1
|
Shao Y, Wu W, Fan F, Liu H, Ming Y, Liao W, Bai C, Gao Y. Extracellular Vesicle Content Changes Induced by Melatonin Promote Functional Recovery of Pancreatic Beta Cells in Acute Pancreatitis. J Inflamm Res 2023; 16:6397-6413. [PMID: 38161354 PMCID: PMC10757806 DOI: 10.2147/jir.s430916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Aim Acute pancreatitis is an inflammatory disorder of the pancreas, which causes abnormal activation of immune cells. The macrophages were accumulated in pancreas and infiltrated into islets during the AP process to induce abnormal glucose metabolism. However, the role of macrophages in abnormal glucose metabolism remains understood. Extracellular vesicles act in the regulation of intercellular function, but whether EVs secreted by macrophages contribute to β cell failure and apoptosis in AP is unclear. Based on this, the aim of this study was to reveal the role of macrophages-EVs in AP and develop a treatment for symptoms of hyperglycemia in AP. Methods The AP model was established and treated by various doses of melatonin to analyze the therapeutic effect. The accumulation and polarization of macrophages in the AP pancreas were observed, and the β cells were incubated with pancreatic derived EVs to analyze the role in β cell failure and apoptosis. Results The results showed that macrophages were recruited and polarized to M1 phenotype macrophages in the pancreas of AP mice, which obtained inflammatory EVs that contained specific miRNAs to induce β cell failure and apoptosis. Then, the EVs derived from M1 macrophages triggered β cell failure and apoptosis. Melatonin prevented polarization of macrophages to the M1 phenotype in vivo, which reduced the secretion of inflammatory EVs, changed the abundance of miRNAs in EVs, and therefore decreased inflammatory EV-mediated β cell failure and apoptosis. Conclusion Our results demonstrate that similar to 20S proteasome inhibitor MG132, analyses indicated that melatonin prevented degradation of IκBα through the ubiquitylation pathway to restrict p50 subunits to the cytoplasm of macrophages, inhibited activation of the NF-κB pathway to downregulate the transcription of specific miRNAs, and reduced miRNA transport into EVs.
Collapse
Affiliation(s)
- Yuming Shao
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Haifeng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yuhua Gao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| |
Collapse
|
2
|
Contreras-Correa ZE, Messman RD, Swanson RM, Lemley CO. Melatonin in Health and Disease: A Perspective for Livestock Production. Biomolecules 2023; 13:biom13030490. [PMID: 36979425 PMCID: PMC10046399 DOI: 10.3390/biom13030490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mounting evidence in the literature indicates an important role of endogenous and exogenous melatonin in driving physiological and molecular adaptations in livestock. Melatonin has been extensively studied in seasonally polyestrous animals whereby supplementation studies have been used to adjust circannual rhythms in herds of animals under abnormal photoperiodic conditions. Livestock undergo multiple metabolic and physiological adaptation processes throughout their production cycle which can result in decreased immune response leading to chronic illness, weight loss, or decreased production efficiency; however, melatonin’s antioxidant capacity and immunostimulatory properties could alleviate these effects. The cardiovascular system responds to melatonin and depending on receptor type and localization, melatonin can vasodilate or vasoconstrict several systemic arteries, thereby controlling whole animal nutrient partitioning via vascular resistance. Increased incidences of non-communicable diseases in populations exposed to circadian disruption have uncovered novel pathways of neurohormones, such as melatonin, influence health, and disease. Perturbations in immune function can negatively impact the growth and development of livestock which has been examined following melatonin supplementation. Specifically, melatonin can influence nutrient uptake, circulating nutrient profiles, and endocrine profiles controlling economically important livestock growth and development. This review focuses on the physiological, cellular, and molecular implications of melatonin on the health and disease of domesticated food animals.
