48 µg/mL (FSM-Suspension) to 0.77 µg/mL (FSM NLCs) to increase the bioavailability to approx. 241% in FSM NLCs. The half-life escalation demonstrated that the residence time of the nanoparticles prolonged at the physiologic pH. CONCLUSIONS FSM-NLCs exhibited sustained release over a prolonged period, improved residence time in the body, and their action was prolonged.
Collapse
Affiliation(s)
- Muzzamil Ilyas
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tayyab
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Marya Nawaz Malik
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Humaira Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Zhang HJ, Chiang CW, Maschmeyer-Tombs T, Conklin B, Napolitano JG, Lubach JW, Nagapudi K, Mao C, Chen Y. Generality of Enhancing the Dissolution Rates of Free Acid Amorphous Solid Dispersions by the Incorporation of Sodium Hydroxide. Mol Pharm 2024; 21:3395-3406. [PMID: 38836777 DOI: 10.1021/acs.molpharmaceut.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Helen J Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, California 94720, United States
| | - Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tristan Maschmeyer-Tombs
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jose G Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Wang M, Gong J, Rades T, Martins ICB. Amorphization of different furosemide polymorphic forms during ball milling: Tracking solid-to-solid phase transformations. Int J Pharm 2023; 648:123573. [PMID: 37931725 DOI: 10.1016/j.ijpharm.2023.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Ball milling is used, not only to reduce the particle size of pharmaceutical powders, but also to induce changes in the physical properties of drugs. In this work we prepared three crystal forms of furosemide (forms Ⅰ, Ⅱ, and Ⅲ) and studied their solid phase transformations during ball milling. Powder X-ray diffraction and modulated differential scanning calorimetry were used to characterize the samples after each milling time on their path to amorphization. Our results show that forms Ⅰ and III directly converted into an amorphous phase, while form Ⅱ first undergoes a polymorphic transition to form Ⅰ, and then gradually loses its crystallinity, finally reaching full amorphousness. During ball milling of forms Ⅰ and Ⅱ, the glass transition temperature (Tg) of the amorphous fraction of the milled material remains almost unchanged at 75 °C and 74 °C, respectively (whilst the amorphous content increases). In contrast, the Tg values of the amorphous fraction of milled form III increase with increasing milling times, from 63 °C to 71 °C, indicating an unexpected phenomenon of amorphous-to-amorphous transformation. The amorphous fraction of milled forms I and II samples presented a longer structural relaxation (i.e., lower molecular mobility) than the amorphous fraction of milled form III samples. Moreover, the structural relaxation time remained the same for the increasing amorphous fraction during milling of forms I and II. In contrast, the structural relaxation times were always shorter for the amorphous fraction of form III, but increased with increasing amorphous content during milling, confirming amorphous-to-amorphous transformation.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Inês C B Martins
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Chiang CW, Tang S, Mao C, Chen Y. Effect of Buffer pH and Concentration on the Dissolution Rates of Sodium Indomethacin-Copovidone and Indomethacin-Copovidone Amorphous Solid Dispersions. Mol Pharm 2023; 20:6451-6462. [PMID: 37917181 DOI: 10.1021/acs.molpharmaceut.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The incorporation of counterions into amorphous solid dispersions (ASDs) has been proven to be effective for improving the dissolution rates of ionizable drugs in ASDs. In this work, the effect of dissolution buffer pH and concentration on the dissolution rate of indomethacin-copovidone 40:60 (IMC-PVPVA, w/w) ASD with or without incorporated sodium hydroxide (NaOH) was studied by surface area-normalized dissolution to provide further mechanistic understanding of this phenomenon. Buffer pH from 4.7 to 7.2 and concentration from 20 to 100 mM at pH 5.5 were investigated. As the buffer pH decreased, the IMC dissolution rate from both ASDs decreased. Compared to IMC-PVPVA ASD, the dissolution rate decrease from IMCNa-PVPVA ASD was more resistant to the decrease of buffer pH. In contrast, while buffer concentration had a negligible impact on the IMC dissolution rate from IMC-PVPVA ASD, the increase of buffer concentration significantly reduced the IMC dissolution rate from IMCNa-PVPVA ASD. Surrogate evaluation of microenvironment pH modification by the dissolution of IMCNa-PVPVA ASD demonstrated the successful elevation of buffer microenvironment pH and the suppression of such pH elevation by the increase of buffer concentration. These results are consistent with the hypothesis that the dissolution rate enhancement by the incorporation of counterions originates from the enhanced drug solubility by ionization and the modification of diffusion layer pH in favor of drug dissolution. At the studied drug loading (∼40%), relatively congruent release between IMC and PVPVA was observed when IMC was ionized in ASD or in solution, highlighting the importance of studying the ionization effect on the congruent release of ASDs, especially when drug ionization is expected in vivo. Overall, this work further supports the application of incorporating counterions into ASDs for improving the dissolution rates of ionizable drugs when enabling formulation development is needed.
Collapse
Affiliation(s)
- Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Hadova K, Kmecova J, Ochodnicka‐Mackovicova K, Kralova E, Doka G, Bies Pivackova L, Vavrinec P, Stankovicova T, Krenek P, Klimas J. Rapid changes of mRNA expressions of cardiac ion channels affected by Torsadogenic drugs influence susceptibility of rat hearts to arrhythmias induced by Beta-Adrenergic stimulation. Pharmacol Res Perspect 2023; 11:e01134. [PMID: 37715323 PMCID: PMC10504435 DOI: 10.1002/prp2.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
Drug-induced long QT syndrome (LQTS) and Torsades de Pointes (TdP) are serious concerns in drug development. Although rats are a useful scientific tool, their hearts, unlike larger species, usually do not respond to torsadogenic drugs. Consequently, their resistance to drug-induced arrhythmias is poorly understood. Here, we challenged rats with rapid delayed rectifier current (Ikr)-inhibiting antibiotic clarithromycin (CLA), loop diuretic furosemide (FUR) or their combination (CLA + FUR), and examined functional and molecular abnormalities after stimulation with isoproterenol. Clarithromycin and furosemide were administered orally at 12-h intervals for 7 days. To evaluate electrical instability, electrocardiography (ECG) was recorded either in vivo or ex vivo using the Langendorff-perfused heart method under basal conditions and subsequently under beta-adrenergic stimulation. Gene expression was measured using real-time quantitative PCR in left ventricular tissue. Indeed, FUR and CLA + FUR rats exhibited hypokalemia. CLA and CLA + FUR treatment resulted in drug-induced LQTS and even an episode of TdP in one CLA + FUR rat. The combined treatment dysregulated gene expression of several ion channels subunits, including KCNQ1, calcium channels and Na+/K + -ATPase subunits, while both monotherapies had no impact. The rat with recorded TdP exhibited differences in the expression of ion channel genes compared to the rest of rats within the CLA + FUR group. The ECG changes were not detected in isolated perfused hearts. Hence, we report rapid orchestration of ion channel reprogramming of hearts with QT prolongation induced by simultaneous administration of clarithromycin and furosemide in rats, which may account for their ability to avoid arrhythmias triggered by beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Jana Kmecova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
- State Institute for Drug ControlBratislavaSlovakia
| | | | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Tatiana Stankovicova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| |
Collapse
|
6
|
Zou Z, Huang Q, Li X, Liu X, Yin L, Zhao Y, Liang G, Wu W. Dissolution changes in drug-amino acid/biotin co-amorphous systems: Decreased/increased dissolution during storage without recrystallization. Eur J Pharm Sci 2023; 188:106526. [PMID: 37442486 DOI: 10.1016/j.ejps.2023.106526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Co-amorphous systems have been proven to be a promising strategy to address the poor water solubility of poorly water-soluble drugs. Generally, the initial dissolution behaviors after co-amorphous system preparation and the potential recrystallization during storage are used to evaluate the performance of co-amorphous systems. However, this study reveals that decreased dissolution and unexpected increased dissolution were observed during storage though the co-amorphous systems maintained amorphous form. Three drugs (valsartan, tadalafil, mebendazole) and three co-formers (arginine, tryptophan, biotin) were used to prepare co-amorphous systems and the samples were stored for different times. After stored for 80 d, most of the co-amorphous systems maintained amorphous form, however, decreased and increased intrinsic dissolution rates (IDRs) were both observed in these non-recrystallized co-amorphous systems. The moisture changes of the systems during storage and the possible drug-co-former molecular interactions showed no effect on the dissolution changes, while phase separation might play a role in it. In conclusion, more attention should be paid to the dissolution changes of co-amorphous systems during storage. Focusing on the initial dissolution behaviors after sample preparation and the physical recrystallization during storage is not enough for the development of co-amorphous systems in future.
