1
|
Fernández-García R, Walsh D, O'Connell P, Passero LFD, de Jesus JA, Laurenti MD, Dea-Ayuela MA, Ballesteros MP, Lalatsa A, Bolás-Fernández F, Healy AM, Serrano DR. Targeted Oral Fixed-Dose Combination of Amphotericin B-Miltefosine for Visceral Leishmaniasis. Mol Pharm 2025; 22:1437-1448. [PMID: 39960049 DOI: 10.1021/acs.molpharmaceut.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The incidence of visceral leishmaniasis (VL) remains a significant health threat in endemic countries. Fixed-dose combination (FDC) of amphotericin B (AmB) and miltefosine (MLT) is a promising strategy for treating VL, but the parenteral administration of AmB leads to severe side effects, limiting its use in clinical practice. Here, we developed novel FDC granules combining AmB in the core with a MLT coating using wet granulation followed by the fluidized bed technology. The granules maintained the crystalline structure of AmB throughout manufacturing, achieving an AmB loading of ∼20%. The MLT coating layer effectively sustained AmB release from 3 to 24 h following Korsmeyer-Peppas kinetics. The formulation demonstrated remarkable stability, maintaining >90% drug content for over a year at both 4 °C and room temperature under desiccated conditions. In vivo efficacy studies in Leishmania infantum-infected hamsters showed 65-80% reduction in parasite burden in spleen and liver, respectively, suggesting potential as an oral alternative to current VL treatments. Uncoated and coated granules demonstrated comparable performance in key aspects, including in vivo efficacy and long-term stability.
Collapse
Affiliation(s)
- Raquel Fernández-García
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid. Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - David Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente, São Paulo 11330-900, Brazil
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178. São Vicente, São Paulo 11350-011, Brazil
| | - Jéssica A de Jesus
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente, São Paulo 11330-900, Brazil
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178. São Vicente, São Paulo 11350-011, Brazil
| | - Marcia Dalastra Laurenti
- Laboratório de Patologia das Moléstias Infecciosas (LIM/50), Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 455, Cerqueira César, São Paulo 01246903, Brazil
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, Carrer Santiago Ramón y Cajal, s/n., 46113 Valencia, Spain
| | - M Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid. Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Francisco Bolás-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dolores R Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid. Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| |
Collapse
|
2
|
Fan R, Chen A, Yu Y, Cai T, Guo M. Solution-mediated phase transformation of cocrystals at the solid-liquid interface: Relationships between the supersaturation generation rate and transformation pathway. Int J Pharm 2025; 668:124969. [PMID: 39566698 DOI: 10.1016/j.ijpharm.2024.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cocrystals easily undergo solution-mediated phase transformation at the surface of dissolving cocrystals during dissolution, which significantly deteriorates the solubility advantage of cocrystals. Here, a new scenario for the phase transformation of liquiritigenin (LQ) cocrystals in which the boundary of phase transformation diffuses along the surface to the bulk of the cocrystal was identified. Additionally, depending on the rate of supersaturation generation, phase transformation processes to the anhydrate and hydrate of LQ compete during cocrystal dissolution. The liquiritigenin-nicotinamide (LQ-NIC) cocrystal yielded a higher supersaturation rate, causing the nucleation kinetics to dominate the recrystallization process and the formation of a metastable form of LQ. However, in the liquiritigenin-isoniazid (LQ-INZ) cocrystal, the low supersaturation rate leading to recrystallization was controlled by thermodynamics and the subsequent formation of monohydrates of LQ (less soluble). As a result, in plain buffer, a multistep pathway for phase transformation of the LQ-NIC cocrystal was observed, in which the cocrystal was firstly converted into the anhydrate LQ (metastable form) and subsequently transformed into LQ·H2O. A one-step phase transformation was observed for the LQ-INZ cocrystal, where the cocrystal was directly converted to LQ·H2O. In a buffer containing the Eudragit E100 (E100) additive, for the LQ-NIC cocrystal, the dissolution performance was improved, which can presumably be attributed to the solubilization effect of E100 on the anhydrate and the inhibitory effect on the transformation of the anhydrate to the monohydrate. However, for the LQ-INZ cocrystal, a negligible improvement in drug concentration was observed in the presence of E100 because of the slight effects of E100 on the solubility of LQ·H2O. These findings provide valuable insights into the phase transformation pathways of cocrystals at the solid-liquid interface and the effects of additives on the dissolution behavior of cocrystals.
Collapse
Affiliation(s)
- Runhui Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - An Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Minshan Guo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Panzade P, Wagh A, Harale P, Bhilwade S. Pharmaceutical cocrystals: a rising star in drug delivery applications. J Drug Target 2024; 32:115-127. [PMID: 38164658 DOI: 10.1080/1061186x.2023.2300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Pharmaceutical cocrystals, owing to their manifold applications, are acting as bridge between drug discovery and pharmaceutical product development. The ability to scale up pharmaceutical cocrystals through continuous manufacturing approaches offers superior and economic pharmaceutical products. Moreover, cocrystals can be an aid for the nanoparticulate systems to solve the issues related to scale-up and cost. Cocrystals grabbed attention of academic researchers and pharmaceutical scientist due to their potential to target various diseases like cancer. The present review is mainly focussed on the diverse and comprehensive applications of pharmaceutical cocrystals in drug delivery including solubility and dissolution enhancement, improvement of bioavailability of drug, mechanical and flow properties of active pharmaceutical ingredients, controlled/sustained release and colour tuning of API. Besides, phytochemical based cocrystals, multi-drug cocrystals and cocrystals for tumour therapy have been discussed in this review. Additionally, recent progress pertinent to pharmaceutical cocrystals is also included, which may provide future directions to manufacturing and scale-up of cocrystals.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Anita Wagh
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| | - Pratiksha Harale
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Sumeet Bhilwade
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| |
Collapse
|
4
|
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C, Ruiz HK, Rawat S, Kumar D, Lalatsa A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024; 16:1328. [PMID: 39458657 PMCID: PMC11510778 DOI: 10.3390/pharmaceutics16101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Artificial intelligence (AI) encompasses a broad spectrum of techniques that have been utilized by pharmaceutical companies for decades, including machine learning, deep learning, and other advanced computational methods. These innovations have unlocked unprecedented opportunities for the acceleration of drug discovery and delivery, the optimization of treatment regimens, and the improvement of patient outcomes. AI is swiftly transforming the pharmaceutical industry, revolutionizing everything from drug development and discovery to personalized medicine, including target identification and validation, selection of excipients, prediction of the synthetic route, supply chain optimization, monitoring during continuous manufacturing processes, or predictive maintenance, among others. While the integration of AI promises to enhance efficiency, reduce costs, and improve both medicines and patient health, it also raises important questions from a regulatory point of view. In this review article, we will present a comprehensive overview of AI's applications in the pharmaceutical industry, covering areas such as drug discovery, target optimization, personalized medicine, drug safety, and more. By analyzing current research trends and case studies, we aim to shed light on AI's transformative impact on the pharmaceutical industry and its broader implications for healthcare.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
- Instituto Universitario de Farmacia Industrial, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Jesus A. Simon
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Greta Tomietto
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Chrysi Rapti
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Helga K. Ruiz
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Satyavati Rawat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
5
|
Santamaría KJ, Anaya BJ, Lalatsa A, González-Barranco P, Cantú-Cárdenas L, Serrano DR. Engineering 3D Printed Gummies Loaded with Metformin for Paediatric Use. Gels 2024; 10:620. [PMID: 39451273 PMCID: PMC11507287 DOI: 10.3390/gels10100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
In today's pharmaceutical landscape, there's an urgent need to develop new drug delivery systems that are appealing and effective in ensuring therapeutic adherence, particularly among paediatric patients. The advent of 3D printing in medicine is revolutionizing this space by enabling the creation of precise, customizable, and visually appealing dosage forms. In this study, we produced 250 mg metformin paediatric gummies based on the semi-solid extrusion (SSE) 3D printing technique. A pharmaceutical ink containing metformin was successfully formulated with optimal flow properties suitable for room-temperature printing. Using a quality by design approach, 3D printing and casting methodologies were compared. The 3D-printed gummies exhibited better firmness and sustained release at earlier times to avoid metformin release in the oral cavity and ensure palatability. The texture and physical appearance match those of gummies commercially available. In conclusion, SSE allowed for the successful manufacture of 3D-printed sugar-free gummies for the treatment of diabetes mellitus for paediatric patients and is an easily translatable approach to clinical practice.
