1
|
Garbiec E, Rosiak N, Sip S, Zalewski P, Cielecka-Piontek J. Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. Int J Mol Sci 2025; 26:855. [PMID: 39859569 PMCID: PMC11766122 DOI: 10.3390/ijms26020855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach. Another strategy involves co-amorphous systems, where low-molecular-weight components act as co-formers. A recent innovative approach combines these strategies. This study used tryptophan as a co-former and prepared systems using supercritical fluid technology. The amorphous nature of two systems was confirmed through X-ray powder diffraction: one with 10% curcumin and a polymer, and another with 10% curcumin, a polymer, and tryptophan. Fourier-transform infrared analysis demonstrated molecular interactions among all components in the systems. Scanning electron microscopy revealed that the amorphization process significantly modified the morphology of the powder particles. The ternary system with tryptophan notably increased curcumin solubility by over 300-fold. The amorphous form of curcumin in both systems exhibited significantly higher dissolution rates compared to its crystalline form. The system with tryptophan showed more than a threefold improvement in permeability according to the PAMPA test. The enhanced solubility led to over a sixfold increase in antioxidant activity and a 25-fold improvement in the inhibition of the enzyme butyrylcholinesterase.
Collapse
Affiliation(s)
| | | | | | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland; (E.G.); (N.R.); (S.S.); (P.Z.)
| |
Collapse
|
2
|
Mancillas-Quiroz JA, Carrasco-Portugal MDC, Mondragón-Vásquez K, Huerta-Cruz JC, Rodríguez-Silverio J, Rodríguez-Vera L, Reyes-García JG, Flores-Murrieta FJ, Domínguez-Chávez JG, Rocha-González HI. Development of a Novel Co-Amorphous Curcumin and L-Arginine (1:2): Structural Characterization, Biological Activity and Pharmacokinetics. Pharmaceutics 2024; 17:11. [PMID: 39861663 PMCID: PMC11768591 DOI: 10.3390/pharmaceutics17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Curcumin appears to be well tolerated and effective for managing chronic inflammatory pain, but its poor oral bioavailability has been a hurdle in its use as a therapeutic agent. The current study was performed to characterize a novel co-amorphous compound based on curcumin/L-arginine 1:2 (CAC12). Methods: Stability, solubility and structural characterization of the CAC12 were carried out by spectrometry techniques and in vitro assays, whereas the antinociceptive and anti-inflammatory effects were evaluated by CFA or carrageenan models. The mechanism of action was determined by cytokine quantification, and pharmacokinetic parameters were obtained through UPLC-MS/MS. The co-amorphous compound was prepared by fast solvent evaporation. Powder XRD, 13C-NMR, ATR-FTIR and TGA/DSC thermal analysis showed a 1:2 stoichiometry for the CAC12. Results: CAC12 was 1000 times more soluble than curcumin, and it was stable for 1 month at 40 °C and 75% relative humidity or for 60 min in physiological medium at pH 4.5-6.8. Co-amorphous curcumin/L-arginine, but not curcumin + L-arginine, decreased carrageenan- or CFA-induced inflammation and nociception by decreasing IL-1α, IL-1β, IL-6, TNF-α, MCP-1 and CXCL1 cytokines. The bioavailability of free plasmatic curcumin increased about 22.4 times when it was given as CAC12 relative to a phytosome formulation at the equivalent dose. Conclusions: Results suggest the possible use of CAC12 to treat inflammatory pain disorders in human beings.
Collapse
Affiliation(s)
- Jose Antonio Mancillas-Quiroz
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (J.A.M.-Q.); (J.R.-S.); (J.G.R.-G.); (F.J.F.-M.)
| | | | | | - Juan Carlos Huerta-Cruz
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.d.C.C.-P.); (J.C.H.-C.)
| | - Juan Rodríguez-Silverio
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (J.A.M.-Q.); (J.R.-S.); (J.G.R.-G.); (F.J.F.-M.)
| | | | - Juan Gerardo Reyes-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (J.A.M.-Q.); (J.R.-S.); (J.G.R.-G.); (F.J.F.-M.)
| | - Francisco Javier Flores-Murrieta
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (J.A.M.-Q.); (J.R.-S.); (J.G.R.-G.); (F.J.F.-M.)
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.d.C.C.-P.); (J.C.H.-C.)
| | | | - Héctor Isaac Rocha-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (J.A.M.-Q.); (J.R.-S.); (J.G.R.-G.); (F.J.F.-M.)
| |
Collapse
|
3
|
Luo C, Li R, Tang M, Gao Y, Zhang J, Qian S, Wei Y, Shen P. Amorphous solid dispersion to facilitate the delivery of poorly water-soluble drugs: recent advances on novel preparation processes and technology coupling. Expert Opin Drug Deliv 2024; 21:1807-1822. [PMID: 39484838 DOI: 10.1080/17425247.2024.2423813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Amorphous solid dispersion (ASD) technique has recently been used as an effective formulation strategy to significantly improve the bioavailability of insoluble drugs. The main industrialized preparation methods for ASDs are mainly hot melt extrusion and spray drying techniques; however, they face the limitations of being unsuitable for heat-sensitive materials and organic reagent residues, respectively, and therefore novel preparation processes and technology coupling for developing ASDs have received increasing attention. AREAS COVERED This paper reviews recent advances in ASD and provides an overview of novel preparation methods, mechanisms for improving drug bioavailability, and especially technology coupling. EXPERT COVERED As a mature pharmaceutical technology, ASD has broad application prospects and values. During the period from 2012 to 2024, the FDA has approved 49 formulation products containing ASDs. However, with the diversification of drug types and clinical needs, the traditional formulation technology of ASDs is gradually no longer sufficient to meet the needs of clinical medication. Therefore, this review summarizes the studies on both novel preparation processes and technology combinations; and provides a comprehensive overview of the mechanisms of ASD to improve drug bioavailability, in order to better select appropriate preparation methods for the development of ASD formulations.
