1
|
Sandmeier M, Ricci F, To D, Lindner S, Stengel D, Schifferle M, Koz S, Bernkop-Schnürch A. Design of self-emulsifying oral delivery systems for semaglutide: reverse micelles versus hydrophobic ion pairs. Drug Deliv Transl Res 2025; 15:2146-2161. [PMID: 39427069 PMCID: PMC12037675 DOI: 10.1007/s13346-024-01729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
It was the aim of this study to evaluate the potential of reverse micelles (RM) and hydrophobic ion pairs (HIP) for incorporation of semaglutide into self-emulsifying oral drug delivery systems. Reverse micelles loaded with semaglutide were formed with a cationic (ethyl lauroyl arginate, ELA) and an anionic surfactant (docusate, DOC), whereas HIP were formed between semaglutide and ELA. Maximum solubility of the peptide and the rate of dissolution was evaluated in various lipophilic phases (glycerol monocaprylocaprate:caprylic acid 1:4 (m/m), glycerol monolinoleate:caprylic acid 1:4 (m/m) and glycerol monocaprylocaprate:glycerol monolinoleate 1:4 (m/m)). Self-emulsifying drug delivery systems (SEDDS) loaded with RM and HIP were characterized regarding size distribution, zeta potential, cytocompatibility and Caco-2 permeability. Droplet sizes between 50 and 300 nm with polydispersity index (PDI) around 0.3 and zeta potentials between - 45 mV (RMDOC) and 36 mV (RMELA) were obtained. RM provided an almost 2-fold higher lipophilicity of semaglutide than HIP resulting in a 4.2-fold higher payload of SEDDS compared to HIP. SEDDS containing RM or HIP showed high cytocompatibilities with a cell survival above 75% for concentrations up to 0.1% on Caco-2 cells and acceptable hemolytic activity. Permeation studies across Caco-2 monolayer revealed an at least 2-fold increase in permeability of semaglutide for the developed formulations.
Collapse
Affiliation(s)
- Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - Fabrizio Ricci
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Sera Lindner
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - Daniel Stengel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Michaela Schifferle
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Saadet Koz
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Schmidt MR, Ebert ML, Kiechle MA, Zöller K, Laffleur F, Bernkop-Schnürch A. Self-Emulsifying delivery systems for oral administration of exenatide: Hydrophobic ion pairs vs. Dry reverse micelles. Int J Pharm 2025; 678:125711. [PMID: 40360092 DOI: 10.1016/j.ijpharm.2025.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
This research provides a comparative analysis of two innovative strategies - hydrophobic ion pairing (HIP) and dry reverse micelles (dRM) - to enhance the oral bioavailability of exenatide, a GLP-1 receptor agonist, as a diabetes treatment. These techniques were integrated into self-emulsifying drug delivery systems (SEDDS) featuring a lipid matrix composed of propylene glycol dilaurate and salicylic acid methyl ester (32.5 %:32.5 %; v/v) with polyethoxylated-35 castor oil (35 %; v/v) as surfactant. HIP enhances the lipophilicity of exenatide through ion-pairing with cationic surfactants, thereby promoting efficient incorporation into the lipid matrix of SEDDS. In contrast, dRM forms stabilized micellar structures using sorbitan monooleate, improving safety and compatibility. The droplet sizes for SEDDS were analyzed via dynamic light scattering and varied from 95 to 110 nm, with a polydispersity index of approximately 0.25, and zeta potentials between -1 mV and -6 mV. The maximum log DSEDDS/AQ values were 2.13 ± 0.31 for exenatide-loaded HIPs (ExeHIP) and 2.05 ± 0.08 for exenatide-loaded dRM (ExedRM), indicating sufficient lipophilicity, which is crucial for effective absorption and bioavailability. Toxicological assessments showed low toxicity levels. In vivo studies indicated a relative bioavailability of 18.08 % for ExeHIP and 17.06 % for ExedRM compared to intravenous injection. Both strategies demonstrated a similar potential in relative bioavailability, reflecting a significant increase in bioavailability compared to the control. Notably, the HIP formulation provided better control over exenatide release and ensured stable GLP-1 levels, while dRMs are preferable for safety reasons as all excipients have GRAS status and are therefore FDA approved.