Collapse
|
3
|
Miguel-Jiménez S, Carvajal-Serna M, Calvo S, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pe R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? Int J Mol Sci 2020; 21:ijms21062093. [PMID: 32197481 PMCID: PMC7139474 DOI: 10.3390/ijms21062093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO·), synthesized from L-arginine by nitric oxide synthase (NOS), is involved in sperm functionality. NOS isoforms have been detected in spermatozoa from different species, and an increment in NOS activity during capacitation has been reported. This work aims to determine the presence and localization of NOS isoforms in ram spermatozoa and analyse their possible changes during in vitro capacitation. Likewise, we investigated the effect of melatonin on the expression and localization of NOS and NO· levels in capacitated ram spermatozoa. Western blot analysis revealed protein bands associated with neuronal NOS (nNOS) and epithelial NOS (eNOS) but not with inducible NOS (iNOS). However, the three isoforms were detected by indirect immunofluorescence (IFI), and their immunotypes varied over in vitro capacitation with cAMP-elevating agents. NO· levels (evaluated by DAF-2-DA/PI staining) increased after in vitro capacitation, and the presence of L-arginine in the capacitating medium raised NO· production and enhanced the acrosome reaction. Incubation in capacitating conditions with a high-cAMP medium with melatonin modified the NOS distribution evaluated by IFI, but no differences in Western blotting were observed. Melatonin did not alter NO· levels in capacitating conditions, so we could infer that its role in ram sperm capacitation would not be mediated through NO· metabolism.
Collapse
|
4
|
Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 2020; 76:49-60. [PMID: 31900806 DOI: 10.1007/s13105-019-00714-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
Abstract
In this study, we focused on comparing the effects of serotonin and its metabolites on the functions of RAW264.7 cells (emphasis on oxidative burst and production of nitric oxide and cytokines), thereby expanding the scope of existing knowledge with advent of novel findings in this field. Changes in production of reactive oxygen species (ROS) by RAW264.7 cells after treatment with serotonin, N-acetylserotonin and melatonin were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all respective compounds were measured using TRAP and amperometrical method. Nitric oxide (NO) production was measured by Griess reagent and inducible NO synthase (iNOS) expression by Western blot. Cytokine production was assessed using the Mouse Cytokine Panel A Array kit and ELISA. We showed that all tested compounds were able to reduce oxidative stress, as well as inhibit production of inflammatory cytokines by macrophages. Of the tested compounds, serotonin and N-acetylserotonin were markedly better antioxidants than melatonin. In comparison, other effects of tested compounds were very similar. It can be concluded that antioxidant capacity of tested compounds is a major advantage in the early stages of inflammation. Since plasma concentrations of N-acetylserotonin and melatonin are lower than serotonin, it can be deduced that serotonin plays a key role in modulation of inflammation and the regulatory functions of immune cells, while also protecting cells against oxidative stress.
Collapse
Affiliation(s)
- Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65, Brno, Czech Republic. .,Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
5
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F, He H. Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci 2018; 200:142-147. [DOI: 10.1016/j.lfs.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023]
|
7
|
Chen Y, Zhao Q, Chen Q, Zhang Y, Shao B, Jin Y, Wu J. Melatonin attenuated inflammatory reaction by inhibiting the activation of p38 and NF‑κB in taurocholate‑induced acute pancreatitis. Mol Med Rep 2018; 17:5934-5939. [PMID: 29484391 DOI: 10.3892/mmr.2018.8614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the protective mechanism underlying of melatonin in severe acute pancreatitis (SAP). A total of 64 male Sprague‑Dawley rats were randomly divided into four groups: The sham operation (SO) group, SAP group, melatonin treatment (MLT) group and p38 inhibitor (SB203580) treatment (SB) group. Acute pancreatitis was induced by 5% taurocholate through retrograde infusion into the biliopancreatic ducts. The melatonin and SB203580 treatment groups were administered with MLT and SB 30 min before operation the induction of SAP. Rats in each group were euthanized at 6 and 12 h following SAP induction. Blood and pancreatic tissues were removed for inflammatory examination. Peripheral blood mononuclear cells (PBMCs) were isolated following sacrifice to measure the phosphorylation of p38 and nuclear factor‑κB (NF‑κB was measured as p65 and phosphorylation of p65). The pretreatment of melatonin significantly attenuated the severity of pancreatitis. In addition, melatonin also reduced serum amylase and proinflammatory cytokine levels, including tumor necrosis factor‑α, interleukin (IL)‑1 and IL‑6. The mean pathological scores for pancreatic tissues in the MLT group were higher than those for samples in the SO group, but were lower than those for samples in the SAP group at each time-point. Phosphorylation of p38 and p65 levels in the melatonin treatment group were lower than that in the SAP group, and higher in the SAP group than in the SO group, and the SB203580 treatment group. Furthermore, melatonin significantly inhibited the activation of p38 and NF‑κB in PBMCs. The authors revealed that melatonin may attenuate inflammatory reactions by inhibiting the activation of p38 MAPK and NF‑κB in both acute pancreatitis rats and PBMCs. SAP is a severe disease with a high risk of morbidity and mortality. It is important to attenuated inflammatory reaction in acute pancreatitis. Thus, the authors studied melatonin, which is synthesized by the pineal gland and released into the blood. Previous studies have shown that melatonin serves a protective role in the early course of human acute pancreatitis, and melatonin concentration variations are closely related to the severity of acute pancreatitis. It may be concluded that melatonin may attenuates inflammatory reactions by inhibiting the activation of p38 MAPK and NF‑κB in both acute pancreatitis rats and PBMCs.