Collapse
Affiliation(s)
- Chengxiang Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruipeng Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mi Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Jiangsu Litaier Pharma Ltd, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
4
|
Kadri L, Casali L, Emmerling F, Tajber L. Mechanochemical comparison of ball milling processes for levofloxacin amorphous polymeric systems. Int J Pharm 2024; 665:124652. [PMID: 39214432 DOI: 10.1016/j.ijpharm.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the amorphization capabilities of levofloxacin hemihydrate (LVXh), a fluoroquinolone drug, using a polymer excipient, Eudragit® L100 (EL100). Ball milling (BMing) was chosen as the manufacturing process and multiple mill types were utilized for comparison purposes. The product outcomes of each mill were analyzed in detail. The solid-state of the samples produced was comprehensively characterized by Powder X-ray Diffraction (PXRD), In-situ PXRD, Differential Scanning Calorimetry (DSC), Solid-State Fourier Transform Infrared Spectroscopy (FT-IR), and Dynamic Vapor Sorption (DVS). The crystallographic planes of LVXh were investigated by in-situ PXRD to disclose the presence or absence of weak crystallographic plane(s). The mechanism of LVXh:EL100 system formation was discovered as a two-step process, first involving amorphization of LVXh followed by an interaction with EL100, rather than as an instantaneous process. DVS studies of LVXh:EL100 samples showed different stability properties depending on the mill used and % LVXh present. Overall, a more sustainable approach for achieving full amorphization of the fluoroquinolone drug, LVXh, was accomplished, and advancements to the fast-growing world of pharmaceutical mechano- and tribo-chemistry were made.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland
| | - Lucia Casali
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland.
| |
Collapse
|
5
|
Chen X, Qin Y, Wang L, Zhu Y, Zhang H, Liu W, Zeng M, Dai Q. Co-amorphous systems of sulfasalazine with matrine-type alkaloids: Enhanced solubility behaviors and synergistic therapeutic potential. Eur J Pharm Biopharm 2024; 203:114475. [PMID: 39216557 DOI: 10.1016/j.ejpb.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.
Collapse
Affiliation(s)
- Xin Chen
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Yirui Qin
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Lijun Wang
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yujing Zhu
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China; Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Mei Zeng
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qian Dai
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| |
Collapse
|
6
|
Kadri L, Carta M, Lampronti G, Delogu F, Tajber L. Mechanochemically Induced Solid-State Transformations of Levofloxacin. Mol Pharm 2024; 21:2838-2853. [PMID: 38662637 DOI: 10.1021/acs.molpharmaceut.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| | - Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Giulio Lampronti
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
7
|
Garbiec E, Rosiak N, Zalewski P, Tajber L, Cielecka-Piontek J. Genistein Co-Amorphous Systems with Amino Acids: An Investigation into Enhanced Solubility and Biological Activity. Pharmaceutics 2023; 15:2653. [PMID: 38139995 PMCID: PMC10747361 DOI: 10.3390/pharmaceutics15122653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Genistein, an isoflavone known for its antioxidant and antidiabetic effects, suffers from the drawback of low solubility. To overcome this limitation, co-amorphous systems were synthesized by incorporating amino acids that were chosen through computational methods. The confirmation of the amorphous state of lysine and arginine-containing systems was ascertained by X-ray powder diffraction. Subsequently, the characterization of these systems was extended by employing thermo-gravimetry, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The investigation also included an assessment of the physical stability of the samples during storage. The apparent solubility of the systems was studied in an aqueous medium. To evaluate the in vitro permeability through the gastrointestinal tract, the parallel artificial membrane permeability assay was employed. The biological properties of the systems were assessed with regard to their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl and cupric ion-reducing antioxidant capacity assays, as well as their ability to inhibit α-glucosidase. The systems' glass transition temperatures were determined, and their homogeneity confirmed via differential scanning calorimetry analysis, while Fourier-transform infrared spectroscopy analysis provided data on molecular interactions. Stability was maintained for the entire 6-month storage duration. The co-amorphous system containing lysine displayed the most pronounced apparent solubility improvement, as well as a significant enhancement in antioxidant activity. Notably, both systems demonstrated superior α-glucosidase inhibition relative to acarbose, a standard drug for managing type 2 diabetes. The results indicate that co-amorphous systems with lysine and arginine have the potential to significantly enhance the solubility and biological activity of genistein.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.G.); (N.R.); (P.Z.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.G.); (N.R.); (P.Z.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.G.); (N.R.); (P.Z.)
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (E.G.); (N.R.); (P.Z.)
| |
Collapse
|
8
|
Pérez-Carreón K, Martínez LM, Videa M, Cruz-Angeles J, Gómez J, Ramírez E. Effect of Basic Amino Acids on Folic Acid Solubility. Pharmaceutics 2023; 15:2544. [PMID: 38004524 PMCID: PMC10675447 DOI: 10.3390/pharmaceutics15112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
To prevent neural tube defects and other cardiovascular diseases in newborns, folic acid (FA) is recommended in pregnant women. A daily dose of 600 µg FA consumption is widely prescribed for women during pregnancy and 400 µg for women with childbearing potential. FA is a class IV compound according to the Biopharmaceutics Classification System (BCS) due to its low permeability (1.7 × 10-6 cm/s) and low solubility (1.6 mg/L); therefore, it must be administered via a formulation that enhances its solubility. Studies reported in the literature have proved that co-amorphization and salt formation of a poorly soluble drug with amino acids (AA) can significantly increase its solubility. Although arginine has been used with FA as a supplement, there is no information on the effect of basic AA (arginine and lysine) on the physical and chemical properties of FA-AA binary formulations. The present study implemented a conductimetric titration methodology to find the effective molar ratio to maximize FA solubility. The results showed that a 1:2.5 FA:AA molar ratio maximized solubility for arginine and lysine. Binary formulations were prepared using different methods, which led to an amorphous system confirmed by the presence of a glass transition, broad FTIR bands, and the absence of an X-ray diffraction pattern. Results of FA:AA (1:2.5) solubility increased in the range of 5500-6000 times compared with pure FA. In addition to solubility enhancement, the binary systems presented morphological properties that depend on the preparation method and whose consideration could be strategic for scaling purposes.