Collapse
Affiliation(s)
- Marlene Ramona Schmidt
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Melanie Lena Ebert
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Magnus Andre Kiechle
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Birro BA, Pesce C, Tognetti F, Fragassi A, Casagrande L, Garofalo M, Salmaso S, Caliceti P. Unlocking the potential of microfluidic assisted formulation of exenatide-loaded solid lipid nanoparticles. Int J Pharm 2025; 678:125686. [PMID: 40354907 DOI: 10.1016/j.ijpharm.2025.125686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Exenatide, a first-in-class GLP-1 receptor agonist, is used to control glycaemic levels in type 2 diabetes. There are two approved injectable formulations: one solution for immediate action and one dispersion for prolonged action. Oral exenatide has low bioavailability due to poor gastrointestinal stability and absorption. To address these obstacles, we designed Solid Lipid Nanoparticles (SLN) including DOTAP in the formulation to yield high exenatide encapsulation by hydrophobic ion pairing and DSPE-PEG2kDa to convey colloidal stability and mucus diffusivity. The microfluidic production of SLN yielded 9.7 % exenatide encapsulation and 94.2 % loading efficiency. SLN exhibited solid cored-spherical morphology with sizes of about 120 nm and zeta potential of + 53 mV. The SLN surface charge was modulated by DSPE-PEG2kDa coating; 10 and 30 w/w% DSPE-PEG2kDa /lipid ratios yielded slightly positive and neutral zeta potentials, respectively. All SLN formulations provided exenatide protection from proteolytic enzymes. The non-PEGylated SLN resulted in a twofold increase of exenatide delivery across Caco-2 cell monolayers compared to the peptide solution. The 10 w/w% SLN PEGylation reduced the exenatide delivery compared to non-PEGylated SLN through Caco-2 cell monolayers. However, the exenatide delivery with 10 w/w% PEGylated SLN across mucus-producing Caco-2/HT29-MTX coculture layer was 2-fold higher compared to the unformulated peptide, and 1.5 higher than non-PEGylated SLN. The 30 w/w% SLN PEGylation did not improve the peptide transport neither through Caco-2 cell monolayers nor through Caco-2/HT29-MTX coculture layer.
Collapse
Affiliation(s)
- Büşra Arpaç Birro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristiano Pesce
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lisa Casagrande
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Polidori I, To D, Kali G, Bernkop-Schnürch A. Histidine-based ionizable cationic surfactants: novel biodegradable agents for hydrophilic macromolecular drug delivery. Drug Deliv Transl Res 2024; 14:2370-2385. [PMID: 38289467 PMCID: PMC11291603 DOI: 10.1007/s13346-023-01511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 08/03/2024]
Abstract
The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.
Collapse
Affiliation(s)
- Ilaria Polidori
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Haddadzadegan S, To D, Matteo Jörgensen A, Wibel R, Laffleur F, Bernkop-Schnürch A. Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307618. [PMID: 38308358 DOI: 10.1002/smll.202307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
7
|
Pinto S, Hosseini M, Buckley ST, Yin W, Garousi J, Gräslund T, van Ijzendoorn S, Santos HA, Sarmento B. Nanoparticles targeting the intestinal Fc receptor enhance intestinal cellular trafficking of semaglutide. J Control Release 2024; 366:621-636. [PMID: 38215986 DOI: 10.1016/j.jconrel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mahya Hosseini
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Wen Yin
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sven van Ijzendoorn
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
8
|
Zöller K, Karlegger A, Truszkowska M, Stengel D, Bernkop-Schnürch A. Fluorescent hydrophobic ion pairs: A powerful tool to investigate cellular uptake of hydrophobic drug complexes via lipid-based nanocarriers. J Colloid Interface Sci 2024; 654:174-188. [PMID: 37839235 DOI: 10.1016/j.jcis.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