Collapse
Affiliation(s)
- Zhiren Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Qiang Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Xianzhi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China; Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
7
|
Fathi HA, Yousry C, Elsabahy M, El-Badry M, El Gazayerly ON. Effective loading of incompatible drugs into nanosized vesicles: a strategy to allow concurrent administration of furosemide and midazolam in simulated clinical settings. Int J Pharm 2023; 636:122852. [PMID: 36934884 DOI: 10.1016/j.ijpharm.2023.122852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and BUC Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Mahmoud El-Badry
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Omaima N El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Moroni AB, Mayoral EP, Lionello DF, Vega DR, Kaufman TS, Calvo NL. Solid-state properties of Nifurtimox. Preparation, analytical characterization, and stability of an amorphous phase. Eur J Pharm Biopharm 2023; 184:25-35. [PMID: 36681284 DOI: 10.1016/j.ejpb.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Nifurtimox (NFX) is a nitrofuran derivative used to treat Chagas disease, a neglected disease caused by the protozoan Trypanosoma cruzi. The drug is very sparingly soluble in aqueous media and no other solid phases of NFX have been reported to date. The preparation of the amorphous mode of NFX is reported, as well as its characterization by hot stage microscopy, thermal (differential scanning calorimetry and thermogravimetric analysis), spectroscopic (solid state nuclear magnetic resonance, mid-infrared, and near-infrared), diffractometric and functional (powder dissolution rate) means. The stability of the new phase was investigated. This was characterized using thermal, spectroscopic, and diffractometric methods, finding out its spontaneous reversion to the crystalline state, as sign of instability. In addition, the amorphous material proved to be sensitive to temperature, pressure, and mechanical stress, all of which accelerated phase conversion. However, it was able to remain stable in a model polymeric amorphous solid dispersion with PEG 4000 for more than one month. An approach for monitoring the conversion of the amorphous phase to its crystalline counterpart under thermal stress by chemometric analysis of mid-infrared spectra at different temperatures is also disclosed.
Collapse
Affiliation(s)
- Aldana B Moroni
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina
| | - Elena Perez Mayoral
- Departamento de Química Inorgánica y Química Técnica, Universidad Nacional de Educación a Distancia, UNED, Urbanización Monte Rozas, Avenida Esparta s/n, Ctra. de Las Rozas al Escorial Km 5, 28232 Las Rozas-Madrid, Spain
| | - Diego F Lionello
- Departamento Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica e Instituto Jorge A. Sabato, Universidad Nacional General San Martín, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Daniel R Vega
- Departamento Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica y Escuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Teodoro S Kaufman
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
| | - Natalia L Calvo
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|
9
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Van der Merwe CJ, Steyn JD, Hamman JH, Pheiffer W, Svitina H, Peterson B, Steenekamp JH. Effect of functional excipients on the dissolution and membrane permeation of furosemide formulated into multiple-unit pellet system (MUPS) tablets. Pharm Dev Technol 2022; 27:572-587. [PMID: 35699215 DOI: 10.1080/10837450.2022.2089898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of functional excipients (i.e. chitosan, sodium lauryl sulphate, NaHCO3, and CaCO3) formulated in multiple-unit pellet system (MUPS) tablets has been investigated on the dissolution and permeability of furosemide, a BCS class IV compound. Spherical beads were produced and compressed into MUPS tablets. MUPS tablet formulations were evaluated for hardness, disintegration, mass variation, friability, and dissolution (pH 1.2, pH 4.6, and pH 7.4). Ex vivo permeability studies were conducted across excised pig tissues (pyloric antrum and duodenal region) on selected experimental MUPS tablet formulations. Histological analysis was conducted on the tissues after exposure to selected experimental MUPS tablet formulations. Dissolution results in the 0.1 M HCl (pH 1.2) showed the highest effect of the excipients on furosemide release. Dissolution parameters showed increased dissolution of furosemide for the MUPS tablet formulations containing functional excipients: a 4.5-10-fold increase in the AUC values, the %max showed a 60-70% increase and up to a 19-fold increase in DRi was seen. Permeability results revealed a 2.5-fold higher cumulative percentage transport for selected formulations. The results proved that functional excipients incorporated into beads, compressed into MUPS tablet formulations increased furosemide release as well as permeation across excised intestinal tissues.
Collapse
Affiliation(s)
- C J Van der Merwe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J D Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - W Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - H Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - B Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J H Steenekamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Christfort JF, Polhaus CJM, Bondegaard PW, Chang TJ, Hwu ET, Hagner Nielsen L, Zór K, Boisen A. Open source anaerobic and temperature-controlled in vitro model enabling real-time release studies with live bacteria. HARDWAREX 2022; 11:e00275. [PMID: 35509897 PMCID: PMC9058704 DOI: 10.1016/j.ohx.2022.e00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
In vitro release and dissolution models are widely used in the development phases of oral drug delivery systems to measure how an active pharmaceutical ingredient (API) is released from a dosage form. However, additional requirements for these models arise when evaluating probiotic dosage forms since they are often sensitive to temperature and oxygen levels. As a solution to this, we propose a custom-designed anaerobic in vitro release setup, made mainly by 3D printing and laser cutting, to function together with state-of-the-art pharmaceutical dissolution equipment - in this case, a microDISS Profiler™. The in vitro release model makes it possible to study the release rate of oxygen-sensitive probiotics in simulated intestinal conditions, while ensuring their survival due to the anaerobic conditions. This has not been possible so far since the available in vitro dissolution models have not been compatible with anaerobic conditions. With two different case studies, the developed model combined with a microDISS Profiler™ has proven capable of measuring the release of a probiotic and a small-molecule API from microdevices for oral drug delivery. Further, the model facilitated the survival of anaerobic bacteria present in the release medium.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Chrysillis Judy Magaard Polhaus
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pi Westi Bondegaard
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tien-Jen Chang
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - En Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute Foundation, 2200 Copenhagen, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute Foundation, 2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Li T, Zhang X, Wang H, Li J, Wang H, Zhang X. Development, Physical-Chemical Characterization, and Molecular Docking Simulations of Ursolic Acid-Sodium Alginate Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14311-14319. [PMID: 34797663 DOI: 10.1021/acs.jafc.1c02787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to fabricate ursolic acid (UA)-sodium alginate (SA) complexes to improve the dissolution rate and antioxidant abilities. The antioxidant activity was evaluated by the DPPH (1,1-diphenyl-2-trinitrophenylhydrazine) assay and the pyrogallol auto-oxidation method. For the optimal composition ratio of UA:SA (1:5, w/w), the cumulative release of UA was about 101.22 ± 1.50% for 180 min. Powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses confirmed that the crystallinity of UA was significantly reduced by forming complexes with SA. By Fourier transform infrared spectroscopy (FTIR) and molecular docking simulations, it was observed that the hydroxyl group in UA formed hydrogen bonding with the carbonyl group in SA. The DPPH scavenger activities of the complexes were also increased compared with free UA. The results indicated that SA could serve as a promising carrier for lipophilic functional food ingredients due to improved solubility and antioxidant activity.