Collapse
Affiliation(s)
| | - Luz María Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur. Monterrey N.L., Monterrey 64849, Mexico
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur. Monterrey N.L., Monterrey 64849, Mexico
| | | | | | | |
Collapse
|
9
|
Sinapic Acid Co-Amorphous Systems with Amino Acids for Improved Solubility and Antioxidant Activity. Int J Mol Sci 2023; 24:ijms24065533. [PMID: 36982605 PMCID: PMC10053217 DOI: 10.3390/ijms24065533] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The objective of this study was to obtain co-amorphous systems of poorly soluble sinapic acid using amino acids as co-formers. In order to assess the probability of the interaction of amino acids, namely, arginine, histidine, lysine, tryptophan, and proline, selected as co-formers in the amorphization of sinapic acid, in silico studies were carried out. Sinapic acid systems with amino acids in a molar ratio of 1:1 and 1:2 were obtained using ball milling, solvent evaporation, and freeze drying techniques. X-ray powder diffraction results confirmed the loss of crystallinity of sinapic acid and lysine, regardless of the amorphization technique used, while remaining co-formers produced mixed results. Fourier-transform infrared spectroscopy analyses revealed that the co-amorphous sinapic acid systems were stabilized through the creation of intermolecular interactions, particularly hydrogen bonds, and the potential formation of salt. Lysine was selected as the most appropriate co-former to obtain co-amorphous systems of sinapic acid, which inhibited the recrystallization of sinapic acid for a period of six weeks in 30 °C and 50 °C. Obtained co-amorphous systems demonstrated an enhancement in dissolution rate over pure sinapic acid. A solubility study revealed a 12.9-fold improvement in sinapic acid solubility after introducing it into the co-amorphous systems. Moreover, a 2.2-fold and 1.3-fold improvement in antioxidant activity of sinapic acid was observed with respect to the ability to neutralize the 2,2-diphenyl-1-picrylhydrazyl radical and to reduce copper ions, respectively.
Collapse
|
10
|
Hibbard T, Nyambura B, Scholes P, Totolici M, Shankland K, Al-Obaidi H. Preparation and Physiochemical Analysis of Novel Ciprofloxacin / Dicarboxylic Acid Salts. J Pharm Sci 2023; 112:195-203. [PMID: 35948159 DOI: 10.1016/j.xphs.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
The crystal structures of four novel dicarboxylic acid salts of ciprofloxacin (CFX) with modified physicochemical properties, prepared by mechanochemical synthesis and solvent crystallization, are reported. A series of dicarboxylic acids of increasing molecular weight was chosen, predicted to interact via a carboxylic acid:secondary amine synthon. These were succinic (SA), glutaric (GA), adipic (AA) and pimelic (PA) acids (4, 5, 6, 7 carbon atoms respectively). Characterized by single crystal and powder X-ray diffraction, Fourier-Transform Infrared Spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and aqueous solubility measurements, these salts showed distinct physicochemical properties relative to ciprofloxacin base. Searches of the Cambridge Structural Database (CSD) confirmed CFX-SA, CFX-GA, CFX-AA and CFX-PA to be novel crystal structures. Furthermore, the GA salt has substantially higher solubility than the widely available hydrochloride monohydrate salt (CFX-HCl·H2O). CFX-SA, CFX-GA and CFX-AA showed minimum inhibitory concentration (MIC) of 0.008 g/L and CFX-PA showed MIC of 0.004 g/L. The prepared CFX salts retained antibacterial activity exhibiting equivalent antimicrobial activity to CFX-HCl·H2O. These salts have positive implications for increasing the application of CFX beyond conventional oral formulations and highlight mechanochemical activation as suitable production method.
Collapse
Affiliation(s)
- Thomas Hibbard
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | | | - Peter Scholes
- Quotient Sciences, 5 Boulton Road, Reading, RG2 0NH, UK
| | | | | | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK.
| |
Collapse
|
11
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Chen X, Li D, Zhang H, Duan Y, Huang Y. Co-amorphous Systems of Sinomenine with Platensimycin or Sulfasalazine: Physical Stability and Excipient-Adjusted Release Behavior. Mol Pharm 2022; 19:4370-4381. [PMID: 36251509 DOI: 10.1021/acs.molpharmaceut.2c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan528200, PR China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, PR China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha410011, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan410013, PR China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan410011, PR China
| |
Collapse
|
13
|
Alsalhi MS, Royall PG, Chan KLA. Mechanistic study of the solubilization effect of basic amino acids on a poorly water-soluble drug. RSC Adv 2022; 12:19040-19053. [PMID: 35865577 PMCID: PMC9240925 DOI: 10.1039/d2ra02870k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids have shown promising abilities to form complexes with poorly water-soluble drugs and improve their physicochemical properties for a better dissolution profile through molecular interactions. Salt formation via ionization between acidic drugs and basic amino acids is known as the major contributor to solubility enhancement. However, the mechanism of solubility enhancement due to non-ionic interactions, which is less pH-dependent, remains unclear. The aim of this study is to evaluate non-ionic interactions between a model acidic drug, indomethacin (IND), and basic amino acids, arginine, lysine and histidine, in water. At low concentrations of amino acids, IND-arginine and IND-lysine complexes have shown a linear relationship (AL-type phase solubility diagram) between IND solubility and amino acid concentration, producing ∼1 : 1 stoichiometry of drug-amino acid complexes as expected due to the strong electrostatic interactions. However, IND-histidine complexes have shown a nonlinear relationship with lower improvement in IND solubility due to the weaker electrostatic interactions when compared to arginine and lysine. Interestingly, the results have also shown that at high arginine concentrations, the linearity was lost between IND solubility and amino acid concentration with a negative diversion from linearity, following the type-AN phase solubility. This is indicative that the electrostatic interaction is being interrupted by non-electrostatic interactions, as seen with histidine. The IND-lysine complex, on the other hand, showed a complex curvature phase solubility diagram (type BS) as lysine self-assembles and polymerizes at higher concentrations. The freeze-dried drug-amino acid solids were further characterized using thermal analysis and infrared spectroscopy, with results showing the involvement of weak non-ionic interactions. This study shows that the solubility improvement of an insoluble drug in the presence of basic amino acids was due to both non-ionic and ionic interactions.
Collapse
Affiliation(s)
| | - Paul G Royall
- Institute of Pharmaceutical Science, King's College London SE1 9NH UK
| | | |
Collapse
|
14
|
Islam NU, Umar MN, Khan E, Al-Joufi FA, Abed SN, Said M, Ullah H, Iftikhar M, Zahoor M, Khan FA. Levofloxacin Cocrystal/Salt with Phthalimide and Caffeic Acid as Promising Solid-State Approach to Improve Antimicrobial Efficiency. Antibiotics (Basel) 2022; 11:797. [PMID: 35740203 PMCID: PMC9220774 DOI: 10.3390/antibiotics11060797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
To overcome the issue of multidrug resistant (MDR) microbes, the exploration of ways to improve the antimicrobial efficiency of existing antibiotics is one of the promising approaches. In search of synthons with higher efficiency, in current investigations, cocrystal and amorphous salt of levofloxacin hemihydrate (LEV) were developed with phthalimide (PTH) and caffeic acid (CFA). New materials were characterized with the help of FT-IR, Raman spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Shifting, attenuation, appearance/disappearance and broadening of bands were observed in the FT-IR and Raman spectra of the materials as evidence of the required product. The PXRD diffraction pattern observed for LEV-PTH indicated cocrystal while halo diffractogram of LEV-CFA revealed amorphous nature. DSC/TG analysis confirmed the hydrated nature of the cocrystal/salt. The dissolution rate and antimicrobial activity against selected strains, K.pneumonia, E. coli and S. typhi of parent drug and the new material were compared. The zone of inhibition (ZI) observed for 5 µg LEV-PTH was 30.4 + 0.36 (K. pneumonia), 26.33 + 0.35 (E. coli) and 30.03 + 0.25 mm (S. typhi) while LEV-CFA salt (5 µg) against the same strains inhibited 33.96 ± 0.25, 31.66 ± 0.35 and 27.93 ± 0.40 mm, respectively. These novel formulations enhance the dissolution rate as well as antibacterial efficiency and are expected to be potent against MDR bacterial strains.