HYPOTHESIS Hydrophobic ion pairs (HIPs) between two fluorescent components and incorporation into nanoemulsions (NE) allows tracking in cellular uptake studies. EXPERIMENTS HIPs were formed between propidium iodide and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE), azure A chloride and NBD-PE or coumarin 343 and 4-(4-dihexadecylaminostyryl)-N-methylpyridinium iodide) (DiA). Fluorescence spectra of the resulting complexes were recorded. HIPs were loaded into zwitterionic NE and their size, stability in different media, haemolytic properties and cytotoxicity were evaluated. Furthermore, cellular uptake at 37 °C and 4 °C was investigated via flow cytometry and confocal microscopy. FINDINGS HIP-formation increased lipophilicity of the hydrophilic model drugs. NE exhibited a size between 80 and 150 nm and were not toxic in concentrations up to 0.1 % but showed high haemolytic properties. Cellular uptake of propidium, azure A and coumarin 343 were 8-fold, 115-fold and 1.3-fold improved by the formation of HIPs and up to 59-fold, 120-fold and 50-fold by incorporating these HIPs in NE, respectively. Lower uptake was observed at 4 °C. In case of propidium/ NBD-PE and azure A/ NBD-PE HIPs, propidium and azure A were delivered into the cytosol, whereas NBD-PE was unable to enter cells. In case of coumarin 343/ DiA HIPs, both components accumulated in the cell membrane. Therefore, HIPs between two fluorescent compounds are a powerful tool to investigate cellular uptake of hydrophobic complexes via nanocarriers by visualization of their cellular distribution.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anna Karlegger
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
10
|
Saraswat A, Vartak R, Hegazy R, Fu Y, Rao TJR, Billack B, Patel K. Oral lipid nanocomplex of BRD4 PROteolysis TArgeting Chimera and vemurafenib for drug-resistant malignant melanoma. Biomed Pharmacother 2023; 168:115754. [PMID: 37871557 DOI: 10.1016/j.biopha.2023.115754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BRAF inhibitors (BRAFi) like vemurafenib (VEM) provide initial regression in mutated melanoma but rapidly develop resistance. Molecular pathways responsible for development of resistance against VEM finally converge towards the activation of oncogenic c-Myc. We identified an epigenetic approach to inhibit the c-Myc expression and resensitize BRAFi-resistant melanoma cells. ARV-825 (ARV) was employed as a BRD4 targeted PROteolysis TArgeting Chimera that selectively degrades the BRD4 to downregulate c-Myc. ARV synergistically enhanced the cytotoxicity of VEM in vitro to overcome its resistance in melanoma. Development of ARV and VEM-loaded lipid nanocomplex (NANOVB) significantly improved their physicochemical properties for oral delivery. Most importantly, oral administration of NANOVB substantially inhibited tumor growth at rate of 41.07 mm3/day in nude athymic mice. NANOVB treatment resulted in prolonged survival with 50% of mice surviving until the experimental endpoint. Histopathological analysis revealed significant tumor necrosis and downregulation of Ki-67 and BRD4 protein in vivo. Promising in vivo antitumor activity and prolonged survival demonstrated by NANOVB signifies its clinical translational potential for BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rehab Hegazy
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yige Fu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Blase Billack
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
11
|
Claus V, Sandmeier M, Hock N, Spleis H, Lindner S, Kalb M, Bernkop-Schnürch A. Counterion optimization for hydrophobic ion pairing (HIP): Unraveling the key factors. Int J Pharm 2023; 647:123507. [PMID: 37848166 DOI: 10.1016/j.ijpharm.2023.123507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In the present study, various surfactants were combined with insulin (INS), bovine serum albumin (BSA) and horseradish peroxidase (HRP) via hydrophobic ion pairing to increase lipophilicity and facilitate incorporation into self-emulsifying drug delivery systems (SEDDS). Lipophilicity of model proteins was successfully increased, achieving log Dn-butanol/water values up to 3.5 (INS), 3.2 (BSA) and 1.2 (HRP). Hereby, key factors responsible for complex formation were identified. In particular, surfactants with branched alkyl chains or chain lengths greater than C12 showed favorable properties for hydrophobic ion pairs (HIP). Furthermore, flexibility of the carbon chain resulted in higher lipophilicity and suitability of polar head groups of surfactants for HIP decreased in the rank order sulfonate > sulfosuccinate > phosphate = sulfate > carbonate > phosphonic acids = sulfobetaines. Stability studies of formed HIP complexes were performed in various gastrointestinal fluids and their solubility was determined in commonly used SEDDS excipients. Formed complexes were stable in simulated gastrointestinal fluids and could be incorporated into SEDDS formulations (C1: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 50% n-butanol; C2: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 40% n-butanol, 10% 1,2-butanediol), resulting in suitable payloads of up to 11.9 mg/ml for INS, 1.0 mg/ml for BSA and 1.6 mg/ml for HRP.