Collapse
Affiliation(s)
- Karla J. Santamaría
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (K.J.S.); (B.J.A.)
- School of Chemistry, Autonomous University of Nuevo León Monterrey, Monterrey 66455, Mexico; (P.G.-B.); (L.C.-C.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (K.J.S.); (B.J.A.)
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Patricia González-Barranco
- School of Chemistry, Autonomous University of Nuevo León Monterrey, Monterrey 66455, Mexico; (P.G.-B.); (L.C.-C.)
| | - Lucía Cantú-Cárdenas
- School of Chemistry, Autonomous University of Nuevo León Monterrey, Monterrey 66455, Mexico; (P.G.-B.); (L.C.-C.)
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (K.J.S.); (B.J.A.)
- University Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Torrado JJ, Anaya BJ, Kara A, Ongoren B, Esteban-Ruiz S, Laguna A, Guillén A, Saro MG, Serrano DR. Unraveling the Impact of the Oil Phase on the Physicochemical Stability and Skin Permeability of Melatonin Gel Formulations. Gels 2024; 10:595. [PMID: 39330197 PMCID: PMC11431383 DOI: 10.3390/gels10090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Melatonin's antioxidant properties make it a valuable component in anti-aging semisolid topical products. This study explores the role of Pemulen®, an acrylic-based viscosifying agent, in stabilizing cream-gel formulations. Remarkably, even at low concentrations (0.4%), Pemulen® successfully produced physicochemical stable topical formulations. In this work, the impact of the ratio of the oily phase-comprising olive oil and isopropyl myristate from 0 to 20%-was investigated to understand the internal microstructure effect on skin permeability, rheological properties, and stability. The formulations exhibited pseudoplastic behavior, with a significant positive correlation (p-value < 0.1) between the oily phase ratio, viscosity, spreadability, skin adhesiveness, and permeability. Formulations without the oil phase exhibited greater skin permeability. However, higher oily phase content enhanced viscosity, spreadability, and skin adhesion. Given that melatonin primarily degrades through oxidation, incorporating antioxidant excipients in semisolid formulations is crucial for maintaining its chemical stability. A quality by design (QbD) approach was used to assess the impact of four excipients-(a) DL-α-tocopheryl acetate (0.05%), (b) ascorbic acid (0.1%), (c) ethylene diamine tetraacetic acid (0.1%), and (d) sodium metabisulphite (0.5%)-on melatonin's stability. Our findings indicate that maintaining the physical stability of the formulation with a 20% oil phase is more critical for protecting melatonin from oxidation than merely adding antioxidant excipients.
Collapse
Affiliation(s)
- Juan J. Torrado
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Brayan J. Anaya
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Aytug Kara
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Baris Ongoren
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Sofía Esteban-Ruiz
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Almudena Laguna
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Alicia Guillén
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Miguel G. Saro
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
| | - Dolores R. Serrano
- Pharmaceutics, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (B.J.A.); (A.K.); (B.O.); (S.E.-R.); (A.L.); (A.G.)
- Industrial Pharmacy Institute, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Turek M, Różycka-Sokołowska E, Owsianik K, Bałczewski P. New Perspectives for Antihypertensive Sartans as Components of Co-crystals and Co-amorphous Solids with Improved Properties and Multipurpose Activity. Mol Pharm 2024; 21:18-37. [PMID: 38108281 DOI: 10.1021/acs.molpharmaceut.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sartans (angiotensin II receptor blockers, ARBs), drugs used in the treatment of hypertension, play a principal role in addressing the global health challenge of hypertension. In the past three years, their potential use has expanded to include the possibility of their application in the treatment of COVID-19 and neurodegenerative diseases (80 clinical studies worldwide). However, their therapeutic efficacy is limited by their poor solubility and bioavailability, prompting the need for innovative approaches to improve their pharmaceutical properties. This review discusses methods of co-crystallization and co-amorphization of sartans with nonpolymeric, low molecular, and stabilizing co-formers, as a promising strategy to synthesize new multipurpose drugs with enhanced pharmaceutical properties. The solid-state forms have demonstrated the potential to address the poor solubility limitations of conventional sartan formulations and offer new opportunities to develop dual-active drugs with broader therapeutic applications. The review includes an in-depth analysis of the co-crystal and co-amorphous forms of sartans, including their properties, possible applications, and the impact of synthetic methods on their pharmacokinetic properties. By shedding light on the solid forms of sartans, this article provides valuable insights into their potential as improved drug formulations. Moreover, this review may serve as a valuable resource for designing similar solid forms of sartans and other drugs, fostering further advances in pharmaceutical research and drug development.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
8
|
González-González O, Ballesteros MP, Torrado JJ, Serrano DR. Application of Accelerated Predictive Stability Studies in Extemporaneously Compounded Formulations of Chlorhexidine to Assess the Shelf Life. Molecules 2023; 28:7925. [PMID: 38067654 PMCID: PMC10708018 DOI: 10.3390/molecules28237925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Industrially fabricated medicines have a well-defined shelf life supported by rigorous studies before their approval for commercialization. However, the shelf life of extemporaneous compounding topical formulations prepared at hospitals tends to be shorter, especially when no data are available to prove a longer stability period. Also, the storage conditions are unknown in many circumstances. Accelerated Predictive Stability (APS) studies have been shown to be a useful tool to predict in a faster and more accurate manner the chemical stability of extemporaneously compounded formulations requiring a minimum amount of formulation, thereby reducing the chemical drug waste per study. Shelf life will be allocated based on scientific data without compromising drug efficacy or safety. In this work, the APS approach was applied to the commercially available Cristalmina® (CR) and an extemporaneously compounded formulation of chlorhexidine (DCHX). A different degradation kinetic was found between DCHX and CR (Avrami vs. zero-order kinetics, respectively). This can explain the different shelf life described by the International Council for Harmonisation of Technical Requirements Registration Pharmaceuticals Human Use (ICH) conditions between both formulations. A predicted stability for the DCHX solution was obtained from the extrapolation of the degradation rate in long-term conditions from the Arrhenius equation. The estimated degradation from the Arrhenius equation for DCHX at 5 °C, 25 °C, and 30 °C at 365 days was 3.1%, 17.4%, and 25.9%, respectively. The predicted shelf life, in which the DCHX content was above 90%, was 26.67 months under refrigerated conditions and 5.75 and 2.24 months at 25 and 30 °C, respectively. Currently, the Spanish National Formulary recommends a shelf life of no longer than 3 months at room temperature for DCHX solution. Based on the predicted APS and confirmed by experimental long-term studies, we have demonstrated that the shelf life of DCHX extemporaneously compounded formulations could be prolonged by up to 6 months.