Collapse
Affiliation(s)
- Yina Chen
- Department of Gastroenterology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang 315400, P.R. China
| | - Qian Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qinfen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuxue Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bule Shao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yin Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiansheng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
8
|
Phiphatwatcharaded C, Puthongking P, Chaiyarit P, Johns NP, Sakolchai S, Mahakunakorn P. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts. Arch Oral Biol 2017; 79:55-61. [PMID: 28292674 DOI: 10.1016/j.archoralbio.2017.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. METHODS Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H2O2 induced cellular damage was performed via MTT assay in HGF cells. RESULTS According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H2O2in HGF cells as compared with MLT. CONCLUSIONS MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases.
Collapse
Affiliation(s)
- Chawapon Phiphatwatcharaded
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ploenthip Puthongking
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nutjaree Pratheepawanit Johns
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sumon Sakolchai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Pramote Mahakunakorn
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Kumar A, Mehrotra S, Singh G, Narayanan K, Das G, Soni Y, Singh M, Mahla A, Srivastava N, Verma M. Sustained delivery of exogenous melatonin influences biomarkers of oxidative stress and total antioxidant capacity in summer-stressed anestrous water buffalo (Bubalus bubalis). Theriogenology 2015; 83:1402-7. [DOI: 10.1016/j.theriogenology.2014.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/25/2014] [Accepted: 12/18/2014] [Indexed: 11/25/2022]
|
10
|
Aparicio-Soto M, Alarcón-de-la-Lastra C, Cárdeno A, Sánchez-Fidalgo S, Sanchez-Hidalgo M. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol 2014; 171:134-44. [PMID: 24116971 DOI: 10.1111/bph.12428] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/05/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence demonstrates that melatonin regulates inflammatory and immune processes acting as both an activator and inhibitor of these responses. Nevertheless, the molecular mechanisms of its anti-inflammatory action remain unclear. Here we have characterized the cellular mechanisms underlying the redox modulation of LPS-stimulated inflammatory responses in murine peritoneal macrophages by melatonin to provide insight into its anti-inflammatory effects. EXPERIMENTAL APPROACH Murine peritoneal macrophages were isolated and treated with melatonin in the presence or absence of LPS (5 μg·mL(-1) ) for 18 h. Cell viability was determined using sulforhodamine B assay and NO production was measured using the Griess reaction. Pro-inflammatory enzymes and transcription factors were detected by Western blotting. KEY RESULTS Without affecting cell viability, melatonin (12.5, 25, 50 and 100 μM) reduced the level of nitrites, inducible NOS (iNOS), COX-2 and microsomal PGE synthase-1 (mPGES1) protein, and p38 MAPK phosphorylation, and prevented NF-κB translocation. Furthermore, melatonin treatment significantly increased NF-E2-related factor 2 (Nrf2) and haem oxygenase 1 (HO1) protein levels in murine macrophages exposed to LPS. CONCLUSIONS AND IMPLICATIONS Melatonin reduced pro-inflammatory mediators and enhanced the expression of HO1 via NF-κB, p38 MAPK and Nrf2 cascade signalling pathways in murine macrophages. Thus, melatonin might be a promising target for diseases associated with overactivation of macrophages.