Collapse
Affiliation(s)
- Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Sera Lindner
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Monika Kalb
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Yuan H, Guo C, Liu L, Zhao L, Zhang Y, Yin T, He H, Gou J, Pan B, Tang X. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides. Carbohydr Polym 2023; 312:120838. [PMID: 37059563 DOI: 10.1016/j.carbpol.2023.120838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
The oral route has long been recognized as the most preferred route for drug delivery as it offers high patient compliance and requires minimal expertise. Unlike small molecule drugs, the harsh environment of the gastrointestinal tract and low permeability across the intestinal epithelium make oral delivery extremely ineffective for macromolecules. Accordingly, delivery systems that are rationally constructed with suitable materials to overcome barriers to oral delivery are exceptionally promising. Among the most ideal materials are polysaccharides. Depending on the interaction between polysaccharides and proteins, the thermodynamic loading and release of proteins in the aqueous phase can be realized. Specific polysaccharides (dextran, chitosan, alginate, cellulose, etc.) endow systems with functional properties, including muco-adhesiveness, pH-responsiveness, and prevention of enzymatic degradation. Furthermore, multiple groups in polysaccharides can be modified, which gives them a variety of properties and enables them to suit specific needs. This review provides an overview of different types of polysaccharide-based nanocarriers based on different kinds of interaction forces and the influencing factors in the construction of polysaccharide-based nanocarriers. Strategies of polysaccharide-based nanocarriers to improve the bioavailability of orally administered proteins/peptides were described. Additionally, current restrictions and future trends of polysaccharide-based nanocarriers for oral delivery of proteins/peptides were also covered.
Collapse
Affiliation(s)
- Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bochen Pan
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
14
|
Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023; 15:pharmaceutics15030935. [PMID: 36986796 PMCID: PMC10056213 DOI: 10.3390/pharmaceutics15030935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past few decades, there has been a tremendous increase in the utilization of therapeutic peptides. Therapeutic peptides are usually administered via the parenteral route, requiring an aqueous formulation. Unfortunately, peptides are often unstable in aqueous solutions, affecting stability and bioactivity. Although a stable and dry formulation for reconstitution might be designed, from a pharmaco-economic and practical convenience point of view, a peptide formulation in an aqueous liquid form is preferred. Designing formulation strategies that optimize peptide stability may improve bioavailability and increase therapeutic efficacy. This literature review provides an overview of various degradation pathways and formulation strategies to stabilize therapeutic peptides in aqueous solutions. First, we introduce the major peptide stability issues in liquid formulations and the degradation mechanisms. Then, we present a variety of known strategies to inhibit or slow down peptide degradation. Overall, the most practical approaches to peptide stabilization are pH optimization and selecting the appropriate type of buffer. Other practical strategies to reduce peptide degradation rates in solution are the application of co-solvency, air exclusion, viscosity enhancement, PEGylation, and using polyol excipients.