Collapse
Affiliation(s)
- Olga González-González
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Univsersidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (O.G.-G.); (M.P.B.)
| | - M. Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Univsersidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (O.G.-G.); (M.P.B.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Juan J. Torrado
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Univsersidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (O.G.-G.); (M.P.B.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Univsersidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (O.G.-G.); (M.P.B.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
9
|
Shao S, Bonner D, Twamley B, Singh A, Healy AM. One Step In Situ Co-Crystallization of Dapsone and Polyethylene Glycols during Fluidized Bed Granulation. Pharmaceutics 2023; 15:2330. [PMID: 37765298 PMCID: PMC10535358 DOI: 10.3390/pharmaceutics15092330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Several studies have demonstrated the feasibility of in situ co-crystallization in different pharmaceutical processes such as spray drying, hot melt extrusion, and fluidized bed granulation (FBG) to produce co-crystal-in-excipient formulations. However, no previous studies have examined such a one step in situ co-crystallization process for co-crystal formulations where the coformer is a polymer. In the current study, we explored the use of FBG to produce co-crystal granules of dapsone (DAP) and different molecular weight polyethylene glycols (PEGs). Solvent evaporation (SE) was proven to generate DAP-PEGs co-crystals at a particular weight ratio of 55:45 w/w between DAP and PEG, which was subsequently used in FBG, using microcrystalline cellulose and hydroxypropyl methyl cellulose as filler excipient and binder, respectively. FBG could generate co-crystals with higher purity than SE. Granules containing DAP-PEG 400 co-crystal could be prepared without any additional binder. DAP-PEG co-crystal granules produced by FBG demonstrated superior pharmaceutical properties, including flow properties and tableting properties, compared to DAP and DAP-PEG co-crystals prepared by SE. Overall, in situ co-crystallization via FBG can effectively produce API-polymer co-crystals and enhance the pharmaceutical properties.
Collapse
Affiliation(s)
- Shizhe Shao
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - David Bonner
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | | | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
10
|
Shao S, Stocker MW, Zarrella S, Korter TM, Singh A, Healy AM. In Situ Cocrystallization via Spray Drying with Polymer as a Strategy to Prevent Cocrystal Dissociation. Mol Pharm 2023; 20:4770-4785. [PMID: 37595572 PMCID: PMC10481393 DOI: 10.1021/acs.molpharmaceut.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
The aim of the present study was to investigate how different polymers affect the dissociation of cocrystals prepared by co-spray-drying active pharmaceutical ingredient (API), coformer, and polymer. Diclofenac acid-l-proline cocrystal (DPCC) was selected in this study as a model cocrystal due to its previously reported poor physical stability in a high-humidity environment. Polymers investigated include polyvinylpyrrolidone (PVP), poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA), hydroxypropyl methyl cellulose, hydroxypropylmethylcellulose acetate succinate, ethyl cellulose, and Eudragit L-100. Terahertz Raman spectroscopy (THz Raman) and powder X-ray diffraction (PXRD) were used to monitor the cocrystal dissociation rate in a high-humidity environment. A Raman probe was used in situ to monitor the extent of the dissociation of DPCC and DPCC in crystalline solid dispersions (CSDs) with polymer when exposed to pH 6.8 phosphate buffer and water. The solubility of DPCC and solid dispersions of DPCC in pH 6.8 phosphate buffer and water was also measured. The dissociation of DPCC was water-mediated, and more than 60% of DPCC dissociated in 18 h at 40 °C and 95% RH. Interestingly, the physical stability of the cocrystal was effectively improved by producing CSDs with polymers. The inclusion of just 1 wt % polymer in a CSD with DPCC protected the cocrystal from dissociation over 18 h under the same conditions. Furthermore, the CSD with PVPVA was still partially stable, and the CSD with PVP was stable (undissociated) after 7 days. The superior stability of DPCC in CSDs with PVP and PVPVA was also demonstrated when systems were exposed to water or pH 6.8 phosphate buffer and resulted in higher dynamic solubility of the CSDs compared to DPCC alone. The improvement in physical stability of the cocrystal in CSDs was thought to be due to an efficient mixing between polymer and cocrystal at the molecular level provided by spray drying and in situ gelling of polymer. It is hypothesized that polymer chains could undergo gelling in situ and form a physical barrier, preventing cocrystal interaction with water, which contributes to slowing down the water-mediated dissociation.
Collapse
Affiliation(s)
- ShiZhe Shao
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
- SSPC,
the Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Michael W. Stocker
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
- SSPC,
the Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Dublin D02 PN40, Ireland
- School
of Chemical and Bioprocess Engineering, University College Dublin, Dublin D04 V1W8, Ireland
| | - Salvatore Zarrella
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| | - Timothy M. Korter
- Department
of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| | | | - Anne Marie Healy
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
- SSPC,
the Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
11
|
Kara A, Kumar D, Healy AM, Lalatsa A, Serrano DR. Continuous Manufacturing of Cocrystals Using 3D-Printed Microfluidic Chips Coupled with Spray Coating. Pharmaceuticals (Basel) 2023; 16:1064. [PMID: 37630979 PMCID: PMC10458959 DOI: 10.3390/ph16081064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Using cocrystals has emerged as a promising strategy to improve the physicochemical properties of active pharmaceutical ingredients (APIs) by forming a new crystalline phase from two or more components. Particle size and morphology control are key quality attributes for cocrystal medicinal products. The needle-shaped morphology is often considered high-risk and complex in the manufacture of solid dosage forms. Cocrystal particle engineering requires advanced methodologies to ensure high-purity cocrystals with improved solubility and bioavailability and with optimal crystal habit for industrial manufacturing. In this study, 3D-printed microfluidic chips were used to control the cocrystal habit and polymorphism of the sulfadimidine (SDM): 4-aminosalicylic acid (4ASA) cocrystal. The addition of PVP in the aqueous phase during mixing resulted in a high-purity cocrystal (with no traces of the individual components), while it also inhibited the growth of needle-shaped crystals. When mixtures were prepared at the macroscale, PVP was not able to control the crystal habit and impurities of individual mixture components remained, indicating that the microfluidic device allowed for a more homogenous and rapid mixing process controlled by the flow rate and the high surface-to-volume ratios of the microchannels. Continuous manufacturing of SDM:4ASA cocrystals coated on beads was successfully implemented when the microfluidic chip was connected in line to a fluidized bed, allowing cocrystal formulation generation by mixing, coating, and drying in a single step.