Collapse
Affiliation(s)
- Ting Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xindi Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota-Twin Cities, 308 SE Harvard St, Minneapolis, 55455 Minnesota, United States
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
13
|
Brown B, Ward A, Fazili Z, Østergaard J, Asare-Addo K. Application of UV dissolution imaging to pharmaceutical systems. Adv Drug Deliv Rev 2021; 177:113949. [PMID: 34461199 DOI: 10.1016/j.addr.2021.113949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
UV-vis spectrometry is widely used in the pharmaceutical sciences for compound quantification, alone or in conjunction with separation techniques, due to most drug entities possessing a chromophore absorbing light in the range 190-800 nm. UV dissolution imaging, the scope of this review, generates spatially and temporally resolved absorbance maps by exploiting the UV absorbance of the analyte. This review aims to give an introduction to UV dissolution imaging and its use in the determination of intrinsic dissolution rates and drug release from whole dosage forms. Applications of UV imaging to non-oral formulations have started to emerge and are reviewed together with the possibility of utilizing UV imaging for physical chemical characterisation of drug substances. The benefits of imaging drug diffusion and transport processes are also discussed.
Collapse
|
14
|
Chen Y, Lubach JW, Tang S, Narang AS. Effect of Counterions on Dissolution of Amorphous Solid Dispersions Studied by Surface Area Normalized Dissolution. Mol Pharm 2021; 18:3429-3438. [PMID: 34338529 DOI: 10.1021/acs.molpharmaceut.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Solubility enhancement has become a common requirement for formulation development to deliver poorly water soluble drugs. Amorphous solid dispersions (ASDs) and salt formation have been two successful strategies, yet there are opportunities for further development. For ASDs, drug-polymer phase separation may occur at high drug loadings during dissolution, limiting the increase of drug loadings in ASD formulations. For salt formation, a salt form with high crystallinity and sufficient solid-state stability is required for solid dosage form development. This work studied the effect of counterions on the dissolution performance of ASDs. Surface area normalized dissolution or intrinsic dissolution methodology was employed to eliminate the effect of particle size and provide a quantitative comparison of the counterion effect on the intrinsic dissolution rate. Using indomethacin (IMC)-poly(vinylpyrrolidone-co-vinyl acetate) ASD as a model system, the effect of different bases incorporated into the ASD during preparation, the molar ratios between the base and IMC, and the drug loadings in the ASD were systematically studied. Strong bases capable of ionizing IMC significantly enhanced drug dissolution, while a weak base did not. A physical mixture of a strong base and the ASD also enhanced the dissolution rate, but the effect was less pronounced. At different base to IMC molar ratios, dissolution enhancement increased with the base to IMC ratio. At different drug loadings, without a base, the IMC dissolution rate decreased with the increase of drug loading. After incorporating a strong base, it increased with the increase of drug loading. The observations from this study were thought to be related to both the ionization of IMC in ASDs and the increase of microenvironment pH by the incorporated bases. With the significant enhancement of the drug dissolution rate, our work provides a promising approach of overcoming the dissolution limitation of ASD formulations at high drug loadings.
Collapse
Affiliation(s)
- Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ajit S Narang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
15
|
Husain T, Shoaib MH, Ahmed FR, Yousuf RI, Farooqi S, Siddiqui F, Imtiaz MS, Maboos M, Jabeen S. Investigating Halloysite Nanotubes as a Potential Platform for Oral Modified Delivery of Different BCS Class Drugs: Characterization, Optimization, and Evaluation of Drug Release Kinetics. Int J Nanomedicine 2021; 16:1725-1741. [PMID: 33688188 PMCID: PMC7935346 DOI: 10.2147/ijn.s299261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose This study systematically investigated the potential of four model drugs (verapamil HCl, flurbiprofen, atenolol, and furosemide), each belonging to a different class of Biopharmaceutics Classification Systems (BCS) to be developed into oral modified release dosage forms after loading with halloysite nanotubes (HNTs). Methods The drugs were studied for their loading (mass gain %) by varying solvent system, method, pH, and ratios of loading into the nanotubes using D-optimal split-plot design with the help of Design Expert software. Drug-loaded halloysites were characterized by XRD, DTA, FTIR, SEM, and HPLC-UV-based assay procedures. Dissolution studies were also performed in dissolution media with pH 1.2, 4.5, and 6.8. Moreover, the optimized samples were evaluated under stress stability conditions for determining prospects for the development of oral dosage forms. Results As confirmed with the results of XRD and DTA, the drugs were found to be converted into amorphous form after loading with halloysite (HNTs). The drugs were loaded in the range of ~7–9% for the four drugs, with agitation providing satisfactory and equivalent loading as compared to vacuum plus agitation based reported methods. FTIR results revealed either only weak electrostatic (verapamil HCl and flurbiprofen) or no interaction with the surface structure of the HNTs. The dissolution profiling depicted significantly retarded release of drugs with Fickian diffusion from a polydisperse system as a model that suits well for the development of oral dosage forms. HPLC-UV-based assay indicated that except furosemide (BCS class IV), the other three drugs are quite suitable for development for oral dosage forms. Conclusion The four drugs investigated undergo phase transformation with HNTs. While agitation is an optimum method for loading drugs with various physicochemical attributes into HNTs; solvent system, loading ratios and pH play an important role in the loading efficiency respective to the drug properties. The study supports the capability of developing HNT-based modified release oral dosage forms for drugs with high solubility.
Collapse
Affiliation(s)
- Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sadaf Farooqi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Suleman Imtiaz
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Madiha Maboos
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
16
|
Co-Amorphous Formulations of Furosemide with Arginine and P-Glycoprotein Inhibitor Drugs. Pharmaceutics 2021; 13:pharmaceutics13020171. [PMID: 33514009 PMCID: PMC7912042 DOI: 10.3390/pharmaceutics13020171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the amino acid arginine (ARG) and P-glycoprotein (P-gp) inhibitors verapamil hydrochloride (VER), piperine (PIP) and quercetin (QRT) were used as co-formers for co-amorphous mixtures of a Biopharmaceutics classification system (BCS) class IV drug, furosemide (FUR). FUR mixtures with VER, PIP and QRT were prepared by solvent evaporation, and mixtures with ARG were prepared by spray drying in 1:1 and 1:2 molar ratios. The solid-state properties of the mixtures were characterized with X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) in stability studies under different storage conditions. Simultaneous dissolution/permeation studies were conducted in side-by-side diffusion cells with a PAMPA (parallel artificial membrane permeability assay) membrane as a permeation barrier. It was observed with XRPD that ARG, VER and PIP formed co-amorphous mixtures with FUR at both molar ratios. DSC and FTIR revealed single glass transition values for the mixtures (except for FUR:VER 1:2), with the formation of intermolecular interactions between the components, especially salt formation between FUR and ARG. The co-amorphous mixtures were found to be stable for at least two months under an elevated temperature/humidity, except FUR:ARG 1:2, which was sensitive to humidity. The dissolution/permeation studies showed that only the co-amorphous FUR:ARG mixtures were able to enhance both the dissolution and permeation of FUR. Thus, it is concluded that formulating co-amorphous salts with ARG may be a promising option for poorly soluble/permeable FUR.