Collapse
|
15
|
Matteo Jörgensen A, Knoll P, Haddadzadegan S, Fabian H, Hupfauf A, Gust R, Georg Jörgensen R, Bernkop-Schnürch A. Biodegradable arginine based steroid-surfactants: Cationic green agents for hydrophobic ion-pairing. Int J Pharm 2022; 630:122438. [PMID: 36464112 DOI: 10.1016/j.ijpharm.2022.122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The aim of this study was to evaluate the safety and efficacy for hydrophobic ion-pairing of surfactants based on arginine (Arg). The prepared Arg-cholesteryl ester (ACE) and Arg-diosgenyl ester (ADE) were characterized regarding solubility, pKa, critical micellar concentration (CMC), biodegradability as well as membrane- and aquatic toxicity using DOTAP as reference. The ability for hydrophobic ion-pairing was evaluated and the lipophilicity of formed complexes was determined. NMR, FT-IR and MS confirmed successful synthesis of Arg-surfactants. The slightly soluble single-charged Arg-surfactants (pH < pKa3 (ACE = 10.42 ± 0.52; ADE = 10.38 ± 0.27)) showed CMCs of 27.17 µM for ACE and 35.67 µM for ADE. CMCs of the sparingly soluble double-charged species (pH < pKa2 (ACE = 5.30 ± 0.20; ADE = 5.55 ± 0.06)) were determined at concentrations of ≥ 250 µM for ACE and ≥ 850 µM for ADE. The enzymatic- and environmental biodegradability was proven by an entire cleavage of Arg-surfactants within 24 h, whereas DOTAP remained stable. Arg-surfactants exhibited lower membrane- (> 2-fold) and aquatic toxicity (> 15-fold) than DOTAP. The complexes formed with Arg-surfactants and insulin showed higher lipophilicity than the DOTAP-complex. According to these results, Arg-surfactants might be a promising safe tool for the delivery of peptide drugs.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hannah Fabian
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Rainer Georg Jörgensen
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37023 Witzenhausen, Germany
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Wibel R, Knoll P, Le-Vinh B, Kali G, Bernkop-Schnürch A. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomater 2022; 144:54-66. [PMID: 35292415 DOI: 10.1016/j.actbio.2022.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Hydrophobic ion pairing is a promising strategy to raise the lipophilic character of therapeutic peptides and proteins. In past studies, docusate, an all-purpose surfactant with a dialkyl sulfosuccinate structure, showed highest potential as hydrophobic counterion. Being originally not purposed for hydrophobic ion pairing, it is likely still far away from the perfect counterion. Thus, within this study, docusate analogues with various linear and branched alkyl residues were synthesized to derive systematic insights into which hydrophobic tail is most advantageous for hydrophobic ion pairing, as well as to identify lead counterions that form complexes with superior hydrophobicity. The successful synthesis of the target compounds was confirmed by FT-IR, 1H-NMR, and 13C-NMR. In a screening with the model protein hemoglobin, monostearyl sulfosuccinate, dioleyl sulfosuccinate, and bis(isotridecyl) sulfosuccinate were identified as lead counterions. Their potential was further evaluated with the peptides and proteins vancomycin, insulin, and horseradish peroxidase. Dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate significantly increased the hydrophobicity of the tested peptides and proteins determined as logP or lipophilicity determined as solubility in 1-octanol, respectively, in comparison to the gold standard docusate. Dioleyl sulfosuccinate provided an up to 8.3-fold higher partition coefficient and up to 26.5-fold higher solubility in 1-octanol than docusate, whereas bis(isotridecyl) sulfosuccinate resulted in an up to 6.7-fold improvement in the partition coefficient and up to 44.0-fold higher solubility in 1-octanol. The conjugation of highly lipophilic alkyl tails to the polar sulfosuccinate head group allows the design of promising counterions for hydrophobic ion pairing. STATEMENT OF SIGNIFICANCE: Hydrophobic ion pairing enables efficient incorporation of hydrophilic molecules into lipid-based formulations by forming complexes with hydrophobic counterions. Docusate, a sulfosuccinate with two branched alkyl tails, has shown highest potential as anionic hydrophobic counterion. As it was originally not purposed for hydrophobic ion pairing, its structure is likely still far away from the perfect counterion. To improve its properties, analogues of docusate with various alkyl tails were synthesized in the present study. The investigation of different alkyl residues allowed to derive systematic insights into which tail structures are most favorable for hydrophobic ion pairing. Moreover, the lead counterions dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate bearing highly lipophilic alkyl tails provided a significant improvement in the hydrophobicity of the resulting complexes.