Collapse
Affiliation(s)
- Aytug Kara
- Departament of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221001, India;
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Dolores R. Serrano
- Departament of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Institute of Industrial Pharmacy, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
Kruk K, Szekalska M, Basa A, Winnicka K. The Impact of Hypromellose on Pharmaceutical Properties of Alginate Microparticles as Novel Drug Carriers for Posaconazole. Int J Mol Sci 2023; 24:10793. [PMID: 37445975 DOI: 10.3390/ijms241310793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Fungal infections are a group of diseases which are challenging to treat because of drug-resistant fungi species, drug toxicity, and often severe patient conditions. Hence, research into new treatments, including new therapeutic substances and novel drug delivery systems, is being performed. Mucoadhesive dosage forms are beneficial to improving drug bioavailability by prolonging the residence time at the site of application. Sodium alginate is a natural polymer with favorable mucoadhesive and gelling properties, although its precipitation in acidic pH significantly disrupts the process of drug release in gastric conditions. Hypromellose is a hydrophilic, semi-synthetic cellulose derivative with mucoadhesive properties, which is widely used as a control release agent in pharmaceutical technology. The aim of this study was to evaluate the impact of hypromellose on alginate microparticles with posaconazole, designed to modify drug release and to improve their mucoadhesive properties for both oral or vaginal application.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Anna Basa
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
13
|
de Pablo E, O'Connell P, Fernández-García R, Marchand S, Chauzy A, Tewes F, Dea-Ayuela MA, Kumar D, Bolás F, Ballesteros MP, Torrado JJ, Healy AM, Serrano DR. Targeting lung macrophages for fungal and parasitic pulmonary infections with innovative amphotericin B dry powder inhalers. Int J Pharm 2023; 635:122788. [PMID: 36863544 DOI: 10.1016/j.ijpharm.2023.122788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
The incidence of fungal pulmonary infections is known to be on the increase, and yet there is an alarming gap in terms of marketed antifungal therapies that are available for pulmonary administration. Amphotericin B (AmB) is a highly efficient broad-spectrum antifungal only marketed as an intravenous formulation. Based on the lack of effective antifungal and antiparasitic pulmonary treatments, the aim of this study was to develop a carbohydrate-based AmB dry powder inhaler (DPI) formulation, prepared by spray drying. Amorphous AmB microparticles were developed by combining 39.7 % AmB with 39.7 % γ-cyclodextrin, 8.1 % mannose and 12.5 % leucine. An increase in the mannose concentration from 8.1 to 29.8 %, led to partial drug crystallisation. Both formulations showed good in vitro lung deposition characteristics (80 % FPF < 5 µm and MMAD < 3 µm) at different air flow rates (60 and 30 L/min) when used with a DPI, but also during nebulisation upon reconstitution in water.
Collapse
Affiliation(s)
- E de Pablo
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - R Fernández-García
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - S Marchand
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - A Chauzy
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France
| | - F Tewes
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - M A Dea-Ayuela
- Pharmacy Department, School of Life Sciences, Universidad Cardenal Herrera-CEU, Moncada 46113 Valencia, Spain
| | - D Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - F Bolás
- Parasitology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M P Ballesteros
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J J Torrado
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Fernández-García R, Walsh D, O'Connell P, Slowing K, Raposo R, Paloma Ballesteros M, Jiménez-Cebrián A, Chamorro-Sancho MJ, Bolás-Fernández F, Healy AM, Serrano DR. Can amphotericin B and itraconazole be co-delivered orally? Tailoring oral fixed-dose combination coated granules for systemic mycoses. Eur J Pharm Biopharm 2023; 183:74-91. [PMID: 36623752 DOI: 10.1016/j.ejpb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The incidence and prevalence of invasive fungal infections have increased significantly over the last few years, leading to a global health problem due to the lack of effective treatments. Amphotericin B (AmB) and itraconazole (ITR) are two antifungal drugs with different mechanisms of action. In this work, AmB and ITR have been formulated within granules to elicit an enhanced pharmacological effect, while enhancing the oral bioavailability of AmB. A Quality by Design (QbD) approach was utilised to prepare fixed-dose combination (FDC) granules consisting of a core containing AmB with functional excipients, such as inulin, microcrystalline cellulose (MCC), chitosan, sodium deoxycholate (NaDC) and Soluplus® and polyvinyl pyrrolidone (PVP), coated with a polymeric layer containing ITR with Soluplus® or a combination of Poloxamer 188 and hydroxypropyl methyl cellulose-acetyl succinate (HPMCAS). A Taguchi design of experiments (DoE) with 7 factors and 2 levels was carried out to understand the key factors impacting on the physicochemical properties of the formulation followed by a Box-Behnken design with 3 factors in 3 levels chosen to optimise the formulation parameters. The core of the FDC granules was obtained by wet granulation and later coated using a fluidized bed. In vitro antifungal efficacy was demonstrated by measuring the inhibition halo against different species of Candida spp., including C. albicans (24.19-30.48 mm), C. parapsilosis (26.38-27.84 mm) and C. krusei (11.48-17.92 mm). AmB release was prolonged from 3 to 24 h when the AmB granules were coated. In vivo in CD-1 male mice studies showed that these granules were more selective towards liver, spleen and lung compared to kidney (up to 5-fold more selective in liver, with an accumulation of 8.07 µg AmB/g liver after twice-daily 5 days administration of granules coated with soluplus-ITR), resulting in an excellent oral administration option in the treatment of invasive mycosis. Nevertheless, some biochemical alterations were found, including a decrease in blood urea nitrogen (∼17 g/dl) and alanine aminotransferase (<30 U/l) and an increase in the levels of bilirubin (∼0.2 mg/dl) and alkaline phosphatase (<80 U/l), which could be indicative of a liver failure. Once-daily regimen for 10 days can be a promising therapy.
Collapse
Affiliation(s)
- Raquel Fernández-García
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - David Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Karla Slowing
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Rafaela Raposo
- Seccion Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | | | | | - Francisco Bolás-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dolores R Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA, Fernández-García R, Bautista L, Ruiz HK, Lalatsa A. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023; 15:313. [PMID: 36839636 PMCID: PMC9967161 DOI: 10.3390/pharmaceutics15020313] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iván Yuste
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Diez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Liliana Bautista
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
16
|
Yu YM, Bu FZ, Liu L, Yan CW, Wu ZY, Li YT. A novel sustained-release formulation of 5-fluorouracil-phenylalanine cocrystal self-assembled by cocrystal-entrapped micelle strategy displays enhanced antitumor efficacy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
González-González O, Ramirez IO, Ramirez BI, O’Connell P, Ballesteros MP, Torrado JJ, Serrano DR. Drug Stability: ICH versus Accelerated Predictive Stability Studies. Pharmaceutics 2022; 14:2324. [PMID: 36365143 PMCID: PMC9693625 DOI: 10.3390/pharmaceutics14112324] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), along with the World Health Organization (WHO), has provided a set of guidelines (ICH Q1A-E, Q3A-B, Q5C, Q6A-B) intended to unify the standards for the European Union, Japan, and the United States to facilitate the mutual acceptance of stability data that are sufficient for registration by the regulatory authorities in these jurisdictions. Overall, ICH stability studies involve a drug substance tested under storage conditions and assess its thermal stability and sensitivity to moisture. The long-term testing should be performed over a minimum of 12 months at 25 °C ± 2 °C/60% RH ± 5% RH or at 30 °C ± 2 °C/65% RH ± 5% RH. The intermediate and accelerated testing should cover a minimum of 6 months at 30 °C ± 2 °C/65% RH ± 5% RH (which is not necessary if this condition was utilized as a long-term one) and 40 °C ± 2 °C/75% RH ± 5% RH, respectively. Hence, the ICH stability testing for industrially fabricated medicines is rigorous and tedious and involves a long period of time to obtain preclinical stability data. For this reason, Accelerated Predictive Stability (APS) studies, carried out over a 3-4-week period and combining extreme temperatures and RH conditions (40-90 °C)/10-90% RH, have emerged as novel approaches to predict the long-term stability of pharmaceutical products in a more efficient and less time-consuming manner. In this work, the conventional ICH stability studies versus the APS approach will be reviewed, highlighting the advantages and disadvantages of both strategies. Furthermore, a comparison of the stability requirements for the commercialization of industrially fabricated medicines versus extemporaneous compounding formulations will be discussed.