Collapse
|
17
|
Controlled Drug Release from Biodegradable Polymer Matrix Loaded in Microcontainers Using Hot Punching. Pharmaceutics 2020; 12:pharmaceutics12111050. [PMID: 33153058 PMCID: PMC7692970 DOI: 10.3390/pharmaceutics12111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Microcontainers are reservoir-based advanced drug delivery systems (DDS) that have proven to increase the bioavailibity of the small-molecule drugs, targeting of biomolecules, protection of vaccines and improved treatment of Pseudomonas aeruginosa. However, high-throughput loading of these micron-sized devices with drug has been challenging. Hot punching is a new technique that is a fast, simple and single-step process where the microdevices are themselves used as mold to punch biocompatible and biodegradable drug-polymer films, thereby loading the containers. Here, we investigate the effect of hot punching on the drug distribution as well as drug release from the loaded drug-polymer matrices. Zero-order sustained drug release is observed for the model drug Furosemide embedded in biodegradable polymer, Poly-ε-caprolactone, which is attributed to the unique spatial distribution of Furosemide during the loading process.
Collapse
|
18
|
Leth Jepsen M, Willumsen A, Mazzoni C, Boisen A, Hagner Nielsen L, Dufva M. 3D Printed Stackable Titer Plate Inserts Supporting Three Interconnected Tissue Models for Drug Transport Studies. ACTA ACUST UNITED AC 2020; 4:e1900289. [DOI: 10.1002/adbi.201900289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Morten Leth Jepsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Andreas Willumsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Chiara Mazzoni
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Martin Dufva
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| |
Collapse
|
19
|
Kovács A, Kazsoki A, Démuth B, Szirányi B, Madarász J, Süvegh K, Zelkó R. Influence of Aqueous Solubility-Enhancing Excipients on the Microstructural Characteristics of Furosemide-Loaded Electrospun Nanofibers. Pharmaceutics 2020; 12:pharmaceutics12040385. [PMID: 32340196 PMCID: PMC7238267 DOI: 10.3390/pharmaceutics12040385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
Electrospun nanofibers were prepared from furosemide-containing hydroxypropyl cellulose and poly(vinylpyrrolidone) aqueous solutions using different solubility enhancers. In one case, a solubilizer, triethanolamine, was applied, while in the other case a pH-modifier, sodium hydroxide, was applied. Scanning electron microscopy (SEM) was carried out for morphological characterization of the fibers. The SEM images indicated similar mean diameter size of the two fibrous formulations. However, in contrast to the NaOH-containing fibers of normal diameter distribution, the triethanolamine-containing fibers showed approximately normal diameter distribution, possibly due to their plasticizing effect and the consequent slightly ribbon-like morphology. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (XRD) and positron annihilation lifetime spectroscopy (PALS) were applied for microstructural characterization. The FTIR measurements confirmed that furosemide salt was formed in both cases. There was no sign of any crystallinity based on the XRD measurements. However, the PALS highlighted the differences in the average o-Ps lifetime values and distributions of the furosemide-loaded fibrous formulations. The two types of electrospun nanofibrous formulations containing amorphous furosemide salt showed similar macrostructures but different microstructural characteristics depending on the type of solubility enhancers, which lead to altered storage stability.
Collapse
Affiliation(s)
- Andrea Kovács
- Gedeon Richter Plc., Formulation R&D, Gyömrői Street 19-21, H-1103 Budapest, Hungary; (A.K.); (B.D.); (B.S.)
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary;
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary;
| | - Balázs Démuth
- Gedeon Richter Plc., Formulation R&D, Gyömrői Street 19-21, H-1103 Budapest, Hungary; (A.K.); (B.D.); (B.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 8. 3, H-1103 Budapest, Hungary
| | - Bernadett Szirányi
- Gedeon Richter Plc., Formulation R&D, Gyömrői Street 19-21, H-1103 Budapest, Hungary; (A.K.); (B.D.); (B.S.)
| | - János Madarász
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary;
| | - Károly Süvegh
- Laboratory of Nuclear Chemistry, Eötvös Loránd University/HAS Chemical Research Center, P.O. Box 32, H-1518 Budapest, Hungary;
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary;
- Correspondence: ; Tel.: +36-1-217-0927
| |
Collapse
|
20
|
Abraham-Miranda J, Garnero C, Zoppi A, Chattah AK, Sterren VB, Santiago de Oliveira Y, Ayala AP, Longhi MR. Evaluating ternary systems with oligosaccharides as a strategy to improve the biopharmaceutical properties of furosemide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110793. [PMID: 32279814 DOI: 10.1016/j.msec.2020.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Novel ternary systems with β-cyclodextrin or maltodextrin and triethanolamine as the third component were developed with the aim of improving the oral bioavailability of furosemide. These new solids were characterized by solid-state nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy, X-ray powder diffractometry, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The solubility, dissolution and stability (chemical and physical) were studied. Among the most important results, it was observed that both ternary systems showed an important enhancement in the solubility of the drug. In particular, the system obtained by combination of β-cyclodextrin and TEA exhibited improvement in the dissolution profiles and photo-stability of furosemide compared with the binary system previously reported. Moreover, this system constitutes an interesting therapeutic alternative as it did not produce cellular toxicity compared with free furosemide. In conclusion, the results obtained revealed that this ternary system establishes a promising approach for oral delivery of the drug.
Collapse
Affiliation(s)
- Julieta Abraham-Miranda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Claudia Garnero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Ariana Zoppi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Ana K Chattah
- Facultad de Matemática, Astronomía y Física and IFEG (CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Vanesa B Sterren
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | | | - Alejandro P Ayala
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Marcela R Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
21
|
An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.
Collapse
|
22
|
Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, Loretz B, Lehr C. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv Healthc Mater 2019; 8:e1900564. [PMID: 31328434 DOI: 10.1002/adhm.201900564] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Indexed: 01/07/2023]
Abstract
Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
Collapse
Affiliation(s)
- Sara Menina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| | - Janina Eisenbeis
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Mohamed Ashraf M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Marcus Koch
- Institute for New MaterialsSaarland University Saarbrücken 66123 Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- School of Pharmacy and Biomolecular SciencesJohn Moores University Liverpool L3 3AF UK
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| |
Collapse
|
23
|
Christfort JF, Strindberg S, Plum J, Hall-Andersen J, Janfelt C, Nielsen LH, Müllertz A. Developing a predictive in vitro dissolution model based on gastrointestinal fluid characterisation in rats. Eur J Pharm Biopharm 2019; 142:307-314. [DOI: 10.1016/j.ejpb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 02/07/2023]
|
24
|
Karolewicz B, Górniak A, Marciniak DM, Mucha I. Molecular Mobility and Stability Studies of Amorphous Imatinib Mesylate. Pharmaceutics 2019; 11:pharmaceutics11070304. [PMID: 31266220 PMCID: PMC6680654 DOI: 10.3390/pharmaceutics11070304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
The proposed study examined the characterization and stability of solid-state amorphous imatinib mesylate (IM) after 15 months under controlled relative humidity (60 ± 5%) and temperature (25 ± 2 °C) conditions. After 2 weeks, and 1, 3, 6, and 15 months, the samples were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray powder diffractometry (XRPD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Additionally, the amorphous form of imatinib mesylate was obtained via supercooling of the melt in a DSC apparatus, and aged at various temperatures (3, 15, 25 and 30 °C) and time periods (1–16 h). Glass transition and enthalpy relaxation were used to calculate molecular-relaxation-time parameters. The Kohlrausch–Williams–Watts (KWW) equation was applied to fit the experimental enthalpy-relaxation data. The mean molecular-relaxation-time constant (τ) increased with decreasing ageing temperature. The results showed a high stability of amorphous imatinib mesylate adequate to enable its use in solid dosage form.