Collapse
|
17
|
Poudwal S, Shende P. Multi-strategic approaches for enhancing active transportation using self-emulsifying drug delivery system. J Drug Target 2022; 30:726-736. [PMID: 35451898 DOI: 10.1080/1061186x.2022.2069783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral delivery is the most desired route of drug administration and it can be more beneficial for patients suffering from chronic diseases wherein frequent parenteral administration of proteins such as insulin and calcitonin is required. The BCS class II drugs show low aqueous solubility and high permeability whereas BCS class IV drugs suffer from low aqueous solubility and low permeability. Additionally, biologic drugs are highly sensitive to presence of bioenzymes and bile salts when administered orally. Self-emulsifying drug delivery system (SEDDS) is a thermodynamically stable lipid formulation that enhances oral absorption of active ingredients via the opening of tight junctions, increasing the membrane fluidity, and thus overcomes the physiological barriers like viscous mucus layer, strong acid conditions and enzymatic degradation. An understanding of different theories that govern SEDDS formation and drug release can help in formulating a highly stable and effective drug delivery system. Poorly permeable drugs such as chlorpromazine require modification using methods like hydrophobic ion pairing, complexation with phospholipids, etc. to enable high entrapment efficiency which is discussed in the article. Additionally, the article gives an overview of the influence of polymers, length of fatty acids chain and zeta potential in enhancing permeation across the intestinal membrane.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
18
|
Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review. J Microencapsul 2022; 39:156-175. [PMID: 35262455 DOI: 10.1080/02652048.2022.2051626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review gathers recent studies, patents, and clinical trials involving the nasal administration of peptide drugs to supply a panorama of developing nanomedicine advances in this field. Peptide drugs have been featured in the pharmaceutical market, due to their high efficacy, biological activity, and low immunogenicity. Pharmaceutical industries need technology to circumvent issues relating to peptide stability and bioavailability. The oral route offers very harsh and unfavourable conditions for peptide administration, while the parenteral route is inconvenient and risky for patients. Nasal administration is an attractive alternative, mainly when associated with nanotechnological approaches. Nanomedicines may improve the nasal administration of peptide drugs by providing protection for the macromolecules from enzymes while also increasing their time of retention and permeability in the nasal mucosa. Nanomedicines for nasal administration containing peptide drugs have been acclaimed for both prevention, and treatment, of infections, including the pandemic COVID-19, cancers, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carine Zuglianello
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
19
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
20
|
Ebada HMK, Nasra MMA, Nassra RA, Abdallah OY. Chondroitin sulfate-functionalized lipid nanoreservoirs: a novel cartilage-targeting approach for intra-articular delivery of cassic acid for osteoarthritis treatment. Drug Deliv 2022; 29:652-663. [PMID: 35188017 PMCID: PMC8865121 DOI: 10.1080/10717544.2022.2041130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel intra-articular nanoreservoirs were implemented employing different cartilage targeting approaches to improve cartilage bioavailability of a chondroprotective drug, cassic acid (CA), for effective amelioration of cartilage deterioration off-targeting CA gastrointestinal disorders. Herein, we compared active cartilage-targeting approach via chondroitin sulfate (CHS) functionalization versus passive targeting using positively charged nanoparticles to target negatively charged cartilage matrix. Firstly, CA integrated nanoreservoirs (CA-NRs) were fabricated based on ionic conjugation between CA and cationic hydrophobic surface modifier octadecylamine (ODA) and were further functionalized with CHS to develop CHS-CA-NRs. Confocal laser microscope was used to visualize the accumulation of nanoparticles into the cartilage tissue. Both targeting approaches promoted CA local cartilage availability and prolonged its residence time. Compared to passive targeted CA-NRs, active targeted CHS-CA-NRs showed higher fluorescence signals in proximity to and inside chondrocytes which lasted for up to 21 days. In MIA-osteoarthritic rats, CHS-CA-NRs showed superior antiosteoarthritic activity, exhibiting highest cartilage repair compared to CA-NRs. Additionally, CHS-CA-NRs significantly inhibited OA inflammatory cytokine, degradation enzyme and oxidative stress and improved cartilage matrix biosynthesis. Conclusively, CHS-CA-NRs improved OA repair showing a superior efficacy for articular cartilage targeting with CHS which could be a potential advance for OA therapy.