Collapse
Affiliation(s)
- Olga González-González
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Peter O’Connell
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Maria Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Juan José Torrado
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Rolon M, Hanna E, Vega C, Coronel C, Dea-Ayuela MA, Serrano DR, Lalatsa A. Solid Nanomedicines of Nifurtimox and Benznidazole for the Oral Treatment of Chagas Disease. Pharmaceutics 2022; 14:pharmaceutics14091822. [PMID: 36145570 PMCID: PMC9504116 DOI: 10.3390/pharmaceutics14091822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is a parasitic zoonosis endemic in Central and South America affecting nearly 10 million people, with 100 million people at high risk of contracting the disease. Treatment is only effective when received at the early stages of the disease and it involved two drugs (nifurtimox (NFX) and benznidazole (BNZ)). Both treatments require multiple daily administrations of high doses, suffer from variable efficacy and insufficient efficacy in chronic CD, many side effects, and a very long duration of treatment that results in poor compliance, while combined available therapies that lead to reduced duration of treatment are not available and polypharmacy reduces compliance and increases the cost further. Here we present self-nanoemulsified drug delivery systems (SNEDDS) able to produce easily scalable combined formulations of NFX and BNZ that can allow for tailoring of the dose and can be easily converted to oral solid dosage form by impregnation on mesoporous silica particles. SNEDDS demonstrated an enhanced solubilisation capacity for both drugs as demonstrated by flow-through studies and in vitro lipolysis studies. High loading of SNEDDS to Syloid 244 and 3050 silicas (2:1 w/w) allowed clinically translatable amounts of both NFX and BNZ to be loaded. Tablets prepared from NFX-BNZ combined SNEDDS loaded on Syloid 3050 silicas demonstration near complete dissolution in the flow through cell apparatus compared to NFX and BNZ commercial tablets respectively (Lampit® and Rochagan®). NFX-BNZ-SNEDDS demonstrated nanomolar efficacy in epimastigotes and amastigotes of T. cruzi with acceptable selectivity indexes and demonstrated enhanced survival and reduced parasitaemia in acute murine experimental models of CD. Thus, the results presented here illustrate the ability for an easily scalable and personalised combination oral therapy prepared from GRAS excipients, enabling treatment access worldwide for the treatment of CD.
Collapse
Affiliation(s)
- Miriam Rolon
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Eustine Hanna
- Biomaterials, Bio-Engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Celeste Vega
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Edificio Seminario s/n, Moncada, 46113 Valencia, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, John Arbuthnot Building, Robertson Wing, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
19
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
20
|
Salem A, Khanfar E, Nagy S, Széchenyi A. Cocrystals of tuberculosis antibiotics: Challenges and missed opportunities. Int J Pharm 2022; 623:121924. [PMID: 35738333 DOI: 10.1016/j.ijpharm.2022.121924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023]
Abstract
Cocrystals have been extensively used to improve the physicochemical properties and bioavailability of active pharmaceutical ingredients. Cocrystals of anti-tuberculosis medications are among those commonly reported. This review provides a summary of the tuberculosis antibiotic cocrystals reported in the literature, providing the main results on current tuberculosis medications utilized in cocrystals. Moreover, anti-tuberculosis cocrystals limitations and advantages are described, including evidence for enhanced solubility, stability and effect. Opportunities to enhance anti-tuberculosis medications and fixed dose combinations using cocrystals are given. Several cocrystal pairs are suggested to enhance the effectiveness of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ala' Salem
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary
| | - Sándor Nagy
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Aleksandar Széchenyi
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary; Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
21
|
Stocker MW, Harding MJ, Todaro V, Healy AM, Ferguson S. Integrated Purification and Formulation of an Active Pharmaceutical Ingredient via Agitated Bed Crystallization and Fluidized Bed Processing. Pharmaceutics 2022; 14:pharmaceutics14051058. [PMID: 35631643 PMCID: PMC9145956 DOI: 10.3390/pharmaceutics14051058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Integrated API and drug product processing enable molecules with high clinical efficacy but poor physicochemical characteristics to be commercialized by direct co-processing with excipients to produce advanced multicomponent intermediates. Furthermore, developing isolation-free frameworks would enable end-to-end continuous processing of drugs. The aim of this work was to purify a model API (sodium ibuprofen) and impurity (ibuprofen ethyl ester) system and then directly process it into a solid-state formulation without isolating a solid API phase. Confined agitated bed crystallization is proposed to purify a liquid stream of impure API from 4% to 0.2% w/w impurity content through periodic or parallelized operations. This stream is combined with a polymer solution in an intermediary tank, enabling the API to be spray coated directly onto microcrystalline cellulose beads. The spray coating process was developed using a Design of Experiments approach, allowing control over the drug loading efficiency and the crystallinity of the API on the beads by altering the process parameters. The DoE study indicated that the solvent volume was the dominant factor controlling the drug loading efficiency, while a combination of factors influenced the crystallinity. The products from the fluidized bed are ideal for processing into final drug products and can subsequently be coated to control drug release.
Collapse
Affiliation(s)
- Michael W. Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
| | - Matthew J. Harding
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Valerio Todaro
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- National Institute for Bioprocess Research and Training, 24 Foster Avenue, Blackrock, Co., Belfield, A94 X099 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-716-1898
| |
Collapse
|
22
|
Understanding Direct Powder Extrusion for Fabrication of 3D Printed Personalised Medicines: A Case Study for Nifedipine Minitablets. Pharmaceutics 2021; 13:pharmaceutics13101583. [PMID: 34683875 PMCID: PMC8537449 DOI: 10.3390/pharmaceutics13101583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022] Open
Abstract
Fuse deposition modelling (FDM) has emerged as a novel technology for manufacturing 3D printed medicines. However, it is a two-step process requiring the fabrication of filaments using a hot melt extruder with suitable properties prior to printing taking place, which can be a rate-limiting step in its application into clinical practice. Direct powder extrusion can overcome the difficulties encountered with fabrication of pharmaceutical-quality filaments for FDM, allowing the manufacturing, in a single step, of 3D printed solid dosage forms. In this study, we demonstrate the manufacturing of small-weight (<100 mg) solid dosage forms with high drug loading (25%) that can be easily undertaken by healthcare professionals to treat hypertension. 3D printed nifedipine minitablets containing 20 mg were manufactured by direct powder extrusion combining 15% polyethylene glycol 4000 Da, 40% hydroxypropyl cellulose, 19% hydroxy propyl methyl cellulose acetate succinate, and 1% magnesium stearate. The fabricated 3D printed minitablets of small overall weight did not disintegrate during dissolution and allowed for controlled drug release over 24 h, based on erosion. This release profile of the printed minitablets is more suitable for hypertensive patients than immediate-release tablets that can lead to a marked burst effect, triggering hypotension. The small size of the minitablet allows it to fit inside of a 0-size capsule and be combined with other minitablets, of other API, for the treatment of complex diseases requiring polypharmacy within a single dosage form.