Collapse
Affiliation(s)
- Noor Ul Islam
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Shaymaa Najm Abed
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakaka 72311, Saudi Arabia;
| | - Muhammad Said
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Habib Ullah
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Muhammad Iftikhar
- Department of Biochemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Farhat Ali Khan
- Department of Pharmacy, Shaheed Benazir Bhuto University, Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan;
| |
Collapse
|
15
|
Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tomar D, Lodagekar A, Gunnam A, Allu S, Chavan RB, Tharkar M, Ajithkumar TG, Nangia AK, Shastri NR. The effects of cis and trans butenedioic acid on the physicochemical behavior of lumefantrine. CrystEngComm 2022. [DOI: 10.1039/d0ce01709d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of the differences in the effects of cis (maleic acid) and trans (fumaric acid) isomers of butenedioic acid on the crystallinity, amorphous nature, and pharmaceutical behaviour of the antimalarial drug lumefantrine is provided.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Anurag Lodagekar
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Anilkumar Gunnam
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
| | - Suryanarayana Allu
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
| | - Rahul B. Chavan
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Minakshi Tharkar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - T. G. Ajithkumar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Ashwini K. Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Nalini R. Shastri
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| |
Collapse
|
17
|
Bongioanni A, Bueno MS, Mezzano BA, Longhi MR, Garnero C. Amino acids and its pharmaceutical applications: A mini review. Int J Pharm 2021; 613:121375. [PMID: 34906648 DOI: 10.1016/j.ijpharm.2021.121375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Amino acids are natural compounds that can be safely used in pharmaceutical applications. Considering the great interest in the amino acids used in the pharmaceutical industry, this article presents an overview of investigations reported in recent years. In this regard, the first sections begin with an introductory description of the properties, classification and safety of amino acids, while in the other sections the most common methods for the preparation of amino acids formulations and their application on solubilization, permeation and stabilization of several active pharmaceutical ingredients are described. Furthermore, available data about the multicomponent systems approach is included. Lastly, the impact of amino acids formulations on therapeutic efficacy is explored. The advantages illustrated suggest that amino acids are capable of improving the biopharmaceutical properties of drugs.
Collapse
Affiliation(s)
- Agustina Bongioanni
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Maria Soledad Bueno
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Belén Alejandra Mezzano
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Marcela Raquel Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Claudia Garnero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| |
Collapse
|
18
|
Submerged Eutectic-Assisted, Solvent-Free Mechanochemical Formation of a Propranolol Salt and Its Other Multicomponent Solids. Pharmaceutics 2021; 13:pharmaceutics13122125. [PMID: 34959406 PMCID: PMC8703429 DOI: 10.3390/pharmaceutics13122125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Salt preparation via a solid-state reaction offers a solution to challenges posed by current pharmaceutical research, which include combining development of novel forms of active pharmaceutical ingredients with greener, sustainable synthesis. This work investigated in detail the mechanism of salt formation between propranolol (PRO) and capric acid (CAP) and explored the solid eutectic phases comprising this salt, propranolol caprate (PRC). The salt structure was solved by X-ray diffraction, and the properties in the crystalline and supercooled states were fully characterised using thermal analysis, nuclear magnetic resonance, Fourier-transform infrared spectroscopy and broadband dielectric spectroscopy (BDS). PRC forms via a submerged eutectic phase composed of PRO and CAP, below room temperature, by mechanochemistry without an extra input of energy. Two other solid eutectic phases are composed of PRC and either CAP or PRO, at 0.28 and 0.82 mol fraction of PRO, respectively. BDS indicated that the supercooled PRC has ionic character, whereas the supercooled PRC-PRO eutectic had predominantly non-ionic properties despite comprising the salt. In conclusion, knowledge of the mechanism of formation of multicomponent systems can help in designing more sustainable pharmaceutical processes.
Collapse
|
19
|
Abioye A, Naqvi M, Pattni D, Adepoju-Bello AA. Non-intuitive Behavior of Polymer-Ciprofloxacin Nanoconjugate Suspensions: a Tool for Flexible Oral Drug Delivery. AAPS PharmSciTech 2021; 22:229. [PMID: 34467444 DOI: 10.1208/s12249-021-02105-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022] Open
Abstract
Ciprofloxacin (CPX) is prone to spontaneous self-aggregation and formation of supramolecular dimers (π - π stacking) due to its complicated surface chemistry which has been associated with its anomalous solubility and instability in aqueous systems particularly near neutral pH. The surface characteristic of ciprofloxacin was modified through non-intuitive counterion interaction between CPX and diethylaminoethyl dextran (DDEX) to form nanoconjugate assembly. The CPX-DDEX nanoconjugate was confirmed by FTIR, SEM, DSC, TGA, and 1H-NMR. The DSC thermograms showed a remarkable 20% reduction in the melting temperature (Tm) of CPX from 268.57±1.11°C to 214.36±1.0211°C and 78% reduction in enthalpy of fusion (ΔHf) from 59.84 kJ/mol (180.59 J/g) to 12.90 kJ/mol (38.92 J/g), indicating increased solubility and dissolution efficiency. DDEX polymer alone exhibited pseudoplastic characteristics however with more viscous rather than elastic response, while the CPX-DDEX nanoconjugate suspensions exhibited remarkable elastic behavior with significantly increased storage modulus (G') thus controlling and extending the release of CPX. The reconstituted freeze-dried CPX-DDEX nanoconjugate suspension was chemically stable throughout the 90-day study both in the refrigerator and at controlled room temperature, while the aqueous suspension of pure CPX without DDEX was only stable for 72 and 24 h, respectively. The dissolution efficiency of the CPX-DDEX nanoconjugate suspensions increased with increasing molar concentration of DDEX to a maximum of 100% at 50 μM of DDEX followed by a remarkable decrease within the 3-week study. It was apparent that the dissolution efficiency was governed by a critical balance between the CPX solubility and the viscoelastic characteristics of the polymeric nanoassembly. This study demonstrates the potential application of polymer-drug nanoconjugation formulation design to stabilization and flexible delivery of CPX from aqueous suspension systems. Graphical abstract.