Collapse
Affiliation(s)
- Heba M K Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Saha M, Sikder P, Saha A, Shah S, Sultana S, Emran T, Banik A, Islam Z, Islam MS, Sharker SM, Reza HM. QbD Approach towards Robust Design Space for Flutamide/PiperineSelf-Emulsifying Drug Delivery System with Reduced Liver Injury. AAPS PharmSciTech 2022; 23:62. [PMID: 35080685 DOI: 10.1208/s12249-022-02213-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
Flutamide which is used to treat prostate cancer and other diseases induces liver damage during and after the therapy. The aim of this study was to develop a flutamide/piperineco-loaded self-emulsifying drug delivery system (FPSEDDS) to inhibit flutamide-induced liver injury by utilizing piperine as a metabolic inhibitor. The development of SEDDS was carried out following a quality by design (QbD) approach. The risk assessment study was performed to identify critical quality attributes (CQAs) and critical material attributes (CMAs)/critical process parameters (CPPs). I-optimal mixture design was executed with three CMAs as the independent variables and CQAs as the dependable variables. The effectiveness of optimized SEDDS to circumvent flutamide-induced hepatotoxicity was assessed in mice. The numerical optimization suggested an optimal formulation with a desirability value of 0.621, using CQAs targets as optimization goals with 95% prediction intervals (α = 0.05). The optimal formulation exhibited the grade A SEDDS characteristics with the guarantee of high payloads in self-formed oily droplets. The design space was also obtained from the same optimization goals. All CQA responses of verification points were found within the 95% prediction intervals of the polynomial models, indicating a good agreement between actual versus predicted responses within the design space. These obtained responses also passed CQAs acceptance criteria. Finally, hematoxylin-eosin staining revealed the minimal flutamide-induced hepatotoxicity from the optimal SEDDS formulation as compared to the control and flutamide/piperine normal suspension. We demonstrate that the piperine containing optimized SEDDS formulation developed by QbD significantly reduces the flutamide-induced liver injury in mice.
Collapse
|
22
|
Ebada HM, Nasra MM, Nassra RA, Solaiman AA, Abdallah OY. Cationic nanocarrier of rhein based on hydrophobic ion pairing approach as intra-articular targeted regenerative therapy for osteoarthritis. Colloids Surf B Biointerfaces 2021; 211:112285. [PMID: 34942464 DOI: 10.1016/j.colsurfb.2021.112285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Cartilage deterioration is the hallmark of osteoarthritis (OA). Rapid clearance of intra-articularly injected drugs and inherent cartilage barrier properties represent enormous challenges facing the effective local OA therapy. Rhein (RH), a dihydroxy-anthraquinone acid molecule, possess a potential chondroprotective effect. However, RH suffers from poor oral bioavailability besides its gastrointestinal side effects. Herein, for the first time, we exploited cationic carriers to target anionic cartilage matrix to create a RH-reservoir within the cartilage matrix, improving RH therapeutic efficacy with reduced side effects. Firstly, we improved RH lipophilic characteristics employing hydrophobic ion pairing (HIP) to be efficiently loaded within lipid nanoparticles with slow-release properties. RH-HIP integrated solid lipid nanoparticles (RH-SLNs) rapidly penetrated through cartilage tissue and lasted for 3 weeks into healthy and arthritic rat joints. Furthermore, RH-SLNs significantly inhibited inflammatory response, oxidative stress and cartilage deterioration in MIA-arthritic rats. In conclusion, intra-articular cationic RH-SLNs represented a meaningful step towards OA therapy.