Collapse
|
23
|
Kim DW, Weon KY. Pharmaceutical application and development of fixed-dose combination: dosage form review. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Carlan IC, Estevinho BN, Rocha F. Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1924768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ioana C. Carlan
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Berta N. Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Ayyoubi S, Cerda JR, Fernández-García R, Knief P, Lalatsa A, Healy AM, Serrano DR. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int J Pharm 2021; 597:120336. [PMID: 33545280 DOI: 10.1016/j.ijpharm.2021.120336] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/22/2022]
Abstract
Oral dosage forms are by far the most common prescription and over-the-counter pharmaceutical dosage forms used worldwide. However, many patients suffer from adverse effects caused by their use of "one-size fits all" mass produced commercially available solid dosage forms, whereby they do not receive dedicated medication or dosage adjusted to their specific needs. The development of 3D printing paves the way for personalised medicine. This work focuses on personalised therapies for hypertensive patients using nifedipine as the model drug. 3D printed full solid and channelled spherical mini-tablets with enhanced surface area (1.6-fold higher) were printed using modified PVA commercial filaments loaded by passive diffusion (PD), and Kollidon VA64 (KVA) and ethylcellulose (EC) based filaments prepared by hot-melt extrusion (HME). Drug loading ranged from 3.7% to 60% based on the employed technique, with a 13-fold higher drug loading achieved with the HME compared to PD. Composition was found to have a more significant impact on drug dissolution than geometry and surface area. Both KVA and EC-based formulations exhibited a biphasic zero-order drug-release profile. Physicochemical characterization revealed that nifedipine was in the amorphous form in the KVA-based end-products which led to a greater dissolution control over a 24 h period compared to the EC-based formulations that exhibited low levels of crystallinity by PXRD. The proposed 3D printed spherical mini-tablets provide a versatile technology for personalised solid dosage forms with high drug loading and dissolution control, easily adaptable to patient and disease needs.
Collapse
Affiliation(s)
- Sejad Ayyoubi
- Department of Pharmaceutics and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; School of Pharmacy, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Jose R Cerda
- Department of Pharmaceutics and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Peter Knief
- UCD Centre for Precision Surgery, Catherine McAuley Education and Research Centre, Dublin 7, Ireland
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - Anne Marie Healy
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dolores R Serrano
- Department of Pharmaceutics and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Farmacia Industrial y Galénica, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Narala S, Nyavanandi D, Srinivasan P, Mandati P, Bandari S, Repka MA. Pharmaceutical Co-Crystals, Salts, and Co-Amorphous Systems: A Novel Opportunity of Hot Melt Extrusion. J Drug Deliv Sci Technol 2021; 61:102209. [PMID: 33717230 PMCID: PMC7946067 DOI: 10.1016/j.jddst.2020.102209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enhancing the solubility of active drug ingredients is a major challenge faced by scientists and researchers. Different approaches have been explored for the enhancement of solubility and physicochemical properties of drugs, without affecting their stability or pharmacological activity. Among the various strategies available, pharmaceutical co-crystals, co-amorphous systems, and pharmaceutical salts as multicomponent systems (MCS) have gained interest to improve physicochemical properties of drugs. Development of MCS by conventional methods involves the utilization of excess amount of solvents, thus, making the product prone to instability, and may also cause harmful side effects in patients. Scale up is critical and involves the investment of huge capital and time. Lately, hot-melt extrusion has been utilized in the development of MCS to enhance solubility, bioavailability, stability, and physicochemical properties of the drugs. In this review, the authors discussed the development of different MCS produced via hot-melt extrusion technology. Specifically, approaches for screening of co-formers and co-crystals, selection of excipients for co-amorphous systems, pharmaceutical salts, and significance of MCS and process parameters affecting product quality are discussed.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Priyanka Srinivasan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
27
|
Radha-Rani E, Venkata-Radha G. Engineering cocrystals of Paliperidone with enhanced solubility and dissolution characteristics. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-32997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the present study, co-crystals (CCs) of Paliperidone (PPD) with coformers like benzoic acid (BA) and P-amino benzoic acid (PABA) were synthesized and characterized to improve the physicochemical properties and dissolution rate. CCs were prepared by the solvent evaporation (SE) technique and were compared with the products formed by neat grinding (NG) and liquid assisted grinding (LAG) in their enhancement of solubility. The formation of CCs was confirmed by the IR spectroscopy, powder X-ray diffraction and thermal analysis methods. The saturation solubility studies indicate that the aqueous solubility of PPD-BA and PPD-PABA CCs was significantly improved to 1.343±0.162mg/ml and 1.964±0.452mg/ml, respectively, in comparison with the PPD solubility of 0.473mg/ml. This increase in solubility is 2.83-and 3.09-fold, respectively. PPD exhibited a poor dissolution of 37.8% in 60min, while the dissolution of the CCs improved tremendously to 96.07% and 89.65% in 60min. CCs of PPD with BA and PABA present a novel approach to overcome the solubility challenges of poorly water-soluble drug PPD.
Collapse
|
28
|
Fernández-García R, Statts L, de Jesus JA, Dea-Ayuela MA, Bautista L, Simão R, Bolás-Fernández F, Ballesteros MP, Laurenti MD, Passero LFD, Lalatsa A, Serrano DR. Ultradeformable Lipid Vesicles Localize Amphotericin B in the Dermis for the Treatment of Infectious Skin Diseases. ACS Infect Dis 2020; 6:2647-2660. [PMID: 32810398 DOI: 10.1021/acsinfecdis.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous fungal and parasitic diseases remain challenging to treat, as available therapies are unable to permeate the skin barrier. Thus, treatment options rely on systemic therapy, which fail to produce high local drug concentrations but can lead to significant systemic toxicity. Amphotericin B (AmB) is highly efficacious in the treatment of both fungal and parasitic diseases such as cutaneous leishmaniasis but is reserved for parenteral administration in patients with severe pathophysiology. Here, we have designed and optimized AmB-transfersomes [93.5% encapsulation efficiency, 150 nm size, and good colloidal stability (-35.02 mV)] that can remain physicochemically stable (>90% drug content) at room temperature and 4 °C over 6 months when lyophilized and stored under desiccated conditions. AmB-transfersomes possessed good permeability across mouse skin (4.91 ± 0.41 μg/cm2/h) and 10-fold higher permeability across synthetic Strat-M membranes. In vivo studies after a single topical application in mice showed permeability and accumulation within the dermis (>25 μg AmB/g skin 6 h postadministration), indicating the delivery of therapeutic amounts of AmB for mycoses and cutaneous leishmaniasis, while a single daily administration in Leishmania (Leishmania) amazonensis infected mice over 10 days, resulted in excellent efficacy (98% reduction in Leishmania parasites). Combining the application of AmB-transfersomes with metallic microneedles in vivo increased the levels in the SC and dermis but was unlikely to elicit transdermal levels. In conclusion, AmB-transfersomes are promising and stable topical nanomedicines that can be readily translated for parasitic and fungal infectious diseases.