Collapse
Affiliation(s)
- M Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
11
|
Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats. Adv Pharmacol Sci 2014; 2014:532969. [PMID: 24790596 PMCID: PMC3984810 DOI: 10.1155/2014/532969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 02/02/2023] Open
Abstract
Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F) toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis) epiphyseal (pineal) proteins (BEP) and melatonin (MEL) against F-induced oxidative stress in heart, liver, and kidney of experimental adult female rats. To accomplish this experimental objective, twenty-four adult female Wistar rats (123–143 g body weights) were divided into four groups, namely, control, F, F + BEP, and F + MEL and were administered sodium fluoride (NaF, 150 ppm elemental F in drinking water), MEL (10 mg/kg BW, i.p.), and BEP (100 µg/kg BW, i.p.) for 28 days. There were significantly (P < 0.05) high levels of lipid peroxidation and catalase and low levels of reduced glutathione, superoxide dismutase, glutathione reductase, and glutathione peroxidase in cardiac, hepatic, and renal tissues of F-treated rats. Administration of BEP and MEL in F-treated rats, however, significantly (P < 0.05) attenuated these adverse changes in all the target components of antioxidant defense system of cardiac, hepatic, and renal tissues. The present data suggest that F can induce oxidative stress in liver, heart, and kidney of female rats which may be a mechanism in F toxicity and these adverse effects can be ameliorated by buffalo (Bubalus bubalis) epiphyseal proteins and melatonin by upregulation of antioxidant defense system of heart, liver, and kidney of rats.
Collapse
|
12
|
Kang YS, Kang YG, Park HJ, Wee HJ, Jang HO, Bae MK, Bae SK. Melatonin inhibits visfatin-induced inducible nitric oxide synthase expression and nitric oxide production in macrophages. J Pineal Res 2013; 55:294-303. [PMID: 23869429 DOI: 10.1111/jpi.12072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Aberrant expression of inducible nitric oxide synthase (iNOS) in macrophages, which has been reported to be suppressed by melatonin, has an important contribution in the development of pathological inflammation. Visfatin, an adipokine, regulates the expression of various inflammatory factors, leading to inflammation; however, the influence of visfatin on iNOS-driven processes in macrophages is unclear. Here, we report the assessment of the role of visfatin in the regulation of iNOS gene expression in macrophages. Our data show that the levels of iNOS protein in peritoneal macrophages as well as nitric oxide (NO) in blood plasma were significantly lower after lipopolysaccharide treatment in visfatin(+/-) mice than those in the WT mice. In addition, visfatin increases iNOS mRNA and protein levels in RAW 264.7 cells, along with increasing production of NO. The enhancement of iNOS expression was prevented by treating the cells with inhibitors of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3), nuclear factor (NF)-κB, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase pathways. Our results also show that visfatin-induced iNOS expression and NO production were significantly inhibited by melatonin, an effect that was closely associated with a reduction in phosphorylated JAK2/STAT3 levels and with the inhibition of p65 translocation into nucleus. In conclusion, our data show, for the first time, that melatonin suppresses visfatin-induced iNOS upregulation in macrophages by inhibiting the STAT3 and NF-κB pathways. Moreover, our data suggest that melatonin could be therapeutically useful for attenuating the development of visfatin-iNOS axis-associated diseases.
Collapse
Affiliation(s)
- Young-Soon Kang
- Department of Dental Pharmacology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 2013; 55:103-20. [PMID: 23889107 DOI: 10.1111/jpi.12075] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. In recent years, a considerable amount of experimental evidence has accumulated showing a relationship between the nervous, endocrine, and immune systems. The molecular basis of the communication between these systems is the use of a common chemical language. In this framework, currently melatonin is considered one of the members of the neuroendocrine-immunological network. A number of in vivo and in vitro studies have documented that melatonin plays a fundamental role in neuroimmunomodulation. Based on the information published, it is clear that the majority of the present data in the literature relate to lymphocytes; thus, they have been rather thoroughly investigated, and several reviews have been published related to the mechanisms of action and the effects of melatonin on lymphocytes. However, few studies concerning the effects of melatonin on cells belonging to the innate immunity have been reported. Innate immunity provides the early line of defense against microbes and consists of both cellular and biochemical mechanisms. In this review, we have focused on the role of melatonin in the innate immunity. More specifically, we summarize the effects and action mechanisms of melatonin in the different cells that belong to or participate in the innate immunity, such as monocytes-macrophages, dendritic cells, neutrophils, eosinophils, basophils, mast cells, and natural killer cells.
