1
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
2
|
Acute and Delayed Effects of Mechanical Injury on Calcium Homeostasis and Mitochondrial Potential of Primary Neuroglial Cell Culture: Potential Causal Contributions to Post-Traumatic Syndrome. Int J Mol Sci 2022; 23:ijms23073858. [PMID: 35409216 PMCID: PMC8998891 DOI: 10.3390/ijms23073858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In vitro models of traumatic brain injury (TBI) help to elucidate the pathological mechanisms responsible for cell dysfunction and death. To simulate in vitro the mechanical brain trauma, primary neuroglial cultures were scratched during different periods of network formation. Fluorescence microscopy was used to measure changes in intracellular free Ca2+ concentration ([Ca2+]i) and mitochondrial potential (ΔΨm) a few minutes later and on days 3 and 7 after scratching. An increase in [Ca2+]i and a decrease in ΔΨm were observed ~10 s after the injury in cells located no further than 150–200 µm from the scratch border. Ca2+ entry into cells during mechanical damage of the primary neuroglial culture occurred predominantly through the NMDA-type glutamate ionotropic channels. MK801, an inhibitor of this type of glutamate receptor, prevented an acute increase in [Ca2+]i in 99% of neurons. Pathological changes in calcium homeostasis persisted in the primary neuroglial culture for one week after injury. Active cell migration in the scratch area occurred on day 11 after neurotrauma and was accompanied by a decrease in the ratio of live to dead cells in the areas adjacent to the injury. Immunohistochemical staining of glial fibrillary acidic protein and β-III tubulin showed that neuronal cells migrated to the injured area earlier than glial cells, but their repair potential was insufficient for survival. Mitochondrial Ca2+ overload and a drop in ΔΨm may cause delayed neuronal death and thus play a key role in the development of the post-traumatic syndrome. Preventing prolonged ΔΨm depolarization may be a promising therapeutic approach to improve neuronal survival after traumatic brain injury.
Collapse
|
3
|
Liu G, Zhang Z, Wang Y, Li X. Highly oxygenated ent-atisane and podocarpane diterpenoids from Excoecaria agallocha. Nat Prod Res 2021; 36:3924-3930. [PMID: 33733942 DOI: 10.1080/14786419.2021.1900177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new highly oxygenated ent-atisane diterpenoid, namely excagallonoid A (1), together with five known analogues (2 - 6) were isolated from the leaves and twigs of Excoecaria agallocha. Their structures were elucidated on the basis of extensive spectroscopic analyses (HRESIMS, UV, IR, 1 D and 2 D NMR), and the absolute configurations of 1 and 5 were determined by single-crystal X-ray diffraction. Compound 1 represents the first example of an ent-atisane diterpenoid featuring a vicinal 2,3-diol moiety. Compounds 1 and 4 exhibited weak cytotoxicities in vitro against RKO colon cancer cells with IC50 values of 28.7 ± 1.98 and 32.6 ± 2.81 µM, respectively.
Collapse
Affiliation(s)
- Guangyan Liu
- Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, China.,College of Civil and Architecture Engineering, Guilin University of Technology, Guilin, China
| | - Zhisen Zhang
- School of Intelligent Manufacturing, Panzhihua University, Panzhihua, China
| | - Yuanhao Wang
- Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, China.,College of Civil and Architecture Engineering, Guilin University of Technology, Guilin, China
| | - Xuewen Li
- Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Drummond GJ, Grant PS, Brimble MA. ent-Atisane diterpenoids: isolation, structure and bioactivity. Nat Prod Rep 2021; 38:330-345. [PMID: 32716458 DOI: 10.1039/d0np00039f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2020 ent-Atisane diterpenoids are a class of over 150 members with diverse structures and valuable bioactivities. These compounds share a curious history in which the synthesis of the archetypal member preceded its isolation from natural sources. In this review, we provide a comprehensive summary of the isolation, structure, and bioactivity of ent-atisane diterpenoids from their discovery in 1965 to the present day.