Collapse
Affiliation(s)
- Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Dominik M Marciniak
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Igor Mucha
- Department of Analytical Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland.
| |
Collapse
|
25
|
Samaeifar F, Casci Ceccacci A, Bose Goswami S, Hagner Nielsen L, Afifi A, Zór K, Boisen A. Evaluation of the solid state form of tadalafil in sub-micron thin films using nanomechanical infrared spectroscopy. Int J Pharm 2019; 565:227-232. [PMID: 31077764 DOI: 10.1016/j.ijpharm.2019.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/08/2019] [Accepted: 05/05/2019] [Indexed: 11/18/2022]
Abstract
Assessing physical stability of drugs is important both in the development as well as in the production phase in the pharmaceutical industry. We used nanomechanical infrared (NAM-IR) spectroscopy based on photothermal response of a nanomechanical resonator, to investigate the solid state forms of tadalafil (TAD), under various storage conditions in sub-micron thin films. The amorphous TAD was stable, when kept at normal storage conditions of 24 °C, 45% relative humidity (RH) and shielded from light, however, it crystallized after four days when it was at stress storage conditions (40 °C, 70% RH, and direct sunlight). Additionally, we found that the signals recorded with NAM-IR were comparable with the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and that NAM-IR proved to be a suitable and time efficient method when evaluating TAD in sub 500 nm layers.
Collapse
Affiliation(s)
- Fatemeh Samaeifar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark; Department of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Andrea Casci Ceccacci
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Sanjukta Bose Goswami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Ahmad Afifi
- Department of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| |
Collapse
|
26
|
Zilka M, Yates JR, Brown SP. An NMR crystallography investigation of furosemide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:191-199. [PMID: 30141257 PMCID: PMC6492277 DOI: 10.1002/mrc.4789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
This paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects. We use a recently developed formalism to visualise which regions are responsible for the chemical shielding of particular sites and hence understand the variation in NMR parameters between the three polymorphs.
Collapse
Affiliation(s)
- Miri Zilka
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| | | | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| |
Collapse
|
27
|
Ibrahim M, Hatipoglu MK, Garcia-Contreras L. Cryogenic Fabrication of Dry Powders to Enhance the Solubility of a Promising Anticancer Drug, SHetA2, for Oral Administration. AAPS PharmSciTech 2019; 20:20. [PMID: 30604109 DOI: 10.1208/s12249-018-1204-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023] Open
Abstract
SHetA2 is a novel anticancer drug with poor aqueous solubility. In formal toxicological studies, Kolliphor HS 15 was used as a solubilizing agent to increase the oral bioavailability of SHetA2. The purpose of this study was to formulate SHetA2 and Kolliphor HS 15 as solid powders to facilitate their filling in hard gelatin capsules for clinical trials. Two manufacturing processes, ultra-rapid freeze-drying (URFD) and spray freeze drying (SFD), were employed to fabricate solid powders of SHetA2-Kolliphor HS 15 and trehalose. The morphology, size, flowability, and compressibility of URFD-SHetA2 and SFD-SHetA2 powders were characterized. The crystallinity and apparent maximum solubility of SHetA2 in both powders were also determined. SFD-SHetA2 powders were spherical in shape, small, and with a wide size distribution while the URFD-SHetA2 powders were irregularly shaped and big but with a narrower distribution. DSC and XRD analyses indicated that SHetA2 was mostly amorphous in both powders. The flow of both powders was categorized as "good" (angle of repose < 35°). The uniformity of drug content in URFD-SHetA2 powders was more variable than that in SFD-SHetA2 powders. The solubility profile of SHetA2 in both powders SGF exhibited a transient supersaturation "spring effect" due to the drug's amorphousness followed by extended supersaturation "parachute effect" at approximately 6 μg/ml for both powders compared to 0.02 ± 0.01 μg/ml for unprocessed drug. In conclusion, both URFD and SFD formed solid SHetA2 Kolliphor powders that are possible formulation candidates to be filled in hard gelatin capsules for clinical trials.
Collapse
|
28
|
Baxevanis F, Kuiper J, Fotaki N. Strategic drug analysis in fed-state gastric biorelevant media based on drug physicochemical properties. Eur J Pharm Biopharm 2018; 127:326-341. [DOI: 10.1016/j.ejpb.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
|
29
|
Lombardo S, Chen P, Larsson PA, Thielemans W, Wohlert J, Svagan AJ. Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5464-5473. [PMID: 29715039 DOI: 10.1021/acs.langmuir.8b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose nanofibers (CNFs) have interesting physicochemical and colloidal properties that have been recently exploited in novel drug-delivery systems for tailored release of poorly soluble drugs. The morphology and release kinetics of such drug-delivery systems heavily relied on the drug-CNF interactions; however, in-depth understanding of the interactions was lacking. Herein, the interactions between a poorly soluble model drug molecule, furosemide, and cationic cellulose nanofibers with two different degrees of substitution are studied by sorption experiments, Fourier transform infrared spectroscopy, and molecular dynamics (MD) simulation. Both MD simulations and experimental results confirmed the spontaneous sorption of drug onto CNF. Simulations further showed that adsorption occurred by the flat aryl ring of furosemide. The spontaneous sorption was commensurate with large entropy gains as a result of release of surface-bound water. Association between furosemide molecules furthermore enabled surface precipitation as indicated by both simulations and experiments. Finally, sorption was also found not to be driven by charge neutralization, between positive CNF surface charges and the furosemide negative charge, so that surface area is the single most important parameter determining the amount of sorbed drug. An optimized CNF-furosemide drug-delivery vehicle thus needs to have a maximized specific surface area irrespective of the surface charge with which it is achieved. The findings also provide important insights into the design principles of CNF-based filters suitable for removal of poorly soluble drugs from wastewater.
Collapse
Affiliation(s)
- Salvatore Lombardo
- Renewable Materials and Nanotechnology Research Group, Department of Chemical Engineering , KU Leuven , Campus Kulak Kortrijk, Etienne Sabbelaan 53 , P.O. Box 7659, 8500 Kortrijk , Belgium
| | - Pan Chen
- Wallenberg Wood Science Center , KTH , Teknikringen 58 , SE-100 44 Stockholm , Sweden
| | - Per A Larsson
- Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Research Group, Department of Chemical Engineering , KU Leuven , Campus Kulak Kortrijk, Etienne Sabbelaan 53 , P.O. Box 7659, 8500 Kortrijk , Belgium
| | - Jakob Wohlert
- Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Anna J Svagan
- Wallenberg Wood Science Center , KTH , Teknikringen 58 , SE-100 44 Stockholm , Sweden
- Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
30
|
Kovács A, Démuth B, Meskó A, Zelkó R. Preformulation Studies of Furosemide-Loaded Electrospun Nanofibrous Systems for Buccal Administration. Polymers (Basel) 2017; 9:polym9120643. [PMID: 30965943 PMCID: PMC6418805 DOI: 10.3390/polym9120643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/16/2022] Open
Abstract
Furosemide loaded electrospun fibers were prepared for buccal administration, with the aim of improving the oral bioavailability of the poorly soluble and permeable crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism. The water soluble hydroxypropyl cellulose (HPC) was chosen as a mucoadhesive polymer. In order to improve the electrospinnability of HPC, poly (vinylpyrrolidone) (PVP) was used. During the experiments, the total polymer concentration was kept constant at 15% (w/w), and only the ratio of the two polymers (HPC-PVP = 5:5, 6:4, 7:3, 8:2, 9:1) was changed. A combination of rheological measurements with scanning electron microscopic morphological images of electrospun samples was applied for the determination of the optimum composition of the gels for fiber formation. The crystalline–amorphous transition of furosemide was tracked by Fourier transform infrared spectroscopy. A correlation was found between the rheological properties of the polymer solutions and their electrospinnability, and the consequent morphology of the resultant samples. With decreasing HPC ratio of the system, a transition from the spray-dried droplets to the randomly oriented fibrous structures was observed. The results enable the determination of the polymer ratio for the formation of applicable quality of electrospun fibers.