Collapse
Affiliation(s)
| | - Larry Statts
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | - Jéssica A. de Jesus
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Carrer Santiago Ramón y Cajal s/n, 46113 Valencia, Spain
| | - Liliana Bautista
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | | | | | | - Marcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Luiz F. D. Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente Praça Infante Dom Henrique s/n, 11330-900 São Vicente, SP, Brazil
- São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente Av. João Francisco Bensdorp 1178, 11350-011 São Vicente, SP (Brazil)
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | |
Collapse
|
29
|
Oral Fixed-Dose Combination Pharmaceutical Products: Industrial Manufacturing Versus Personalized 3D Printing. Pharm Res 2020; 37:132. [PMID: 32556831 DOI: 10.1007/s11095-020-02847-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Fixed-dose combination (FDC) products containing at least two different active pharmaceutical ingredients are designed to treat more effectively different pathologies as they have demonstrated to enhance patient compliance. However, the combination of multiple drugs within the same dosage form can bring many physicochemical and pharmacodynamic interactions. The manufacturing process of FDC products can be challenging, especially when it is required to achieve different drug release profiles within the same dosage form to overcome physicochemical drug interactions. Monolithic, multiple-layer, and multiparticulate systems are the most common type of FDCs. Currently, the main manufacturing techniques utilized in industrial pharmaceutical companies rely on the use of combined wet and dry granulation, hot-melt extrusion coupled with spray coating, and compression of bilayered tablets. Nowadays, personalized medicines are gaining importance in clinical settings and 3D printing is taking a highlighted role in the manufacturing of complex and personalized 3D solid dosage forms that could not be manufactured using conventional techniques. In this review, it will be discussed in detail current marketed FDC products and their application in several diseases with an especial focus on antimicrobial drugs. Current industrial conventional techniques will be compared with 3D printing manufacturing of FDCs. Graphical Abstract.
Collapse
|
30
|
Physical Characteristics of Cilostazol–Hydroxybenzoic Acid Cocrystals Prepared Using a Spray Drying Method. CRYSTALS 2020. [DOI: 10.3390/cryst10040313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cocrystal formation of pharmaceuticals can improve the various physical properties of drugs, such as solubility, without the need for chemical modification of the drug substances. In the present study, we prepared cocrystals of cilostazol and additive coformers (derivatives of hydroxybenzoic acid) using a spray drying method. Based on the preparation of the cocrystals of cilostazol and the coformers as reported previously, the characteristics of the cilostazol cocrystals prepared using solvent evaporation, slurry, and spray drying methods were compared. The physical characterization revealed that the spray drying method successfully produced cilostazol–4-hydroxybenzoic acid and cilostazol–2,4-dihydroxybenzoic acid cocrystals, whereas samples of cocrystals of cilostazol and 2,5-dihydroxybenzoic acid produced via the spray drying process appeared to contain coformer polymorphs. The dissolution of cilostazol was improved using the spray-dried cocrystal samples composed of coformers compared to samples prepared using cilostazol alone or a physical mixture. The present results provide useful information regarding the manufacture of cilostazol cocrystals and pharmaceutical cocrystals via spray drying in large-batch production.
Collapse
|
31
|
Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Sci Pharm 2020. [DOI: 10.3390/scipharm88020021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to prepare and characterize a novel piperine–succinic acid multicomponent crystal phase and to evaluate the improvement in the solubility and dissolution rate of piperine when prepared in the multicomponent crystal formation. The solid-state characterization of the novel multicomponent crystal was performed by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform-infrared (FT-IR) spectroscopy. Solubility and dissolution rate profiles were evaluated in distilled water. The physical stability was evaluated under high relative humidity (75% and 100% RH). The determination of the single crystal X-ray diffraction structure revealed that this novel multicomponent crystal was a cocrystalline phase of piperine–succinic acid (2:1 molar ratio). The differential scanning calorimetry thermogram of the cocrystal showed a single and sharp endothermic peak at 110.49 °C. The cocrystal resulted in greater solubility and a faster dissolution rate of piperine than intact piperine. This improvement was a result of the formation of a channel structure in the cocrystal. In addition, the cocrystal was stable under a humid condition.
Collapse
|
32
|
Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms. Pharmaceutics 2020; 12:pharmaceutics12040345. [PMID: 32290400 PMCID: PMC7238181 DOI: 10.3390/pharmaceutics12040345] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Although not readily accessible yet to many community and hospital pharmacists, fuse deposition modelling (FDM) is a 3D printing technique that can be used to create a 3D pharmaceutical dosage form by employing drug loaded filaments extruded via a nozzle, melted and deposited layer by layer. FDM requires printable filaments, which are commonly manufactured by hot melt extrusion, and identifying a suitable extrudable drug-excipient mixture can sometimes be challenging. We propose here the use of passive diffusion as an accessible loading method for filaments that can be printed using FDM technology to allow for the fabrication of oral personalised medicines in clinical settings. Utilising Hansen Solubility Parameters (HSP) and the concept of HSP distances (Ra) between drug, solvent, and filament, we have developed a facile pre-screening tool for the selection of the optimal combination that can provide a high drug loading (a high solvent-drug Ra, >10, and an intermediate solvent-filament Ra value, ~10). We have identified that other parameters such as surface roughness and stiffness also play a key role in enhancing passive diffusion of the drug into the filaments. A predictive model for drug loading was developed based on Support Vector Machine (SVM) regression and indicated a strong correlation between both Ra and filament stiffness and the diffusion capacity of a model BCS Class II drug, nifedipine (NFD), into the filaments. A drug loading, close to 3% w/w, was achieved. 3D printed tablets prepared using a PVA-derived filament (Hydrosupport, 3D Fuel) showed promising characteristics in terms of dissolution (with a sustained release over 24 h) and predicted chemical stability (>3 years at 25 °C/60% relative humidity), similar to commercially available NFD oral dosage forms. We believe FDM coupled with passive diffusion could be implemented easily in clinical settings for the manufacture of tailored personalised medicines, which can be stored over long periods of time (similar to industrially manufactured solid dosage forms).