Collapse
|
20
|
Newman A, Zografi G. What Are the Important Factors That Influence API Crystallization in Miscible Amorphous API-Excipient Mixtures during Long-Term Storage in the Glassy State? Mol Pharm 2021; 19:378-391. [PMID: 34378939 DOI: 10.1021/acs.molpharmaceut.1c00519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Perspective, the authors examine the various factors that should be considered when attempting to use miscible amorphous API-excipient mixtures (amorphous solid dispersions and coamorphous systems) to prevent the solid-state crystallization of API molecules when isothermally stored for long periods of time (a year or more) in the glassy state. After presenting an overview of a variety of studies designed to obtain a better understanding of possible mechanisms by which amorphous API undergo physical instability and by which excipients generally appear to inhibit API crystallization from the amorphous state, we examined 78 studies that reported acceptable physical stability of such systems, stored below Tg under "dry" conditions for one year or more. These results were examined more closely in terms of two major contributing factors: the degree to which a reduction in diffusional molecular mobility and API-excipient molecular interactions operates to inhibit crystallization. These two parameters were chosen because the data are readily available in early development to help compare amorphous systems. Since Tg - T = 50 K is often used as a rule of thumb for the establishing the minimum value below Tg required to reduce diffusional mobility to a period of years, it was interesting to observe that 30 of the 78 studies still produced significant physical stability at values of Tg - T < 50 K (3-47 °C), suggesting that factors besides diffusive molecular mobility likely contribute. A closer look at the Tg - T < 50 systems shows that hydrogen bonding, proton transfer, disruption of API-API self-associations (such as dimers), and possible π-π stacking were reported for most of the systems. In contrast, five crystallized systems that were monitored for a year or more were also examined. These systems exhibited Tg - T values of 9-79, with three of them exhibiting Tg - T < 50. For these three samples, none displayed molecular interactions by infrared spectroscopy. A discussion on the impact of relative humidity on long-term crystallization in the glass was included, with attention paid to the relative water vapor sorption by various excipients and effects on diffusive mobility and molecular interactions between API and excipient.
Collapse
Affiliation(s)
- Ann Newman
- Seventh Street Development Group, Kure Beach, North Carolina 28449, United States
| | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Zhao X, Cheng S, Koh YP, Kelly BD, McKenna GB, Simon SL. Prediction of the Synergistic Glass Transition Temperature of Coamorphous Molecular Glasses Using Activity Coefficient Models. Mol Pharm 2021; 18:3439-3451. [PMID: 34313449 DOI: 10.1021/acs.molpharmaceut.1c00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The glass transition temperature (Tg) of a binary miscible mixture of molecular glasses, termed a coamorphous glass, is often synergistically increased over that expected for an athermal mixture due to the strong interactions between the two components. This synergistic interaction is particularly important for the formulation of coamorphous pharmaceuticals since the molecular interactions and resulting Tg strongly impact stability against crystallization, dissolution kinetics, and bioavailability. Current models that describe the composition dependence of Tg for binary systems, including the Gordon-Taylor, Fox, Kwei, and Braun-Kovacs equations, fail to describe the behavior of coamorphous pharmaceuticals using parameters consistent with experimental ΔCP and Δα. Here, we develop a robust thermodynamic approach extending the Couchman and Karasz method through the use of activity coefficient models, including the two-parameter Margules, non-random-two-liquid (NRTL), and three-suffix Redlich-Kister models. We find that the models, using experimental values of ΔCP and fitting parameters related to the binary interactions, successfully describe observed synergistic elevations and inflections in the Tg versus composition response of coamorphous pharmaceuticals. Moreover, the predictions from the NRTL model are improved when the association-NRTL version of that model is used. Results are reported and discussed for four different coamorphous systems: indomethacin-glibenclamide, indomethacin-arginine, acetaminophen-indomethacin, and fenretinide-cholic acid.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sixue Cheng
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yung P Koh
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Brandon D Kelly
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gregory B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sindee L Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Khanfar M, Al-Remawi M, Al-Akayleh F, Hmouze S. Preparation and Evaluation of Co-amorphous Formulations of Telmisartan-Amino Acids as a Potential Method for Solubility and Dissolution Enhancement. AAPS PharmSciTech 2021; 22:112. [PMID: 33748914 DOI: 10.1208/s12249-021-01952-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/03/2021] [Indexed: 11/30/2022] Open
Abstract
Telmisartan (TLM) is a potent antihypertensive drug with pH-dependent aqueous solubility. This work aimed to enhance the solubility and dissolution rate of TLM by the co-amorphous drug amino acid (AA) approach by combining TLM, with different types and ratios of AAs. The co-amorphous TLM-AA blends were prepared by freeze-drying and investigated for solid-state characteristics like the dissolution rate enhancement of TLM. Among the prepared co-amorphous formulations, TLM-arginine (ARG) exhibited the greatest enhancement in solubility with increasing the molar ratio of ARG. The TLM-ARG at 1:2 ratio showed about a 57-fold increase in solubility of TLM and the highest dissolution percentage in phosphate buffer (pH7.5) (100% in 20 minutes) compared to both crystalline TLM (20% in 60 min) and physical mixture. Powder XRD, DSC, FTIR analysis and SEM demonstrated the formation of amorphous form within the co-amorphous formulations. Only TLM:ARG (1:0.5) were stable at (40°C, 75% RH) for a minimum of 90 days. In conclusion, ARG was able to stabilize the amorphous form of TLM and enhances its aqueous solubility and dissolution. The 1:2 w/w ratio of TLM-ARG co-amorphous showed the best solubility and dissolution rate while the 1:0.5 w/w ratio showed the best stability.