Collapse
Affiliation(s)
- Andrea Kovács
- Gedeon Richter Plc., Formulation R&D, Gyömrői Street 19-21, H-1103 Budapest, Hungary.
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary.
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 8. 3, H-1103 Budapest, Hungary.
| | - Andrea Meskó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
31
|
Wu W, Löbmann K, Rades T, Grohganz H. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems. Int J Pharm 2017; 535:86-94. [PMID: 29102703 DOI: 10.1016/j.ijpharm.2017.10.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Co-amorphous drug delivery systems based on amino acids as co-formers have shown promising potential to improve the solubility and bioavailability of poorly water-soluble drugs. Potential salt formation is assumed to be a key molecular interaction responsible for amorphous stability and increased solubility. However, little is known about the importance of the overall structure of the co-former. In this study, the structurally related amino acids arginine (basic) and citrulline (neutral) were chosen together with four model drugs (acidic furosemide and nitrofurantoin; basic cimetidine and mebendazole) to investigate the importance of salt formation versus structural similarity of co-formers. Drug-amino acid mixtures were ball milled at a molar ratio of 1:1. Generally, arginine showed a higher tendency to successfully form co-amorphous systems with the model drugs compared with citrulline, irrespective of assumed salt formation. Salt forming mixtures showed much higher Tgs, faster dissolution rates, higher solubility and physical stability compared to the corresponding non-salt forming mixtures. In conclusion, structural similarity of the co-formers does not lead to similar co-former performance for a given drug. Salt formation is not a prerequisite for the formation of a co-amorphous system, but if a co-amorphous salt system is formed, improved dissolution rate and physical stability are observed.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Svagan AJ, Müllertz A, Löbmann K. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide. J Pharm Pharmacol 2017; 69:1477-1484. [PMID: 28809440 DOI: 10.1111/jphp.12793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared to a marketed tablet. It was found that the extent of sustained release from both foams was dependent on the drug loading, the dimension of the foam piece, as well as the solid state of the drug. CONCLUSIONS Furosemide-loaded CNF-based foams with sustained release and buoyancy have been successfully prepared in a simple casting and drying procedure.
Collapse
Affiliation(s)
- Anna Justina Svagan
- Royal Insitute of Technology, Wallenberg Wood Science Center, Stockholm, Sweden
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
De Caro V, Ajovalasit A, Sutera FM, Murgia D, Sabatino MA, Dispenza C. Development and Characterization of an Amorphous Solid Dispersion of Furosemide in the Form of a Sublingual Bioadhesive Film to Enhance Bioavailability. Pharmaceutics 2017; 9:E22. [PMID: 28672810 PMCID: PMC5620563 DOI: 10.3390/pharmaceutics9030022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
Administered by an oral route, Furosemide (FUR), a diuretic used in several edematous states and hypertension, presents bioavailability problems, reported as a consequence of an erratic gastrointestinal absorption due to various existing polymorphic forms and low and pH-dependent solubility. A mucoadhesive sublingual fast-dissolving FUR based film has been developed and evaluated in order to optimize the bioavailability of FUR by increasing solubility and guaranteeing a good dissolution reproducibility. The Differential Scanning Calorimetry (DSC) analyses confirmed that the film prepared using the solvent casting method entrapped FUR in the amorphous state. As a solid dispersion, FUR increases its solubility up to 28.36 mg/mL. Drug content, thickness, and weight uniformity of film were also evaluated. The measured Young's Modulus, yield strength, and relative elongation of break percentage (EB%) allowed for the classification of the drug-loaded film as an elastomer. Mucoadhesive strength tests showed that the force to detach film from mucosa grew exponentially with increasing contact time up to 7667 N/m². FUR was quickly discharged from the film following a trend well fitted with the Weibull kinetic model. When applied on sublingual mucosa, the new formulation produced a massive drug flux in the systemic compartment. Overall, the proposed sublingual film enhances drug solubility and absorption, allowing for the prediction of a rapid onset of action and reproducible bioavailability in its clinical application.
Collapse
Affiliation(s)
- Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, PA 90123, Italy.
| | - Alessia Ajovalasit
- Dipartimento dell'Innovazione Industriale e Digitale, Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Palermo, PA 90128, Italy.
| | - Flavia Maria Sutera
- SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast BT3 9DT, UK.
| | - Denise Murgia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, PA 90123, Italy.
| | - Maria Antonietta Sabatino
- Dipartimento dell'Innovazione Industriale e Digitale, Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Palermo, PA 90128, Italy.
| | - Clelia Dispenza
- Dipartimento dell'Innovazione Industriale e Digitale, Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Palermo, PA 90128, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica-UOP Palermo, Palermo, PA 90146, Italy.
| |
Collapse
|
34
|
Kurek M, Carnoy M, Larsen PE, Nielsen LH, Hansen O, Rades T, Schmid S, Boisen A. Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maksymilian Kurek
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Matthias Carnoy
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Peter E. Larsen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Line H. Nielsen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| | - Thomas Rades
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems; TU Wien; Gusshausstrasse 27-29 1040 Vienna Austria
| | - Anja Boisen
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads, Building 345C 2800 Kgs. Lyngby Denmark
| |
Collapse
|
35
|
Kurek M, Carnoy M, Larsen PE, Nielsen LH, Hansen O, Rades T, Schmid S, Boisen A. Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis. Angew Chem Int Ed Engl 2017; 56:3901-3905. [PMID: 28266106 DOI: 10.1002/anie.201700052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/31/2017] [Indexed: 12/30/2022]
Abstract
Standard infrared spectroscopy techniques are well-developed and widely used. However, they typically require milligrams of sample and can involve time-consuming sample preparation. A promising alternative is represented by nanomechanical infrared spectroscopy (NAM-IR) based on the photothermal response of a nanomechanical resonator, which enables the chemical analysis of picograms of analyte directly from a liquid solution in only a few minutes. Herein, we present NAM-IR using perforated membranes (filters). The method was tested with the pharmaceutical compound indomethacin to successfully perform a chemical and morphological analysis on roughly 100 pg of sample. With an absolute estimated sensitivity of 109±15 fg, the presented method is suitable for ultrasensitive vibrational spectroscopy.