Collapse
Affiliation(s)
- Grace J Drummond
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Phillip S Grant
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre of Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
5
|
Perusse D, Smanski MJ. Stereoselective semi-synthesis of the neuroprotective natural product, serofendic acid. MEDCHEMCOMM 2019; 10:951-960. [PMID: 31303993 PMCID: PMC6595966 DOI: 10.1039/c9md00145j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/19/2019] [Indexed: 01/06/2023]
Abstract
We have recently demonstrated a synthetic biology-enabled semi-synthesis of the potent neuroprotective compound, serofendic acid. An engineered bacterium produces ent-atis-16-en-19-oic acid, which has six of eight chiral carbons configured with the appropriate stereochemistry. Setting the configuration of the C15 hydroxyl group and C16 methylene is a critical step that occurs late in each published total or formal synthesis. Here we explore the use of alternative reducing reagents, stereochemical directing agents, reaction order, and product recycling to improve the diastereoselectivity of this step. We find that installing and oxidizing the C17 methylsulfide prior to reducing the C15 ketone provides the greatest yield of the desired C15,C16 diastereomer. This represents an improved total synthesis of serofendic acid.
Collapse
Affiliation(s)
- Dimitri Perusse
- Department of Biochemistry, Molecular Biology, and Biophysics , BioTechnology Institute , University of Minnesota , Twin Cities , Saint Paul , MN 55108 , USA .
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics , BioTechnology Institute , University of Minnesota , Twin Cities , Saint Paul , MN 55108 , USA .
| |
Collapse
|
6
|
Ioroi T, Akao M, Iguchi M, Kato M, Kimura T, Izumi Y, Akaike A, Kume T. Serofendic Acid Protects Against Myocardial Ischemia–Reperfusion Injury in Rats. J Pharmacol Sci 2014; 126:274-80. [DOI: 10.1254/jphs.14139fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Protective effect of serofendic acid, administered intravenously, on cerebral ischemia-reperfusion injury in rats. Brain Res 2013; 1532:99-105. [DOI: 10.1016/j.brainres.2013.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023]
|
8
|
Li S, Luo J, Wang X, Guan BC, Sun CK. Effects of Ginkgo biloba
extracts on NMDA-activated currents in acutely isolated hippocampal neurons of the rat. Phytother Res 2010; 25:137-41. [DOI: 10.1002/ptr.3235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Nakatsu Y, Kotake Y, Takishita T, Ohta S. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate. Toxicol Appl Pharmacol 2009; 240:292-8. [DOI: 10.1016/j.taap.2009.06.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022]
|
10
|
Kume T. [Discovery and neuroprotective mechanisms of serofendic acid derived from fetal tissues]. Nihon Yakurigaku Zasshi 2009; 133:257-60. [PMID: 19443961 DOI: 10.1254/fpj.133.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kume T, Ito R, Taguchi R, Izumi Y, Katsuki H, Niidome T, Takada-Takatori Y, Sugimoto H, Akaike A. Serofendic acid promotes stellation induced by cAMP and cGMP analogs in cultured cortical astrocytes. J Pharmacol Sci 2009; 109:110-8. [PMID: 19122367 DOI: 10.1254/jphs.08254fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the effect of serofendic acid, a neuroprotective substance derived from fetal calf serum, on the morphological changes in cultured cortical astrocytes. Cultured astrocytes developed a stellate morphology with several processes following exposure to dibutylyl cAMP (dbcAMP), a membrane-permeable cAMP analog; 8-Br-cGMP, a membrane-permeable cGMP analog; or phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator. Serofendic acid significantly accelerated the stellation induced by dbcAMP- and 8-Br-cGMP. In contrast, the PMA-induced stellation was not affected by serofendic acid. Next, we attempted to elucidate the mechanism underlying the dbcAMP-induced stellation and explore the site of action of serofendic acid. Both the stellation induced by dbcAMP and the promotional effect of serofendic acid were partially inhibited by KT5720, a specific protein kinase A (PKA) inhibitor. Furthermore, serofendic acid failed to facilitate the stellation induced by Y-27632, an inhibitor of Rho-associated kinase (ROCK). These results indicate that serofendic acid promotes dbcAMP- and 8-Br-cGMP-induced stellation and the promotional effect on dbcAMP-induced stellation is mediated at least partly by the regulation of PKA activity and not by controlling ROCK activity.