Collapse
|
23
|
Sinomenine-phenolic acid coamorphous drug systems: Solubilization, sustained release, and improved physical stability. Int J Pharm 2021; 598:120389. [PMID: 33609724 DOI: 10.1016/j.ijpharm.2021.120389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Sinomenine (SIN), isolated from Caulis sinomenii, is a benzyltetrahydroisoquinoline-type alkaloid with potent anti-inflammatory and analgesic effects. SIN-HCl has been used in the forms of tablets or enteric-coated tablets in the treatment of rheumatoid arthritis in China for years, while its short half-life leads to attenuated therapeutic effects and serious side effects. In the current study, three phenolic acids, including salicylic acid (SAA), 2,3-dihydroxybenzoic acid (23DHB), and 2,4-dihydroxybenzoic acid (24DHB), were firstly employed as coamorphous coformers to prepare three binary SIN-phenolic acid coamorphous systems. These new coamorphous systems were characterized by powder X-ray diffraction (PXRD), modulated temperature differential scanning calorimetry (mDSC), and Fourier transform infrared spectroscopy (FTIR). The formation of SIN-phenolic acid coamorphous systems are supported by the absence of diffraction peaks in their PXRD spectra, as well as the single Tgs of three samples (i.e., SIN-SAA, SIN-23DHB, and SIN-24DHB) at 109.5 °C, 124.9 °C, and 135.3 °C. Importantly, the salt formation between SIN and phenolic acids was observed in FTIR. In three coamorphous systems, coamorphous SIN-24DHB shows superior physicochemical stability under both low humidity and accelerated storage conditions. They were also more soluble than crystalline SIN, while were released slower than the commercial SIN-HCl in dissolution experiments. Therefore, our study suggests that phenolic acids may be used as a new type of coformers in the preparation of coamorphous systems for active pharmaceutical ingredients.
Collapse
|
24
|
Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Ž, Marrucho IM, Pedrosa R, Branco LC. Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12080694. [PMID: 32717808 PMCID: PMC7464485 DOI: 10.3390/pharmaceutics12080694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
As the development of novel antibiotics has been at a halt for several decades, chemically enhancing existing drugs is a very promising approach to drug development. Herein, we report the preparation of twelve organic salts and ionic liquids (OSILs) from ciprofloxacin and norfloxacin as anions with enhanced antimicrobial activity. Each one of the fluoroquinolones (FQs) was combined with six different organic hydroxide cations in 93-100% yield through a buffer-assisted neutralization methodology. Six of those were isomorphous salts while the remaining six were ionic liquids, with four of them being room temperature ionic liquids. The prepared compounds were not toxic to healthy cell lines and displayed between 47- and 1416-fold more solubility in water at 25 and 37 °C than the original drugs, with the exception of the ones containing the cetylpyridinium cation. In general, the antimicrobial activity against Klebsiella pneumoniae was particularly enhanced for the ciprofloxacin-based OSILs, with up to ca. 20-fold decreases of the inhibitory concentrations in relation to the parent drug, while activity against Staphylococcus aureus and the commensal Bacillus subtilis strain was often reduced. Depending on the cation-drug combination, broad-spectrum or strain-specific antibiotic salts were achieved, potentially leading to the future development of highly bioavailable and safe antimicrobial ionic formulations.
Collapse
Affiliation(s)
- Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Catarina Florindo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Alexandra Costa
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Isabel M. Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Rui Pedrosa
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| |
Collapse
|
25
|
Tran TT, Hadinoto K. Ternary nanoparticle complex of antibiotic, polyelectrolyte, and mucolytic enzyme as a potential antibiotic delivery system in bronchiectasis therapy. Colloids Surf B Biointerfaces 2020; 193:111095. [PMID: 32416520 DOI: 10.1016/j.colsurfb.2020.111095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022]
Abstract
Antibiotic-polyelectrolyte nanoparticle complex (or nanoplex in short) has been recently demonstrated as a superior antibiotic delivery system to the native antibiotic in bronchiectasis therapy owed to its ability to overcome the lung's mucus barrier and generate high localized antibiotic exposure in the infected sites. The present work aimed to further improve the mucus permeability, hence the antibacterial efficacy of the nanoplex, by incorporating mucolytic enzyme papain (PAP) at the nanoplex formation step to produce PAP-decorated antibiotic-polyelectrolyte nanoplex exhibiting built-in mucolytic capability. Ciprofloxacin (CIP) and dextran sulfate (DXT) were used as the models for antibiotics and polyelectrolyte, respectively. The results showed that the PAP inclusion had minimal effects on the physical characteristics, preparation efficiency, and dissolution of the CIP-DXT nanoplex. The optimal CIP-(DXT-PAP) nanoplex exhibited size and zeta potential of approximately 200 nm and -50 mV with CIP and PAP payloads of 60% and 32% (w/w), respectively. The nanoplex was prepared at high efficiency with larger than 80% CIP and PAP utilization rates. The CIP-(DXT-PAP) nanoplex exhibited tenfold improvement in the mucus permeability compared to its CIP-DXT nanoplex counterpart, resulting in the former's superior bactericidal activity against clinical Pseudomonas aeruginosa biofilm in the presence of mucus barrier. A trade-off, nevertheless, existed between antibacterial efficacy and cytotoxicity towards human lung epithelium cells upon the incorporation of PAP above a certain concentration threshold. Therefore, the optimal dosing of the CIP-(DXT-PAP) nanoplex must be carefully determined.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
26
|
Ruponen M, Rusanen H, Laitinen R. Dissolution and Permeability Properties of Co-Amorphous Formulations of Hydrochlorothiazide. J Pharm Sci 2020; 109:2252-2261. [PMID: 32315662 DOI: 10.1016/j.xphs.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
A biopharmaceutics classification system class IV drug, hydrochlorothiazide (HCT), was combined with co-formers of L-and d-arginine (ARG) and sodium lauryl sulphate (SLS) by cryomilling in 1:1 molar ratio. Co-amorphization was observed with L- and D-ARG. These mixtures showed a single glass transition, evidence of possible salt formation and improved physical stability at elevated temperatures and/or humidity when compared with amorphous HCT. The co-amorphous formulations, along with the combinations of HCT and HCT:L-ARG with polyvinylpyrrolidone (PVP) in 1:1 mass ratio, were investigated with a simultaneous dissolution/permeation setup using parallel artificial membrane permeability assay (PAMPA) or Madine Darby kidney cells (MDCKII) as the permeation barrier. It was observed that co-amorphization with L-ARG and D-ARG was able to induce a supersaturated state for HCT, possibly through intermolecular interactions, but there was virtually no difference between the dissolution properties of the mixtures formed with the 2 optical isomers of ARG. The permeability of HCT was found to be dependent on the dissolution properties of the formulations in both PAMPA and cellular barrier experiments. Thus, co-amorphization of HCT with L- and D-ARG demonstrated the possibility to enhance the dissolution and thereby the permeation potential of a BCS class IV drug.