Collapse
Affiliation(s)
- Maksymilian Kurek
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Matthias Carnoy
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Peter E Larsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Line H Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040, Vienna, Austria
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Liu X, Zhou L, Zhang F. Reactive Melt Extrusion To Improve the Dissolution Performance and Physical Stability of Naproxen Amorphous Solid Dispersions. Mol Pharm 2017; 14:658-673. [PMID: 28135108 DOI: 10.1021/acs.molpharmaceut.6b00960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate the reaction between naproxen (NPX) and meglumine (MEG) at elevated temperature and to study the effect of this reaction on the physical stabilities and in vitro drug-release properties of melt-extruded naproxen amorphous solid dispersions (ASDs). Differential scanning calorimetry, hot-stage polarized light microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses demonstrated that in situ salt formation with proton transfer between NPX and MEG occurred at elevated temperature during the melt extrusion process. The amorphous NPX-MEG salt was physically most stable when two components were present at a 1:1 molar ratio. Polymeric carriers, including povidone, copovidone, and SOLUPLUS, did not interfere with the reaction between NPX and MEG during melt extrusion. Compared to the traditional NPX ASDs consisting of NPX and polymer only, NPX-MEG ASDs were physically more stable and remained amorphous following four months storage at 40 °C and 75% RH (relative humidity). Based on nonsink dissolution testing and polarized light microscopy analyses, we concluded that the conventional NPX ASDs composed of NPX and polymers failed to improve the NPX dissolution rate due to the rapid recrystallization of NPX in contact with aqueous medium. The dissolution rate of NPX-MEG ASDs was two times greater than the corresponding physical mixtures and conventional NPX ASDs. This study demonstrated that the acid-base reaction between NPX and MEG during melt extrusion significantly improved the physical stability and the dissolution rate of NPX ASDs.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmacy, The University of Texas at Austin , 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Lin Zhou
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin , 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Pan Y, Pang W, Lv J, Wang J, Yang C, Guo W. Solid state characterization of azelnidipine-oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs. J Pharm Biomed Anal 2017; 138:302-315. [PMID: 28237872 DOI: 10.1016/j.jpba.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Abstract
In present study, based on the two polymorphs (α and β form) of azelnidipine (AZE), 12 complexes of AZE and oxalic acid (OXA) were prepared by solvent-assisted grinding (SG) and neat powder grinding (NG) methods at the AZE/OXA molar ratios of 2:1, 1:1, and 1:2. The effect of the different polymorphs of AZE on the micro-structure of the complexes were investigated by powder X-ray diffraction (PXRD), tempreture modulated differential scanning calorimetry and thermogravimetric analysis, cryo-field emission scanning electron microscope system, fourier transform infrared (FTIR), and solid-state nuclear magnetic resonance spectroscopy. β-AZE-OXA co-crystal was produced at β-AZE/OXA molar ratio of 2:1 when SG method was used; while α-AZE was used to produce α-AZE-OXA co-crystal at same condition. However, the other 10 combinations were in co-amorphous forms, including the NG samples with α (or β)-AZE/OXA molar ratios of 2:1, 1:1 (SG and NG), and 1:2 (SG and NG). Although the XRD pattern and IR spectra of the two co-crystals showed no difference, the melting enthalpy and specific heat cp of the β-AZE-OXA co-crystal was higher than that of the α-AZE-OXA co-crystal, indicating that the numbers of solvent molecules which entered the two co-crystal lattices were different. Interestingly, obvious difference occurred in the IR spectra between the α-AZE-OXA and β-AZE-OXA co-amorphous systems. 1745cm-1 wave-numbers, which were assigned to the free CO groups, appeared in the α-AZE-OXA co-amorphous systems even when just a small amount of OXA was introduced, thereby indicating the presence of different intermolecular forces in the two series of co-amorphous forms. The solubility in different media and the dissolution rate in 0.1molL-1 HCl of the 12 complexes were determined. The dramatically improved dissolution rates of the α- and β-AZE-OXA 1:2 (NG) combinations in vitro showed potential in improving the physicochemical properties of AZE by co-amorphous complex formation.
Collapse
Affiliation(s)
- Yahui Pan
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenzhe Pang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Caiqin Yang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
38
|
He Y, Ho C, Yang D, Chen J, Orton E. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts. J Pharm Sci 2017; 106:1190-1196. [PMID: 28153596 DOI: 10.1016/j.xphs.2017.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
Salt formation is one of the primary approaches to improve the developability of ionizable poorly water-soluble compounds. Solubility determination of the salt candidates in aqueous media or biorelevant fluids is a critical step in salt screening. Salt solubility measurements can be complicated due to dynamic changes in both solution and solid phases. Because of the early implementation of salt screening in research, solubility measurements often are performed using minimal amount of material. Some salts have transient high solubility on dissolution. Recognition of these transients can be critical in developing these salts into drug products. This minireview focuses on challenges in salt solubility measurements due to the changes in solution caused by self-buffering effects of dissolved species and the changes in solid phase due to solid-state phase transformations. Solubility measurements and their accurate interpretation are assessed in the context of dissolution monitoring and solid-phase analysis technologies. A harmonized method for reporting salt solubility measurements is recommended to reduce errors and to align with the U.S. Pharmacopeial policy and Food and Drug Administration recommendations for drug products containing pharmaceutical salts.
Collapse
Affiliation(s)
- Yan He
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451.
| | - Chris Ho
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Donglai Yang
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Jeane Chen
- Pre-development Sciences, Sanofi, Waltham, Massachusetts 02451
| | - Edward Orton
- Prescient Drug Delivery LLC, Berkeley Heights, New Jersey 07922
| |
Collapse
|
39
|
Analysis and optimization of drug solubility to improve pharmacokinetics. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-016-0299-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Chen R, Wang X, Liu W, Zhang K, Li Y, Wei Z. A Comparative Study on Dissolution Enhancement of Acetaminophen by Cooling, Anti-solvent, and Solvent Evaporation Crystallization. AAPS PharmSciTech 2017; 18:224-230. [PMID: 26961968 DOI: 10.1208/s12249-016-0510-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/25/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to prepare APAP crystals by cooling, anti-solvent, and solvent evaporation crystallization to enhance its dissolution rate and to make comparisons of the three methods. Agitating speeds and types were regarded as factors affecting crystallization procedure. Samples were made with different ratios of PEG4000. They were characterized by X-ray diffraction and scanning electron microscopy. Dissolution tests were conducted to assess their dissolution property. The proportions of carriers existing in crystals by cooling and anti-solvent crystallization ranged from 1.3 to 5.1%. Mean dissolution time (MDT) of samples by the two methods was about 3 min, which was 17.2 min for untreated APAP. Addition of too much PEG4000 in solvent evaporation crystallization could decrease dissolution rate of APAP. Samples agitated by a rotor with speed of 100, 500, and 1000 rpm dissolved faster than those by a high shear mixer with speed of 3400 and 5000 rpm or by a glass rod. Agitating speed and type could affect particle size and drug dissolution. Dissolution enhancement of APAP might be attributed to decrease of fine particles and increase of particle wettability.
Collapse
|
41
|
Yonezawa Y, Ohsumi T, Miyashita T, Kataoka A, Hashimoto K, Nejishima H, Ogawa H. Evaluation of skin phototoxicity study using SD rats by transdermal and oral administration. J Toxicol Sci 2016; 40:667-83. [PMID: 26558448 DOI: 10.2131/jts.40.667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Guinea pigs are the most frequently used animals in phototoxicity studies. However, general toxicity studies most often use Sprague-Dawley (SD) rats. To reduce the number of animals needed for drug development, we examined whether skin phototoxicity studies could be performed using SD rats. A total of 19 drugs that had previously been shown to have phototoxic potential and 3 known phototoxic compounds were administered transdermally to guinea pigs and SD rats. Eleven of the potentially phototoxic drugs and 2 of the known phototoxic compounds were also administered orally to guinea pigs and SD rats. After administration, the animals were irradiated with UV-A (10 J/cm(2)) and UV-B (0.25 J/cm(2) in guinea pigs and 0.031 J/cm(2) in SD rats) with doses based on standard phototoxicity study guidelines and the results of a minimum erythema dose test, respectively. In the transdermal administration study, all of the known phototoxic compounds and 7 of the drugs induced phototoxic reactions. In the oral administration study, both known phototoxic compounds and 5 drugs induced phototoxic reactions in both species; one compound each was found to be toxic only in SD rats or guinea pigs. The concordance rate of guinea pigs and SD rats was 100% in the transdermal administration study and 85% in the oral administration study. This study demonstrated that phototoxicity studies using SD rats have the same potential to detect phototoxic compounds as studies using guinea pigs.