Collapse
Affiliation(s)
- Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Protective effect of serofendic acid on ischemic injury induced by occlusion of the middle cerebral artery in rats. Eur J Pharmacol 2008; 586:151-5. [DOI: 10.1016/j.ejphar.2008.02.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 01/22/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
|
13
|
Ueda M, Iida Y, Kitamura Y, Kawashima H, Ogawa M, Magata Y, Saji H. 5-Iodo-A-85380, a specific ligand for alpha 4 beta 2 nicotinic acetylcholine receptors, prevents glutamate neurotoxicity in rat cortical cultured neurons. Brain Res 2008; 1199:46-52. [PMID: 18269932 DOI: 10.1016/j.brainres.2007.10.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 01/09/2023]
Abstract
5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-iodo-A-85380, 5IA) has very high affinity and selectivity to nicotinic acetylcholine receptor (nAChR) alpha 4 beta 2 subtype, and a relative safe profile. To assess whether 5IA has neuroprotective properties, we examined the effect of 5IA on glutamate (Glu)-induced neurotoxicity using primary cultures of rat cortical neurons. A 10-min exposure of cultures to Glu followed by 2-h incubation with drug-free medium caused a marked loss of viability, as determined by trypan blue exclusion method. Glu-induced neurotoxicity was prevented by 5IA both in a time- and concentration-dependent manner. 5IA-induced neuroprotection required pretreatment of 5IA prior to Glu exposure with an optimal concentration of 10 nM and an optimal pretreatment time of 2 h. Treatment after Glu exposure could not rescue the cultured cells. The neuroprotective effect of 5IA was antagonized by mecamylamine, a nAChR antagonist, but not by scopolamine, a muscarinic acetylcholine receptor antagonist. Dihydro-beta-erythroidine, an alpha 4 beta 2 nAChR antagonist, completely inhibited 5IA-induced neuroprotection, whereas alpha-bungarotoxin, an alpha 7 nAChR antagonist, had no effect. Furthermore, 5IA did not show neuroprotective effects in the absence of extracellular Ca2+. These results suggest that the neuroprotective effects of 5IA are produced by activation of alpha 4 beta 2 nAChRs followed by the influx of extracellular Ca2+. In conclusion, 5IA is possibly not only useful for the treatment and prevention of glutamate neurotoxicity, but also as an available tool for elucidating the mechanism of neuroprotection associated with alpha 4 beta 2 nAChRs.
Collapse
Affiliation(s)
- Masashi Ueda
- Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Akao M, Takeda T, Kita T, Kume T, Akaike A. Serofendic Acid, a Substance Extracted from Fetal Calf Serum, as a Novel Drug for Cardioprotection. ACTA ACUST UNITED AC 2007; 25:333-41. [DOI: 10.1111/j.1527-3466.2007.00026.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Terauchi T, Doko T, Yonaga M, Kajiwara A, Niidome T, Taguchi R, Kume T, Akaike A, Sugimoto H. Synthesis and neuroprotective effects of serofendic acid analogues. Bioorg Med Chem Lett 2006; 16:5080-3. [PMID: 16904319 DOI: 10.1016/j.bmcl.2006.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
Analogues of serofendic acid were prepared and their protective effects against L-glutamate (Glu)-induced neurotoxicity were examined using primary cultures of rat cortical neurons. Some analogues exhibited similar neuroprotective activity to that of serofendic acid.
Collapse
Affiliation(s)
- Taro Terauchi
- Tsukuba Research Laboratories, Eisai Co. Ltd, Tsukuba-Shi 300-2635, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakamichi N, Yoneda Y. Maturation-dependent reduced responsiveness of intracellular free Ca2+ ions to repeated stimulation by N-methyl-d-aspartate in cultured rat cortical neurons. Neurochem Int 2006; 49:230-7. [PMID: 16517022 DOI: 10.1016/j.neuint.2006.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/25/2022]
Abstract
In contrast to other ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptor channels are rather stable after the simulation. Brief exposure to NMDA at 50 microM rapidly increased the fluorescence intensity for increased intracellular free Ca(2+) levels in a reversible- and concentration-dependent manner in rat cortical neurons cultured for 3-15 days in vitro (DIV), while EC(50) values were significantly decreased in proportion to cellular maturation from 3 to 15 DIV. Although a constant increase was persistently seen in the fluorescence throughout the sustained exposure to NMDA for 60 min irrespective of the cell maturation from 3 to 15 DIV, the second brief exposure for 5 min resulted in a less efficient increase in the fluorescence than that found after the first brief exposure for 5 min in a manner dependent on intervals between the two repetitive brief exposures. In vitro maturation significantly shortened the interval required for the reduced responsiveness to the second brief exposure, while in immature neurons prolonged intervals were required for the reduced responsiveness to the second brief exposure to NMDA. Moreover, brief exposure to NMDA led to a marked decrease in immunoreactivity to extracellular loop of NR1 subunit in cultured neurons not permeabilized in proportion to the time after washing. These results suggest that cellular maturation would facilitate the desensitization process to repeated stimulation by NMDA, without markedly affecting that to sustained stimulation, through a mechanism related to the decreased number of NMDA receptors expressed at cell surfaces in cultured rat cortical neurons.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Ishikawa 920-1192, Japan