Collapse
Affiliation(s)
- Juan R Calvo
- Department Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Seville, Spain.
| | | | | |
Collapse
|
14
|
Sainath S, Swetha CH, Reddy PS. What Do We (Need to) Know About the Melatonin in Crustaceans? ACTA ACUST UNITED AC 2013; 319:365-77. [DOI: 10.1002/jez.1800] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Affiliation(s)
- S.B. Sainath
- Department of Biotechnology; Sri Venkateswara University; Tirupati, Andhra Pradesh; India
| | - CH. Swetha
- Department of Biotechnology; Sri Venkateswara University; Tirupati, Andhra Pradesh; India
| | | |
Collapse
|
15
|
Zhou H, Zhao K, Li W, Yang N, Liu Y, Chen C, Wei T. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. Biomaterials 2012; 33:6933-42. [PMID: 22796167 DOI: 10.1016/j.biomaterials.2012.06.064] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/25/2012] [Indexed: 12/19/2022]
Abstract
Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation of immune responses, require further investigation. Macrophages are one of the most important effector cells of the innate immune system, and play pivotal roles in the response to graphene exposure. We have previously reported that exposure of macrophages to high concentrations of graphene triggers cell death via MAPK- and TGF-related pathways. However, little is known about the influence of exposure to low concentrations of graphene on the function of macrophages. In the present investigation, we demonstrate the biological effects of sub-cytotoxic concentrations of commercial pristine graphene on both primary murine macrophages and immortalized macrophages. Graphene significantly stimulates the secretion of Th1/Th2 cytokines including IL-1α, IL-6, IL-10, TNF-α and GM-CSF as well as chemokines such as MCP-1, MIP-1α, MIP-1β and RANTES, probably by activating TLR-mediated and NF-κB-dependent transcription. Furthermore, these graphene-induced factors alter the morphology of naïve macrophages by remodeling their actin assembly, decreasing their ability to adhere to the extracellular matrix, and attenuating their phagocytosis. This negative feedback of the immune response of macrophages by graphene-induced factors may play an important role in the prevention of their over-activation after graphene exposure. These findings shed light on the interaction of graphene and macrophages in vitro. Further research is needed to systematically assess the biological responses of graphene, both to improve its safety and to contribute to the design of new biological applications.
Collapse
Affiliation(s)
- Hejiang Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Duan W, Zhou J, Zhang S, Zhao K, Zhao L, Ogata K, Sakaue T, Mori A, Wei T. ESeroS-GS modulates lipopolysaccharide-induced macrophage activation by impairing the assembly of TLR-4 complexes in lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:772-83. [PMID: 21276822 DOI: 10.1016/j.bbamcr.2011.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/13/2011] [Accepted: 01/18/2011] [Indexed: 01/29/2023]
Abstract
The binding of lipopolysaccharides (LPS) to macrophages results in inflammatory responses. In extreme cases it can lead to endotoxic shock, often resulting in death. A broad range of antioxidants, including tocopherols, can reduce LPS activity in vitro and in vivo. To elucidate the underlying mechanisms of their action, we investigated the effect of the sodium salt of γ-L-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl]oxy]carbonyl]-3-[[2-(1H-indol-3-yl)ethyl]amino]-3-oxopropyl]-L-cysteinylglycine (ESeroS-GS), a novel α-tocopherol derivative, on LPS-induced inflammation in vitro and in vivo. ESeroS-GS reduced the transcription of TNF-α, IL-1β, IL-6 and iNOS genes in a dose-dependent manner in RAW264.7 macrophages, and inhibited the release of these inflammatory factors. In addition, ESeroS-GS inhibited LPS-induced mortality in a mouse sepsis model. Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that ESeroS-GS down-regulated the transcriptional activity of NF-κB. By analyzing the partitioning of CD14 and Toll-like receptor 4 (TLR-4) in cell membrane microdomains, we found that ESeroS-GS attenuates the binding of LPS to RAW264.7 cells via interfering with the relocation of CD14 and TLR-4 to lipid rafts, blocking the activation of interleukin-1 receptor-associated kinase 1 (IRAK-1), and inhibiting the consequent phosphorylation of TAK1 and IKKα/β, which together account for the suppression of NF-κB activation. Taken together, our data suggest that ESeroS-GS can modulate LPS signaling in macrophages by impairing TLR-4 complex assembly via a lipid raft dependent mechanism. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Wenjuan Duan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW264.7 macrophages. Biosci Rep 2010; 30:233-41. [PMID: 19673702 DOI: 10.1042/bsr20090048] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Macrophages produce a large volume of ROS (reactive oxygen species) through respiratory burst. However, the influence of iNOS [inducible NOS (nitric oxide synthase)] activation on ROS production remains unclear. In the present study, the kinetic generation of ROS in RAW264.7 murine macrophages was monitored by chemiluminescence. PMA induces a robust chemiluminescence in RAW264.7 cells, suggesting PKC (protein kinase C)-related assembly and activation of NOX (NADPH oxidase). The effects of iNOS induction on ROS production were examined. Induction of iNOS expression in RAW264.7 cells with LPS (lipopolysaccharide; 1 microg/ml) causes a significant increase in PMA-induced chemiluminescence, which could be enhanced by the NOS substrate, L-arginine, and could be abolished by the NOS inhibitor, L-NNA (NG-nitro-L-arginine). Further experiments reveal that induction of iNOS expression enhances the PMA-stimulated phosphorylation of the p47phox subunit of NOX, and promotes the relocalization of cytosolic p47phox and p67phox subunits to the membrane. Inhibition of PKCzeta by its myristoylated pseudosubstrate significantly decreased the PMA-stimulated phosphorylation of the p47phox in LPS-pretreated cells, suggesting that PKCzeta is involved in the iNOS-dependent assembly and activation of NOX. Taken together, the present study suggests that the induction of iNOS upregulates the PMA-induced assembly of NOX and leads to the enhanced production of ROS via a PKCzeta-dependent mechanism.
Collapse
|
18
|
Cernysiov V, Gerasimcik N, Mauricas M, Girkontaite I. Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. Int Immunol 2009; 22:25-34. [DOI: 10.1093/intimm/dxp109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Kuehn CC, Rodrigues Oliveira LG, Santos CD, Ferreira DS, Alonso Toldo MP, de Albuquerque S, do Prado JC. Melatonin and dehydroepiandrosterone combination: does this treatment exert a synergistic effect during experimental Trypanosoma cruzi infection? J Pineal Res 2009; 47:253-9. [PMID: 19732300 DOI: 10.1111/j.1600-079x.2009.00708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies showed that melatonin or dehydroepiandrosterone (DHEA) enhances the immune response against parasitic pathogens. The present study investigated the in vitro activity of melatonin combined with DHEA in a period of 24 hr during the course of in vivo T. cruzi infection. The in vitro activity of melatonin or DHEA alone, as well as together, were tested for the trypomastigote forms (doses ranging from 0.5 to 128 microm). In vitro, neither melatonin nor DHEA alone had any activity against trypomastigote forms, although when the highest concentration of combined melatonin and DHEA was used, it was active against the trypomastigote forms of the parasite. However, for this concentration, a quite toxicity on peritoneal macrophages was observed. For in vivo evaluation, male Wistar rats were infected with the Y strain of T. cruzi. They were orally treated with 10 mg/kg body weight/day of melatonin and subcutaneously with 40 mg/kg body weight/day of DHEA. Treatment with melatonin, DHEA and the association showed a significant reduction in the number of blood trypomastigotes during the acute phase of infection as compared to untreated animals (P < 0.05). A significant increase in the number of macrophages and nitric oxide (NO) concentrations were observed during the peak of parasitaemia with melatonin alone or combined with DHEA. However, with DHEA alone the highest concentration of NO was observed (P < 0.05). Moreover, DHEA treatment increased TNF-alpha levels during the infection (P < 0.05). These results show that melatonin, DHEA or the combination of both reduces parasitemia during the acute phase of infection. The combined action of both molecules did not exert a synergic action on the host's ability to fight infection, and it seems that among all treatments DHEA induces a more efficient immune response.