Collapse
Affiliation(s)
- Marika Ruponen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Henna Rusanen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland
| | - Riikka Laitinen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
27
|
Xu K, Qian M, Leng J, Bai J, Li Q, Liu Z, Zhong S, Zhao S. Direct salinization of trelagliptin from solid forms by mechanochemistry and its mechanism of salt formation. CrystEngComm 2020. [DOI: 10.1039/d0ce00984a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct salinization of trelagliptin from solid forms by mechanochemistry was developed, which clarified that similar intermolecular interactions and any factor inducing proton transfer have a vital role in the formation of API salts.
Collapse
Affiliation(s)
- Kailin Xu
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| | - Menglin Qian
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| | - Jiewu Leng
- Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing System
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou
- Guangdong University of Technology
- China
| | - Jie Bai
- Analysis and Test Center
- Guangdong University of Technology
- Guangzhou
- China
| | - Qinglan Li
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| | - Zihong Liu
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| | - Shijuan Zhong
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
28
|
Abioye A, Sanyaolu A, Dudzinska P, Adepoju-Bello AA, Coker HAB. Chitosan-induced Synergy for Extended Antimicrobial Potency and Enhanced In Vitro Drug Release of Free Base Ciprofloxacin Nanoplexes. Pharm Nanotechnol 2020; 8:33-53. [PMID: 31642799 DOI: 10.2174/2211738507666191021102256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ciprofloxacin free base is practically insoluble in aqueous medium (0.0011 and 0.09 mg/mL at 25 and 37°C respectively). Its inorganic salt form (ciprofloxacin hydrochloride) is more soluble in water (1.35 mg/mL) however when administered orally, it exhibits decreased solubility in the stomach due to common ion effects. Ciprofloxacin free base was used in this study because of its greater hydrophobicity than its hydrochloride salt, which is required for effective permeability and potent antibacterial activity. OBJECTIVE The purpose of this study is to enhance oral solubility and bacterial cell permeability of the free base ciprofloxacin (CPX) using a single step CPX-chitosan (CT) selfassembly to form nanoplexes with organic counterions. It was envisioned that this would allow the delivery of larger amounts of active drug into the microorganisms. METHODS Ciprofloxacin-chitosan nanocomplex (nanoplex) was prepared using low energy electrostatic self-assembly technique previously described. Formation of eutectic nanoplex was confirmed using FTIR, DSC, TGA and SEM. The saturated solubility, in vitro release kinetics and mechanism of drug release were determined using mathematical models. Potency and synergism were determined from the inhibition zones, minimum inhibitory concentration (MIC) and Fractional Inhibitory Concentration (FIC) of the nanoplexes using Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. RESULTS Formation of CPX-CT eutectic adduct polymeric nanoplexes was confirmed with FT-IR and DSC and SEM revealed the conversion of rod-like crystals of CPX (117 μm long) into spherical nanostructures (23-503 nm) dictated by pH, ionic strength and concentration of CT. The solubility of free base CPX increased to a maximum of 32.77 mg/mL compared to 0.0011-0.09 mg/mL reported in literature and dissolution efficiency increased to a maximum of 100% within 72 h. The synergistic effect of CT on antimicrobial activity of CPX was quantified, for the first time, using Fractional Inhibitory Concentration (FIC) of the nanoplexes. FIC was less than 0.5 in both Gram positive (0.031-0.250) and Gram negative (0.036-0.281) microorganisms used in this study, confirming synergistic enhancement of antimicrobial efficacy of CPX. CONCLUSION It is evident that the design of drug-polymer nanocomplex formulation provides a platform for the synergistic enhancement of therapeutic potency of antibiotics.
Collapse
Affiliation(s)
- Amos Abioye
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, FL, United States
| | | | - Paulina Dudzinska
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | | | - Herbert A B Coker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| |
Collapse
|
29
|
Mandpe P, Prabhakar B, Shende P. 23 Full factorial design for optimization of stable amorphous host–guest-based mirabegron complex for extended-release action. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00955-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sormunen H, Ruponen M, Laitinen R. The effect of co-amorphization of glibenclamide on its dissolution properties and permeability through an MDCKII-MDR1 cell layer. Int J Pharm 2019; 570:118653. [DOI: 10.1016/j.ijpharm.2019.118653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
31
|
Carboxymethyl cellulose is a superior polyanion to dextran sulfate in stabilizing and enhancing the solubility of amorphous drug-polyelectrolyte nanoparticle complex. Int J Biol Macromol 2019; 139:500-508. [DOI: 10.1016/j.ijbiomac.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
32
|
Tu W, Knapik-Kowalczuk J, Chmiel K, Paluch M. Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low- Tg Excipients. Mol Pharm 2019; 16:3626-3635. [PMID: 31287704 DOI: 10.1021/acs.molpharmaceut.9b00476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amorphization of drug formulations containing active pharmaceutical ingredients (APIs) and excipients has been proven to be an effective strategy to improve their poor aqueous solubility. The excipients can also impact the physical stability of the prepared amorphous forms. Generally, researchers are more apt to select excipients that have high values of glass transition temperature (Tg) because of the antiplasticization effect of the additives on APIs. In this article, we studied the glass transition dynamics as well as crystallization behavior in binary blends composed of griseofulvin (GSF) and two low-Tg additives, octaacetylmaltose (acMAL) and polyvinyl acetate (PVAc), with a particular focus on the plasticization effect. Effectively suppressed crystallization of GSF is observed in both systems when higher excipient contents are used. Our finding aims to encourage the use of specifically developed protocols in which suitable plasticizers are used as excipients for stabilizing the amorphous state of a drug.