| | | |
Collapse
|
17
|
Kume T, Taguchi R, Katsuki H, Akao M, Sugimoto H, Kaneko S, Akaike A. Serofendic acid, a neuroprotective substance derived from fetal calf serum, inhibits mitochondrial membrane depolarization and caspase-3 activation. Eur J Pharmacol 2006; 542:69-76. [PMID: 16806165 DOI: 10.1016/j.ejphar.2006.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 11/28/2022]
Abstract
We have previously reported that a neuroprotective substance, serofendic acid, was purified and isolated from fetal calf serum. Here, we investigated the effect of serofendic acid on glutamate-induced apoptosis using rat primary cultures of cortical neurons. Exposure of the cortical cultures to relatively low concentration of glutamate (100 microM) induced neuronal death and nuclear fragmentation. Glutamate exposure also induced a transient increase in caspase-3 activity. A membrane-permeable inhibitor of caspase-3 (DEVD-CHO) prevented the glutamate neurotoxicity. Serofendic acid (0.01-10 microM) markedly prevented glutamate-induced apoptotic neuronal death and nuclear fragmentation. To elucidate the protective mechanism of serofendic acid, we first examined the effect on the glutamate-induced increase in intracellular Ca2+ concentration. Glutamate-induced increase in intracellular Ca2+ concentration was significantly inhibited by MK-801, a NMDA receptor antagonist, but not by serofendic acid. Next, we investigated the effect of serofendic acid on the loss of mitochondrial membrane potential induced by glutamate by using a fluorescence indicator, tetramethylrhodamine methyl ester (TMRM). Glutamate exposure resulted in a rapid reduction of TMRM fluorescence, indicating that mitochondrial membrane was depolarized by glutamate. Serofendic acid prevented the loss of mitochondrial membrane potential following glutamate exposure. Moreover, serofendic acid reduced the activation of caspase-3 induced by glutamate. Finally, serofendic acid directly inhibited the activity of recombinant human caspase-3, -7 and -8 at higher concentrations. These results indicate that serofendic acid prevents glutamate-induced apoptosis in cultured cortical neurons by the prevention of loss of mitochondrial membrane potential and the reduction of the process of caspase-3 activation.
Collapse
Affiliation(s)
- Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Takeda T, Akao M, Matsumoto-Ida M, Kato M, Takenaka H, Kihara Y, Kume T, Akaike A, Kita T. Serofendic Acid, a Novel Substance Extracted From Fetal Calf Serum, Protects Against Oxidative Stress in Neonatal Rat Cardiac Myocytes. J Am Coll Cardiol 2006; 47:1882-90. [PMID: 16682316 DOI: 10.1016/j.jacc.2005.12.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 12/14/2005] [Accepted: 12/19/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We examined whether serofendic acid (SFA) has protective effects against oxidative stress in cardiac myocytes. BACKGROUND We previously identified a novel endogenous substance, SFA, from a lipophilic extract of fetal calf serum. Serofendic acid protects cultured neurons against the cytotoxicity of glutamate, nitric oxide, and oxidative stress. METHODS Primary cultures of neonatal rat cardiac myocytes were exposed to oxidative stress (H2O2, 100 micromol/l) to induce cell death. Effects of SFA were evaluated with a number of markers of cell death. RESULTS Pretreatment with SFA (100 micromol/l) significantly suppressed markers of cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and cell viability assay. Loss of mitochondrial membrane potential (DeltaPsi(m)) is a critical step of the death pathway, which is triggered by matrix calcium overload and reactive oxygen species. Serofendic acid prevented the DeltaPsi(m) loss induced by H2O2 in a concentration-dependent manner (with saturation by 100 micromol/l). Serofendic acid remarkably suppressed the H2O2-induced matrix calcium overload and intracellular accumulation of reactive oxygen species. The protective effect of SFA was comparable to that of a mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel opener, diazoxide. Furthermore, mitoK(ATP) channel blocker, 5-hydroxydecanoate (500 micromol/l), abolished the protective effect of SFA. Co-application of SFA (100 micromol/l) and diazoxide (100 micromol/l) did not show an additive effect. Thus, SFA inhibited the oxidant-induced mitochondrial death pathway, presumably through activation of the mitoK(ATP) channel. CONCLUSIONS Serofendic acid protects cardiac myocytes against oxidant-induced cell death by preserving the functional integrity of mitochondria.