Collapse
Affiliation(s)
- Christian C Kuehn
- Laboratório de Parasitologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto FCFRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
20
|
Aydogdu N, Erbas H, Atmaca G, Erten O, Kaymak K. Melatonin Reduces Nitric Oxide via Increasing Arginase in Rhabdomyolysis-Induced Acute Renal Failure in Rats. Ren Fail 2009; 28:435-40. [PMID: 16825094 DOI: 10.1080/08860220600683631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Melatonin, the chief secretory product of the pineal gland, is a direct free radical scavenger. In addition to a direct scavenging effect on nitric oxide (NO), its inhibitory effect on nitric oxide synthase (NOS) activity has been also reported. L-arginine is the substrate for both NOS and arginase. It has been suggested that there is a competition between arginase and NOS and that they control each other's level. NO plays a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). In this study, the authors aimed to investigate the effect of melatonin on arginase activity, ornithine, and NO levels on the myoglobinuric ARF formed by intramuscular (i.m.) injection of hypertonic glycerol. Forty rats were randomly divided into four groups. Rats in SHAM were given saline, and those in groups ARF, ARF-M5, and ARF-M10 were injected with glycerol (10 mL/kg) i.m. Concomitant and 24 hours after glycerol injection for the ARF-M5 and ARF-M10 groups, melatonin--5 mg/kg and 10 mg/kg, respectively--was administrated intraperitoneally. Forty-eight hours after the glycerol injection, kidneys of the rats were taken under anesthesia. Arginase activity, ornithine, and NO levels in the kidney tissue were determined. Melatonin had an increasing effect on kidney tissue arginase activities and ornithine levels while decreasing NO concentration. It is possible that besides the direct scavenging effect, the stimulatory effect of melatonin on arginase activity may result in an inhibition of NOS activity and, finally, a decrease in the kidney NO level.
Collapse
Affiliation(s)
- Nurettin Aydogdu
- Trakya University, Faculty of Medicine, Department of Physiology, Edirne, Turkey.
| | | | | | | | | |
Collapse
|
21
|
Tamura EK, Cecon E, Monteiro AWA, Silva CLM, Markus RP. Melatonin inhibits LPS-induced NO production in rat endothelial cells. J Pineal Res 2009; 46:268-74. [PMID: 19215575 DOI: 10.1111/j.1600-079x.2008.00657.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelial cells produce NO by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NOS (iNOS). We have previously shown that melatonin, in the nanomolar range, inhibits activation of constitutive NOS, and in the present paper, we evaluated whether it could interfere with the expression of iNOS, which is activated by lipopolysaccharide (LPS), a major component of gram-negative bacteria cell walls. Primary cultures of rat endothelial cells were loaded with fluorescent probe for NO detection. Nuclear factor kappa B (NF-kappaB) translocation in endothelial cells elicited by LPS was measured by electromobility shift assay, and the vasodilation of aortic rings was accessed by recording isometric contraction. Melatonin in a micromolar but not in a nanomolar range inhibits the NO production induced by LPS. This effect is not dependent on the activation of G protein-coupled melatonin receptors. The nuclear NF-kappaB translocation is a process necessary for iNOS transcription, and melatonin also inhibits its translocation. LPS induced vasodilation only in endothelium-intact aortic rings, and melatonin (10 mum) inhibits the vasodilation. Here, we show that concentrations compatible with nocturnal melatonin surge (nm) did not interfere with the activity of iNOS. Considering that micromolar melatonin concentrations could be locally achieved through production by activated immune competent cells, extra-pineal melatonin could have a protective effect against tissue injury. We propose that melatonin blocked the LPS-induced vasodilation by inhibiting the NF-kappaB pathway. Finally, we propose that the effect of melatonin on vascular reactivity is one of the mechanisms that underlies the protective effect of this indolamine against LPS.
Collapse
Affiliation(s)
- Eduardo Koji Tamura
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Santello FH, Frare EO, Caetano LC, AlonsoToldo MP, do Prado JC. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease. J Pineal Res 2008; 45:79-85. [PMID: 18284549 DOI: 10.1111/j.1600-079x.2008.00558.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host's immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.