Collapse
Affiliation(s)
- Wenkang Tu
- Institute of Physics , University of Silesia , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland.,SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland
| | - Justyna Knapik-Kowalczuk
- Institute of Physics , University of Silesia , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland.,SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland
| | - Krzysztof Chmiel
- Institute of Physics , University of Silesia , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland.,SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland
| | - Marian Paluch
- Institute of Physics , University of Silesia , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland.,SMCEBI , 75 Pułku Piechoty 1a , 41-500 Chorzow , Poland
| |
Collapse
|
33
|
Dong B, Lim LM, Hadinoto K. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: A case of HPMC versus PVP. Eur J Pharm Sci 2019; 138:105035. [PMID: 31386892 DOI: 10.1016/j.ejps.2019.105035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
Abstract
Amorphous drug-polyelectrolyte nanoparticle complex (or nanoplex in short) has emerged as a highly attractive solubility enhancement strategy of poorly-soluble drugs attributed to its simple and highly efficient preparation. The existing nanoplex formulation, however, exhibits poor amorphous form stability during long-term storage for drugs with high crystallization propensity. Using ciprofloxacin (CIP) and sodium dextran sulfate (DXT) as the model drug-polyelectrolyte nanoplex, we investigated the feasibility of incorporating crystallization inhibiting agents, i.e. hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), at the nanoplex formation step to improve the physical stability of the CIP nanoplex. The effects of the HPMC or PVP additions on the nanoplex's physical characteristics (i.e. size, zeta potential, CIP payload), CIP utilization rate, dissolution rate, and supersaturation generation were also examined. The results showed that the additions of HPMC or PVP increased the CIP nanoplex size (from 300 to 500 nm) and CIP utilization rate (from 65% to 90% w/w) with minimal impacts on the CIP payload (70-80% w/w). Their additions had opposite impacts on the nanoplex's colloidal stability due to surfactant nature of PVP. Significantly, unlike the CIP-DXT and CIP-DXT-PVP nanoplexes, the CIP-DXT-HPMC nanoplex remained amorphous after three-month accelerated storage, while also exhibited superior solubility enhancement (15-30% higher).
Collapse
Affiliation(s)
- Bingxue Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
34
|
Fluoroquinolone Amorphous Polymeric Salts and Dispersions for Veterinary Uses. Pharmaceutics 2019; 11:pharmaceutics11060268. [PMID: 31181834 PMCID: PMC6631417 DOI: 10.3390/pharmaceutics11060268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022] Open
Abstract
Enrofloxacin (ENRO) is a poorly soluble drug used in veterinary medicine. It differs from the more widely used fluoroquinolone ciprofloxacin (CIP) by the presence of an ethyl substituent on its piperazine amino group. While a number of recent studies have examined amorphous composite formulations of CIP, little research has been conducted with ENRO in this area. Therefore, the main purpose of this work was to produce amorphous solid dispersions (ASDs) of ENRO. The solid-state properties of these samples were investigated and compared to those of the equivalent CIP ASDs, and their water uptake behavior, solubility, dissolution, and antibacterial activity were assessed. Like CIP, X-ray amorphous solid dispersions were obtained when ENRO was ball milled with acidic polymers, whereas the use of neutral polymers resulted in semi-crystalline products. Proton transfer from the carboxylic acids of the polymers to the tertiary amine of ENRO’s piperazine group appears to occur in the ASDs, resulting in an ionic bond between the two components. Therefore, these ASDs can be referred to as amorphous polymeric salts (APSs). The glass transition temperatures of the APSs were significantly higher than that of ENRO, and they were also resistant to crystallization when exposed to high humidity levels. Greater concentrations were achieved with the APSs than the pure drug during solubility and dissolution studies, and this enhancement was sustained for the duration of the experiments. In addition, the antimicrobial activity of ENRO was not affected by APS formation, while the minimum inhibitory concentrations and minimum bactericidal concentrations obtained with the APS containing hydroxypropyl methylcellulose acetate succinate grade MG (HPMCAS-MG) were significantly lower than those of the pure drug. Therefore, APS formation is one method of improving the pharmaceutical properties of this drug.
Collapse
|
35
|
Kasten G, Löbmann K, Grohganz H, Rades T. Co-former selection for co-amorphous drug-amino acid formulations. Int J Pharm 2018; 557:366-373. [PMID: 30578980 DOI: 10.1016/j.ijpharm.2018.12.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/24/2022]
Abstract
We have previously developed a fast screening method on the ability of twenty amino acids (AA) to form co-amorphous formulations with six drugs upon ball milling. In this work, the potential advantages in physical stability and dissolution rate of the 36 successful co-amorphous formulations, compared to the pure amorphous drug, were further investigated. The physical stability of the formulations at dry conditions was assessed by X-ray powder diffraction (XRPD) and their thermal behavior by differential scanning calorimetry (DSC). In addition, the intrinsic dissolution rate (IDR) of all formulations was determined in phosphate buffer (10 mM, pH 6.8). Finally, all the co-amorphous formulations were summarized into different groups, according to the outcome of the co-formability, physical stability and dissolution rate screenings, and guidelines could be drawn for selection of co-formers for a new given drug: (i) For acidic drugs, basic AAs (arginine, histidine, and lysine) are good co-formers with respect to the three critical quality attributes: co-formability, physical stability and dissolution. High glass transition temperatures (Tg), physical stability for 1-2 years, and accelerated IDR were observed. (ii) For basic and neutral drugs, non-polar AAs with aromatic groups such as tryptophan (TRP) and phenylalanine (PHE) should be explored as first choice. These combinations presented high Tgs, which generally translated into good physical stability. The IDR of TRP- and PHE-based formulations were usually superior to the IDR of the pure amorphous drugs; (iii) Non-polar AAs with aliphatic structures such as leucine, isoleucine, methionine and valine did not provide an increase in Tg or IDR compared to the pure amorphous drug, and appear to be less feasible AAs for co-amorphous formulations.
Collapse
Affiliation(s)
- Georgia Kasten
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20521 Turku, Finland.
| |
Collapse
|
36
|
Ruponen M, Visti M, Ojarinta R, Laitinen R. Permeability of glibenclamide through a PAMPA membrane: The effect of co-amorphization. Eur J Pharm Biopharm 2018; 129:247-256. [DOI: 10.1016/j.ejpb.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
|
37
|
Qiu Y, Dalal SS, Ediger MD. Vapor-deposited organic glasses exhibit enhanced stability against photodegradation. SOFT MATTER 2018; 14:2827-2834. [PMID: 29610815 DOI: 10.1039/c8sm00183a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photochemically stable solids are in demand for applications in organic electronics. Previous work has established the importance of the molecular packing environment by demonstrating that different crystal polymorphs of the same compound react at different rates when illuminated. Here we show, for the first time, that different amorphous packing arrangements of the same compound photodegrade at different rates. For these experiments, we utilize the ability of physical vapor deposition to prepare glasses with an unprecedented range of densities and kinetic stabilities. Indomethacin, a pharmaceutical molecule that can undergo photodecarboxylation when irradiated by UV light, is studied as a model system. Photodegradation is assessed through light-induced changes in the mass of glassy thin films due to the loss of CO2, as measured by a quartz crystal microbalance (QCM). Glasses prepared by physical vapor deposition degraded more slowly under UV illumination than did the liquid-cooled glass, with the difference as large as a factor of 2. Resistance to photodegradation correlated with glass density, with the vapor-deposited glasses being up to 1.3% more dense than the liquid-cooled glass. High density glasses apparently limit the local structural changes required for photodegradation.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|