Collapse
Affiliation(s)
- Toshihiro Takeda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Taguchi R, Shirakawa H, Yamaguchi T, Kume T, Katsuki H, Akaike A. Nitric oxide-mediated effect of nipradilol, an alpha- and beta-adrenergic blocker, on glutamate neurotoxicity in rat cortical cultures. Eur J Pharmacol 2006; 535:86-94. [PMID: 16516884 DOI: 10.1016/j.ejphar.2006.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/02/2006] [Accepted: 01/20/2006] [Indexed: 02/06/2023]
Abstract
Nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-nitroxy-2H-1-benzopyran) is used clinically as an anti-glaucoma ophthalmic solution in Japan, and was recently reported to suppress N-methyl-d-aspartate-induced retinal damage in rats. Here we investigated cytotoxic and cytoprotective actions of nipradilol on primary cultures of rat cortical neurons. Treatment of cortical cultures with a high concentration (500 microM) of nipradilol significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and nitrite concentration in culture medium, whereas desnitro-nipradilol (3,4-dihydro-8-(2-hydroxy-3-isopropylamino)propoxy-3-hydroxy-2H-1-benzopyran) had no significant effects. Nipradilol-induced neuronal damage was inhibited by S-hexylglutathione, a glutathione S-transferase inhibitor, and FeTPPS (5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III) chloride), a peroxynitrite decomposition catalyst. On the other hand, relatively low concentrations (10-100 microM) of nipradilol but not desnitro-nipradilol prevented neuronal cell death induced by 24 h application of 100 microM glutamate. Importantly, neuroprotective concentration (100 microM) of nipradilol suppressed glutamate-induced elevation of intracellular Ca2+ concentrations, but had no effect on intracellular cyclic GMP levels. Hence, nipradilol can protect cultured cortical neurons against glutamate neurotoxicity via cyclic GMP-independent mechanisms, and nitric oxide (NO) released from the nitoroxy moiety of nipradilol may mediate neuroprotective effect through the modulation of NMDA receptor function.
Collapse
Affiliation(s)
- Ryota Taguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A. A Critical Role of TRPM2 in Neuronal Cell Death by Hydrogen Peroxide. J Pharmacol Sci 2006; 101:66-76. [PMID: 16651700 DOI: 10.1254/jphs.fp0060128] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A brief exposure to hydrogen peroxide (H2O2) induces severe deterioration of primary cultured neurons in vitro. We have investigated a link between the H2O2-induced neuronal death and Ca2+-permeable TRPM2 channels regulated by ADP-ribose (ADPR). In cultured cerebral cortical neurons from fetal rat, TRPM2 proteins were detected at cell bodies and neurite extensions. Application of H2O2 to the cultured neurons elicited an increase in intracellular Ca2+ concentration ([Ca2+]i) caused by Ca2+ influx and the Ca2+-dependent neuronal death in a similar concentration range. Molecular cloning of TRPM2 cDNA from rat brain revealed several differences in amino acid sequences within the Nudix box region as compared with those of human and mouse TRPM2. ADPR-induced current responses, H2O2-induced Ca2+ influx, and H2O2-induced cell death were induced in human embryonic kidney cells heterologously expressing rat TRPM2. Treatment of cultured neurons with small interfering RNA against rat TRPM2,which efficiently suppressed immunoreactive TRPM2 content and the H2O2-induced Ca2+ influx,significantly inhibited H2O2-induced neuronal death. These results suggest that TRPM2 plays a pivotal role in H2O2-induced neuronal death as redox-sensitive Ca2+-permeable channels expressed in neurons.