Collapse
Affiliation(s)
- Heba Mk Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Maha Ma Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Amany A Solaiman
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
23
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
24
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm 2021; 601:120583. [PMID: 33839225 DOI: 10.1016/j.ijpharm.2021.120583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
Oral delivery of exenatide (EXE), a high-efficiency therapeutic peptide, is urgently needed for long-term treatment of diabetes. In this study, a polylactide-co-glycoside (PLGA) nanoparticles (NPs) in yeast cell wall particle (YCWP) system was built to improve the intestinal absorption of EXE by efficient protection of EXE against gastrointestinal degradation and intestinal phagocytic cell targeted delivery. The EXE-loaded PLGA NPs were prepared by a double emulsion solvent diffusion method and exhibited a uniformly spherical appearance, a nano size (92.4 ± 4.6 nm) and a positive surface charge (+32.3 ± 3.8 mV). And then, the NPs were successfully loaded into the YCWPs by a solvent hydration - lyophilization cycle method to obtain the EXE-PLGA NPs @YCWPs, which was verified by scanning electron microscope and confocal laser scanning microscopy. An obvious sustained drug release and a reduced burst release were achieved by this nano-in-micro carrier. Moreover, the gastrointestinal stability of EXE in PLGA NPs @YCWPs was significantly higher than that in PLGA NPs in the simulated gastrointestinal environment, which were useful in enhancing the intestinal absorption of EXE. In biodistribution study, the EXE-PLGA NPs @YCWPs could quickly reached the root of the villi, and even partly entered the inner of the villi, especially in ileum and Peyer's patches. In vitro cell evaluation demonstrated an efficient β-glucan receptor mediated endocytosis and transport of EXE-PLGA NPs @YCWPs by the macrophage RAW 264.7 cells, suggesting a potential intestinal macrophage targeted absorptive pathway. The in vivo pharmacokinetic study showed a preferred hypoglycemic effect and an increased pharmacological availability (13.7 ± 4.1%) after oral administration of the EXE-PLGA NPs @YCWPs. It is believed that the PLGA nanoparticles in YCWP system could become an efficient strategy to orally deliver therapeutic peptide drugs.
Collapse
Affiliation(s)
- Tianyang Ren
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Xuehua Zheng
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ruixue Bai
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China.
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
26
|
Ismail R, Baaity Z, Csóka I. Regulatory status quo and prospects for biosurfactants in pharmaceutical applications. Drug Discov Today 2021; 26:1929-1935. [PMID: 33831583 DOI: 10.1016/j.drudis.2021.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 01/24/2023]
Abstract
The concept of going 'green' and 'cold' has led to utilizing renewable resources for the synthesis of microbial biosurfactants that are both patient and eco-friendly. In this review, we shed light on the potential and regulatory aspects of biosurfactants in pharmaceutical applications and how they can significantly contribute to novel concepts for the Coronavirus 2019 (COVID-19) vaccine and future treatment. We emphasize that more specific guidelines should be formulated to regulate the approval of biosurfactants for human use. It is also crucial to implement a risk-based approach from the early research and development (R&D) phase in addition to establishing more robust standardized techniques and assays to evaluate the characteristics of biosurfactants.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; Department of Applied and Environmental Chemistry, Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela Sq.1., H-6720 Szeged, Hungary.
| | - Zain Baaity
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 10 Dóm Square, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| |
Collapse
|
27
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021; 597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are being increasingly exploited in clinical practice for management of type 2 diabetes mellitus due to their ability to lower blood glucose levels and reduce off-target effects of current therapeutics. Nanomaterials had viewed myriad breakthroughs in protecting peptides against degradation and carrying therapeutics to targeted sites for maximizing their pharmacological activity and overcoming limitations associated with their application. This review highlights the latest advances in designing smart multifunctional nanoconstructs and engineering targeted and stimuli-responsive nanoassemblies for delivery of GLP-1 receptor agonists. Furthermore, advanced nanoconstructs of sophisticated supramolecular assembly yet efficient delivery of GLP-1/GLP-1 analogs, nanodevices that mediate intrinsic GLP-1 secretion per se, and nanomaterials with capabilities to load additional moieties for synergistic antidiabetic effects, are demonstrated.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
29
|
Friedl JD, Jörgensen AM, Le‐Vinh B, Braun DE, Tribus M, Bernkop-Schnürch A. Solidification of self-emulsifying drug delivery systems (SEDDS): Impact on storage stability of a therapeutic protein. J Colloid Interface Sci 2021; 584:684-697. [DOI: 10.1016/j.jcis.2020.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
|