Collapse
Affiliation(s)
- Yutaka Yonezawa
- Pharmacokinetics and Safety Department Drug Research Center Kaken Pharmaceutical Co., Ltd
| | | | | | | | | | | | | |
Collapse
|
42
|
Jensen KT, Larsen FH, Löbmann K, Rades T, Grohganz H. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur J Pharm Biopharm 2016; 107:32-9. [PMID: 27368747 DOI: 10.1016/j.ejpb.2016.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Molecular interactions were investigated within four different co-amorphous drug-amino acid systems, namely indomethacin-tryptophan (Ind-Trp), furosemide-tryptophan (Fur-Trp), indomethacin-arginine (Ind-Arg) and furosemide-arginine (Fur-Arg). The co-amorphous systems were prepared by ball milling for 90min at different molar ratios and analyzed by XRPD and DSC. Interactions within the co-amorphous samples were evaluated based on the deviation between the actual glass transition temperature (Tg) and the theoretical Tg calculated by the Gordon-Taylor equation. The strongest interactions were observed in the 50mol% drug (1:1M ratio) mixtures, with the exception of co-amorphous Ind-Arg where the interactions within the 40mol% drug samples appear equally strong. A particularly large deviation between the theoretical and actual Tgs was observed within co-amorphous Ind-Arg and Fur-Arg systems. Further analysis of these co-amorphous systems by (13)C solid-state NMR (ssNMR) and FTIR confirmed that Ind and Fur formed a co-amorphous salt together with Arg. A modified approach of using the Gordon-Taylor equation was applied, using the equimolar co-amorphous mixture as one component, to describe the evolution of the Tgs with varying molar ratio between the drug and the amino acid. The actual Tgs for co-amorphous Ind-Trp, Fur-Trp and Fur-Arg were correctly described by this equation, confirming the assumption that the excess component was amorphous forming a homogeneous single component within the co-amorphous mixture without additional interactions. The modified equation described the Tgs of the co-amorphous Ind-Arg with excess Arg less well indicating possible further interactions; however, the FTIR and ssNMR data did not support the presence of additional intermolecular drug-amino acid interactions.
Collapse
Affiliation(s)
| | | | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Inagaki H, Ito R, Setoguchi Y, Oritani Y, Ito T. Administration of Piceatannol Complexed with α-Cyclodextrin Improves Its Absorption in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3557-3563. [PMID: 27078058 DOI: 10.1021/acs.jafc.6b00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Piceatannol is polyphenolic antioxidant found in passion fruit (Passiflora edulis) seeds. The aim of this study was to improve the absorption of piceatannol using α-cyclodextrin (αCD). The solubility of piceatannol in neutral and acidic solutions increased in an αCD concentration-dependent manner. The maximum plasma concentration of intact piceatannol and the time-to-maximum plasma concentration of O-methylated piceatannol metabolites increased in rats administered αCD-piceatannol inclusion complexes (PICs). Administering the αCD inclusion complexes significantly increased the area under the concentration-time curve of total stilbene derivatives (0-3 h) in terms of the total amount of intact piceatannol, O-methylated piceatannol, conjugated piceatannol, and isorhapontigenin. Gastrointestinal ligation experiments demonstrated that substantially higher levels of piceatannol metabolites were present in the lower intestine (the ileum) at 1 h postintragastric αCD-PICs administration as compared to those observed following piceatannol administration only. These results suggested that αCD enhanced piceatannol movement and absorption in the small intestine.
Collapse
Affiliation(s)
- Hiroyuki Inagaki
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Ryouichi Ito
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Yuko Setoguchi
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Yukihiro Oritani
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Tatsuhiko Ito
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| |
Collapse
|
44
|
Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm 2016; 504:98-109. [DOI: 10.1016/j.ijpharm.2016.03.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/18/2022]
|
45
|
Abstract
Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastro-resistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system, and under conditions simulating the changing environment of the gastrointestinal tract. Biorelevant gastric medium (pH 1.6) was employed, after which a change to biorelevant intestinal release medium (pH 6.5) was carried out. Both μ-Diss profiler and UV imaging release experiments showed that sealing of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug delivery system.
Collapse
|
46
|
Yehia SA, El-Ridi MS, Tadros MI, El-Sherif NG. Enhancement of the Oral Bioavailability of Fexofenadine Hydrochloride via Cremophor(®) El-Based Liquisolid Tablets. Adv Pharm Bull 2015; 5:569-81. [PMID: 26819931 DOI: 10.15171/apb.2015.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/30/2015] [Accepted: 11/14/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The current work aimed to develop promising Fexofenadine hydrochloride (FXD) liquisolid tablets able to increase its oral bioavailability and shorten time to reach maximum plasma concentrations (Tmax). METHODS Eighteen liquisolid powders were developed based on 3 variables; (i) vehicle type [Propylene glycol (PG) or Cremophor(®) EL (CR)], (ii) carrier [Avicel(®) PH102] to coat [Aerosil(®) 200] ratio (15, 20, 25) and (iii) FXD concentration in vehicle (30, 35, 40 %, w/w). Pre-compression studies involved identification of physicochemical interactions and FXD crystallinity (FT-IR, DSC, XRD), topographic visualization (SEM) and estimation of flow properties (angle of repose, Carr's index, Hausner's ratio). CR-based liquisolid powders were compressed as liquisolid tablets (LST 9 - 18) and evaluated for weight-variation, drug-content, friability-percentage, disintegration-time and drug-release. The pharmacokinetics of LST-18 was evaluated in healthy volunteers relative to Allegra(®) tablets. RESULTS Pre-compression studies confirmed FXD dispersion in vehicles, conversion to amorphous form and formation of liquisolid powders. CR-based liquisolid powders showed acceptable-to-good flow properties suitable for compaction. CR-based LSTs had appropriate physicochemical properties and short disintegration times. Release profile of LST-18 showed a complete drug release within 5 min. CONCLUSION LST-18 succeeded in increasing oral FXD bioavailability by 62% and reducing Tmax to 2.16 h.
Collapse
Affiliation(s)
- Soad Ali Yehia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
47
|
Li Y, Wang L, Tu Y, Yan J, Xu K, Li H. A new dosage form of emodin: For solubility and dissolution rate enhancement and application in Alzheimer's disease and bacteriostasis. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Jensen KT, Larsen FH, Cornett C, Löbmann K, Grohganz H, Rades T. Formation Mechanism of Coamorphous Drug–Amino Acid Mixtures. Mol Pharm 2015; 12:2484-92. [DOI: 10.1021/acs.molpharmaceut.5b00295] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katrine Tarp Jensen
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Hofmann Larsen
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Cornett
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy and ‡Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Nielsen LH, Rades T, Müllertz A. Stabilisation of amorphous furosemide increases the oral drug bioavailability in rats. Int J Pharm 2015; 490:334-40. [PMID: 26026252 DOI: 10.1016/j.ijpharm.2015.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/24/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022]
Abstract
A glass solution of the amorphous sodium salt of furosemide (ASSF) and polyvinylpyrrolidone (PVP) (80:20 w/w%) was prepared by spray drying. It was investigated if PVP was able to stabilise ASSF during storage and dissolution and whether this influenced the in vivo performance of the glass solution after oral dosing to rats. The glass solution had a glass transition temperature of 121.3 ± 0.5°C, which was significantly higher than that of the pure drug (101.2°C). ASSF in the glass solution was stable for at least 168 days when stored at 20°C and 0% relative humidity. The glass solution exhibited fast dissolution in simulated intestinal medium, pH 6.5; the intrinsic dissolution rate was found to be 10.1 ± 0.6 mg/cm(2)/min, which was significantly faster than the pure ASSF. When investigating the stability during dissolution in stimulated intestinal medium at pH 6.5, the ASSF in the glass solution showed signs of crystallinity after 1 min of dissolution, but crystallised to a lesser extent than pure ASSF. The stabilising effect of PVP on ASSF, led to improved relative oral bioavailability in rats of 263%, when compared to the pure ASSF.
Collapse
Affiliation(s)
- Line Hagner Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345B, 2800 Kongens Lyngby, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
50
|
Jones DS, Margetson DN, McAllister MS, Yu T, Shu L, McCoy CP, Andrews GP. Thermodynamically stable amorphous drug dispersions in amorphous hydrophilic polymers engineered by hot melt extrusion. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|