Collapse
Affiliation(s)
- Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tastekin A, Gepdiremen A, Ors R, Emin Buyukokuroglu M, Halici Z. L-carnitine protects against glutamate- and kainic acid-induced neurotoxicity in cerebellar granular cell culture of rats. Brain Dev 2005; 27:570-3. [PMID: 16310592 DOI: 10.1016/j.braindev.2005.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 11/20/2022]
Abstract
Glutamate mediated intracellular calcium accumulation and free radical generation are thought to be major mechanisms that contribute to cell death in hypoxic-ischemic brain injury. For this reason, various glutamate receptor antagonists and antioxidants have been investigated for their therapeutic potential. To assess whether L-carnitine, a possible antioxidant, is able to prevent glutamate- and kainic acid (KA)-induced neurotoxicity. Glutamate (10(-7) M) and one of its receptor agonists, KA (10(-4) M) were administered to cerebellar granular cell cultures that were prepared from 1-day-old Sprague-Dawley rats. The neuroprotective effect of L-carnitine was examined. L-carnitine at doses of 10(-6), 10(-5), 10(-4), 10(-3) M was applied to culture flasks. L-carnitine at doses of 10(-4) and 10(-3) M significantly blocked glutamate-induced neurotoxicity. 10(-4) M dose of L-carnitine proved to be more effective than 10(-3)M. L-carnitine also blocked KA-induced neurotoxicity only at the dose of 10(-4) M. 10(-4) M L-carnitine, the most effective dose in both glutamate- and KA-induced neurotoxicity, decreased glutamate-induced neuronal cell death from 36.14+/-2.95% to 17.59+/-2.25%; (P<0.001) and KA-induced neuronal cell death from 21.4+/-0.41 to 13.4+/-1.38%; (P<0.001). The present study demonstrates that L-carnitine protects against glutamate- and KA-induced neurotoxicity. Protective effect of L-carnitine may result from its antioxidant activity because free radical generation is a common result in either glutamate- or KA-induced neurotoxicity. L-carnitine merits further investigation as a therapeutic option in hypoxic-ischemic brain injury of newborn.
Collapse
Affiliation(s)
- Ayhan Tastekin
- Division of Neonatology, School of Medicine, Atatürk University Erzurum, Turkey
| | | | | | | | | |
Collapse
|
22
|
Nakatsu Y, Kotake Y, Komasaka K, Hakozaki H, Taguchi R, Kume T, Akaike A, Ohta S. Glutamate Excitotoxicity Is Involved in Cell Death Caused by Tributyltin in Cultured Rat Cortical Neurons. Toxicol Sci 2005; 89:235-42. [PMID: 16207939 DOI: 10.1093/toxsci/kfj007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tributyltin, an endocrine-disrupting chemical, has been used as a heat stabilizer, agricultural pesticide, and component of antifouling paints. In this study, the neurotoxicity of tributyltin was investigated in cultured rat cortical neurons. Tributyltin caused marked time- and dose-dependent increases in the number of trypan blue-stained cells. Measurement of extracellular glutamate concentration showed that glutamate release was induced by tributyltin. Application of the glutamate receptor antagonists MK-801 and CNQX decreased the neurotoxicity. These results suggest that released glutamate and glutamate receptors are involved in tributyltin toxicity. Next, we examined whether various factors, believed to be involved in glutamate excitotoxicity also influence tributyltin toxicity. Cell death induced by tributyltin was found to be reduced by alpha-tocopherol (a membrane-permeable antioxidant), SB202190 (a p38 mitogen-activated protein kinase inhibitor), and U-0126 (an extracellular signal-regulated protein kinase kinase inhibitor). MK-801 and CNQX decreased the phosphorylation of ERK, but not that of p38. A caspase-3 inhibitor had no effect on tributyltin toxicity, and tributyltin did not change the nuclear morphology. These results suggest that the glutamate excitotoxicity caused by tributyltin is unrelated to apoptosis. In conclusion, we demonstrated that tributyltin induced glutamate release and subsequent activation of glutamate receptors, leading to neuronal death. We propose two independent neuronal death pathways by tributyltin; one is glutamate receptor-dependent cell death via ERK phosphorylation, and the other may be glutamate receptor-independent cell death via p38 activation.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inden M, Kitamura Y, Kondo JI, Hayashi K, Yanagida T, Takata K, Tsuchiya D, Yanagisawa D, Nishimura K, Taniguchi T, Shimohama S, Sugimoto H, Akaike A. Serofendic acid prevents 6-hydroxydopamine-induced nigral neurodegeneration and drug-induced rotational asymmetry in hemi-parkinsonian rats. J Neurochem 2005; 95:950-61. [PMID: 16135081 DOI: 10.1111/j.1471-4159.2005.03413.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serofendic acid was recently identified as a neuroprotective factor from fetal calf serum. This study was designed to evaluate the neuroprotective effects of an intranigral microinjection of serofendic acid based on behavioral, neurochemical and histochemical studies in hemi-parkinsonian rats using 6-hydroxydopamine (6-OHDA). Rats were injected with 6-OHDA in the presence or absence of serofendic acid, or were treated with serofendic acid on the same lateral side, at 12, 24 or 72 h after 6-OHDA lesion. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra pars compacta (SNpc). Either simultaneous or 12 h post-administration of serofendic acid significantly prevented both dopaminergic neurodegeneration and drug-induced rotational asymmetry. Immunoreactivities for oxidative stress markers, such as 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE), were markedly detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-administration of serofendic acid, similar to the results in vehicle-treated control rats. In addition, serofendic acid inhibited 6-OHDA-induced alpha-synuclein expression and glial activation in the SNpc. These results suggest that serofendic acid protects against 6-OHDA-induced SNpc dopaminergic neurodegeneration in a rat model of Parkinson's disease.