Collapse
|
33
|
Serrano DR, Fernandez-Garcia R, Mele M, Healy AM, Lalatsa A. Designing Fast-Dissolving Orodispersible Films of Amphotericin B for Oropharyngeal Candidiasis. Pharmaceutics 2019; 11:pharmaceutics11080369. [PMID: 31374879 PMCID: PMC6723921 DOI: 10.3390/pharmaceutics11080369] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Amphotericin B possesses high activity against Candida spp. with low risk of resistance. However, Amphotericin B's high molecular weight compared to other antifungal drugs, such as miconazole and clotrimazole, and poor water solubility hampers its efficacy at the physiological conditions of the oropharyngeal cavity (saliva pH, limited volume for dissolution) and thereby limits its clinical use in oropharyngeal candidiasis. We have prepared fast-dissolving orodispersible films with high loading (1% w/w) using solvent casting that enables amphotericin B to remain solubilised in saliva in equilibrium between the monomeric and dimeric states, and able to produce a local antifungal effect. Optimisation of the amphotericin B-loaded orodispersible films was achieved by quality by design studies combining dextran and/or maltodextrin as dextrose-derived-polymer film formers with cellulose-derived film formers (hydroxypropylmethyl/hydroxypropyl cellulose in a 1:4 weight ratio), sorbitol for taste masking, microcrystalline cellulose (Avicel 200) or microcrystalline cellulose-carboxymethylcellulose sodium (Avicel CL-611) for enhancing the mechanical strength of the film, and polyethylene glycol 400 and glycerol (1:1 w/w) as plasticizers. The optimised amphotericin B orodispersible films (containing 1% AmB, 25% dextran, 25% maltodextrin, 5% sorbitol, 10% Avicel 200, 10% polyethylene glycol 400, 10% glycerol, 3% hydroxypropylmethyl cellulose acetate succinate, 12% hydroxypropyl cellulose) possessed a fast disintegration time (60 ± 3 s), quick release in artificial saliva (>80% in 10 min), high burst strength (2190 mN mm) and high efficacy against several Candida spp. (C. albicans, C. parapsilosis and C. krusei) (>15 mm inhibition halo). Amphotericin B orodispersible films are stable for two weeks at room temperature (25 °C) and up to 1 year in the fridge. Although further toxicological and in vivo efficacy studies are required, this novel Amphotericin B orodispersible films is a promising, physicochemically stable formulation with potential wide application in clinical practice, especially for immunocompromised patients suffering from oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Dolores R Serrano
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid, Spain
| | - Raquel Fernandez-Garcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Marta Mele
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Anne Marie Healy
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Aikaterini Lalatsa
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
34
|
Karimi-Jafari M, Ziaee A, Iqbal J, O'Reilly E, Croker D, Walker G. Impact of polymeric excipient on cocrystal formation via hot-melt extrusion and subsequent downstream processing. Int J Pharm 2019; 566:745-755. [PMID: 31212053 DOI: 10.1016/j.ijpharm.2019.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Pharmaceutical cocrystals have gained increasing interest due to their potential to modify the physicochemical properties of drugs. Herein, a 1:1 cocrystal of ibuprofen (IBU) as a BCS class II active pharmaceutical ingredient (API) and nicotinamide as coformer was produced using a hot-melt extrusion (HME) process. The effect of process parameters such as barrel temperature and screw speed were studied. It was shown that the addition of polymeric excipient such as soluplus (Sol) decreases the cocrystallization temperature by enhancing the interaction between API and coformer. In order to study the effect of cocrystallization on the tableting properties of IBU-NIC cocrystal, 5 different formulations of pure IBU, IBU-NIC cocrystal, IBU-NIC physical mixture, IBU-NIC-Sol physical mixture and IBU-NIC-Sol cocrystal were tableted by a compaction simulator. Tabletability, compactibility and compressibility were investigated. The sample with IBU-NIC-Sol cocrystal formulation outperformed all the other formulations in terms of tabletability, compactibility and compressibility. Interestingly, this sample was even superior to the IBU-NIC cocrystal sample which verified the advantageous effect of the presence of an excipient. Moreover, dissolution test confirmed a noticeable increase in the dissolution of not only the cocrystal samples but even the physical mixtures of IBU and NIC compared with pure IBU.
Collapse
Affiliation(s)
- Maryam Karimi-Jafari
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Ahmad Ziaee
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Javed Iqbal
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Denise Croker
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Gavin Walker
- Synthesis & Solid State Pharmaceutical Centre (SSPC), Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Lamy B, Serrano DR, O’Connell P, Couet W, Marchand S, Healy AM, Tewes F. Use of leucine to improve aerodynamic properties of ciprofloxacin-loaded maltose microparticles for inhalation. ACTA ACUST UNITED AC 2019. [DOI: 10.34154/2019-ejpr.01(01).pp-02-11/euraass] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ciprofloxacin (CIP) apparent permeability and absorption rate across the pulmonary epithelium can be controlled by its complexation with copper (II) ion. The aim of the current study was to formulate CIP-Cu-loaded microparticles comprising three main excipients, calcium carbonate, maltose and L-leucine, and to process by spray drying so as to generate particles with suitable aerodynamic properties for pulmonary delivery using a dry powder inhaler. Different maltose:calcium carbonate ratios were used to prepare microparticles, and the role of the excipients on the particles’ physicochemical properties, stability, and aerosolization characteristics were investigated. All the formulations without L-leucine were fully X-ray amorphous. In the presence of L-leucine, diffraction peaks of low intensity were observed, which were attributed to the crystallization of the L-leucine at the particle surfaces. The addition of L-leucine modified the particle morphology and reduced the median geometric and aerodynamic diameters to 3.2 and 3.4 µm, respectively. The fine particle fraction of powder emitted from a Handihaler® device was increased up to 65.4%, predicting high total lung deposition. Stability studies showed that the powder X-ray diffraction pattern did not change over 21 months of storage in desiccated conditions, suggesting a good physical stability of the optimized formulation comprised of CIP-Cu, maltose and L-Leucine.
Collapse
Affiliation(s)
- Barbara Lamy
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Dolores Remedios Serrano
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland AND Departamento de Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Madrid, 28040, Spain
| | - Peter O’Connell
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - William Couet
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France AND Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - Sandrine Marchand
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France AND Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - Anne Marie Healy
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Frederic Tewes
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
36
|
Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN, Pratiwi YS, Arifin H. Cocrystal of Ibuprofen⁻Nicotinamide: Solid-State Characterization and In Vivo Analgesic Activity Evaluation. Sci Pharm 2018; 86:scipharm86020023. [PMID: 29867030 PMCID: PMC6027666 DOI: 10.3390/scipharm86020023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022] Open
Abstract
Ibuprofen is classified as a BCS class II drug which has low solubility and high permeability. We conducted the formation of the cocrystalline phase of ibuprofen with coformer nicotinamide to increase its solubility. The purpose of this study was to characterize the solid state of cocrystalline phase of ibuprofen-nicotinamide, determine the solubility, and evaluate its in vivo analgesic activity. The cocrystal of ibuprofen-nicotinamide was prepared by a slow evaporation method. The solid-state characterization was conducted by powder X-ray diffraction (PXRD) analysis, differential thermal analysis (DTA), and scanning electron microscopy (SEM). To investigate the in vivo analgesic activity, 28 male Swiss-Webster mice were injected with acetic acid 0.5% following oral administration of intact ibuprofen, physical mixture, and its cocrystalline phase with nicotinamide (equivalent to 26 mg/kg ibuprofen). The number of writhes was counted, and pain inhibition was calculated. All data were analyzed with one-way ANOVA followed by Duncan's Multiple Range Test (95% confidence interval). The results revealed that a new cocrystalline phase was successfully formed. The solubility testing showed that the cocrystal formation enhanced the solubility significantly as compared with the physical mixture and intact ibuprofen. A significant increase in the analgesic activity of cocrystal ibuprofen-nicotinamide was also confirmed.
Collapse
Affiliation(s)
- Yori Yuliandra
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Erizal Zaini
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Syofyan Syofyan
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Wenny Pratiwi
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Lidiya Novita Putri
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Yuti Sahra Pratiwi
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| | - Helmi Arifin
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| |
Collapse
|