Collapse
Affiliation(s)
- Masatoshi Inden
- Department of Neurobiology, Kyoto Pharmaceutical University, Misasagi, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kita T, Nakagawa T, Kim TS, Iwai K, Takebayashi S, Akaike A, Ito J. Serofendic acid promotes survival of auditory hair cells and neurons of mice. Neuroreport 2005; 16:689-92. [PMID: 15858407 DOI: 10.1097/00001756-200505120-00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Serofendic acid is a newly discovered neuroprotective substance derived from fetal calf serum. It has previously been shown to protect cortical neurons from the cytotoxicity of nitric oxide, glutamate and oxygen species. In the present study, we examined the protective effects of serofendic acid on auditory hair cells exposed to aminoglycoside toxicity using explant cultures of mouse auditory epithelia. We also determined the effect of serofendic acid on auditory neurons experiencing neurotrophin deprivation using primary cultures of mouse spiral ganglion neurons. Supplementation with serofendic acid significantly promoted the survival of auditory hair cells and neurons, and its protective effects were stronger than those of the caspase inhibitor z-VAD-fmk. These findings demonstrate the great potential of serofendic acid for protection of the auditory system.
Collapse
Affiliation(s)
- Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Osakada F, Kawato Y, Kume T, Katsuki H, Sugimoto H, Akaike A. Serofendic acid, a sulfur-containing diterpenoid derived from fetal calf serum, attenuates reactive oxygen species-induced oxidative stress in cultured striatal neurons. J Pharmacol Exp Ther 2004; 311:51-9. [PMID: 15159446 DOI: 10.1124/jpet.104.070334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously identified a novel endogenous substance, serofendic acid, from a lipophilic extract of fetal calf serum. Serofendic acid protects cultured cortical neurons against the cytotoxicity of glutamate and nitric oxide. Here, we reported the protective effect of serofendic acid on reactive oxygen species-induced oxidative stress using primary rat striatal cultures. In addition, we compared the neuroprotective effect and the radical-scavenging activity of serofendic acid with those of dimethyl sulfoxide (DMSO), because serofendic acid possesses a DMSO structure. Paraquat caused neuronal death, which was inhibited by a cell-permeable superoxide dismutase (SOD) mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (Mn-TBAP); a cell-permeable SOD/catalase mimetic, EUK-134 [manganese 3-methoxy N,N'-bis(salicylidene)ethylenediamine chloride]; and a ferrous ion chelator, 2,2'-dipyridyl, in rat striatal cultures. Serofendic acid (10-100 microM) suppressed the neurotoxicity of paraquat, whereas DMSO (10-100 microM) did not. By contrast, higher concentrations (30-300 mM) of DMSO ameliorated the paraquat-induced cell death. Furthermore, H(2)O(2) induced neurotoxicity, which was prevented by EUK-134 and 2,2'-dipyridyl. Serofendic acid (10-100 microM) also protected striatal neurons against the H(2)O(2)-induced toxicity. Higher concentrations (30-300 mM) of DMSO ameliorated H(2)O(2)-induced neuronal death, whereas lower concentrations (10-100 microM) did not. Electron spin resonance spectrometry with a spin-trapping technique revealed that serofendic acid and DMSO had approximately the same ability to inhibit the formation of the hydroxyl radical (.OH). These results suggest that the.OH-scavenging activity of serofendic acid is attributable to its DMSO structure and that the remaining components such as the atisane structure play an important role in eliciting neuroprotection at a concentration range of 10 to 100 microM.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|