Collapse
Affiliation(s)
- Fabricia Helena Santello
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The fact that the full extent of the function of the pineal gland has not yet been elucidated, has stimulated melatonin research worldwide. This review introduces melatonin's mechanism of action, direct and indirect antioxidant actions as well as the antioxidant properties of its metabolites, 6-hydroxymelatonin (6-OHM) and N-acetyl-N-formyl-5-methoxykynurenamine (AFMK). At present the mechanism of action is proposed to be receptor-, protein- and nonprotein-mediated. From its popular role in the treatment of jetlag, melatonin is now implicated in the reduction of oxidative stess, both as a free radical scavenger and antioxidant. Melatonin's direct scavenging action in respect of the following will be discussed: superoxide anions, hydrogen peroxide, hydroxyl radicals, singlet oxygen, peroxy radicals and nitric oxide/peroxy nitrite anions. In addition melatonin also possesses indirect antioxidant activity and the role of its metabolites, AFMK and 6-OHM will be presented. It is these free radical scavenging and antioxidant properties of melatonin that has shifted the focus from that of merely strengthening circadian rhythms to that of neuroprotectant: a new place in therapy.
Collapse
Affiliation(s)
- Deepa S Maharaj
- Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | | | | |
Collapse
|
24
|
Zhang S, Jin H, Zhou J, Wei T. Disruption of lipid rafts impairs the production of nitric oxide in lipopolysaccharide-stimulated murine RAW264.7 macrophages. RESEARCH ON CHEMICAL INTERMEDIATES 2006. [DOI: 10.1163/156856706778938455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Srinivasan V, Maestroni GJM, Cardinali DP, Esquifino AI, Perumal SRP, Miller SC. Melatonin, immune function and aging. IMMUNITY & AGEING 2005; 2:17. [PMID: 16316470 PMCID: PMC1325257 DOI: 10.1186/1742-4933-2-17] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 11/29/2005] [Indexed: 01/10/2023]
Abstract
Aging is associated with a decline in immune function (immunosenescence), a situation known to correlate with increased incidence of cancer, infectious and degenerative diseases. Innate, cellular and humoral immunity all exhibit increased deterioration with age. A decrease in functional competence of individual natural killer (NK) cells is found with advancing age. Macrophages and granulocytes show functional decline in aging as evidenced by their diminished phagocytic activity and impairment of superoxide generation. There is also marked shift in cytokine profile as age advances, e.g., CD3+ and CD4+ cells decline in number whereas CD8+ cells increase in elderly individuals. A decline in organ specific antibodies occurs causing reduced humoral responsiveness. Circulating melatonin decreases with age and in recent years much interest has been focused on its immunomodulatory effect. Melatonin stimulates the production of progenitor cells for granulocytes-macrophages. It also stimulates the production of NK cells and CD4+ cells and inhibits CD8+ cells. The production and release of various cytokines from NK cells and T-helper lymphocytes also are enhanced by melatonin. Melatonin presumably regulates immune function by acting on the immune-opioid network, by affecting G protein-cAMP signal pathway and by regulating intracellular glutathione levels. Melatonin has the potential therapeutic value to enhance immune function in aged individuals and in patients in an immunocompromised state.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Physiology, School of Medical Sciences, University Sains Malaysia 16150, Kubang Kerian, Kelantan, Malaysia
| | - GJM Maestroni
- Center for Experimental Pathology, Cantonal Institute of Pathology, Via In Selva 24, PO Box 660, Locarno, Switzerland
| | - DP Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - AI Esquifino
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - SR Pandi Perumal
- Comprehensive Center for Sleep Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 - 5th Avenue, 6th Floor, New York, NY 10029, USA
| | - SC Miller
- Department of Anatomy and Cell Biology, Strathcona Anatomy & Dentistry Building, McGill University, Montreal, PQ, H3A 2B2, Canada
| |
Collapse
|
26
|
Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27:189-200. [PMID: 16217132 DOI: 10.1385/endo:27:2:189] [Citation(s) in RCA: 447] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 12/15/2022]
Abstract
This review summarizes the numerous observations published in recent years which have shown that one of the most significant of melatonin's pleiotropic effects is the regulation of the immune system. The overview summarizes the immune effects of pinealectomy and the association between rhythmic melatonin production and adjustments in the immune system as markers of melatonin's immunomodulatory actions. The effects of both in vivo and in vitromelatonin administration on non-specific, humoral, and cellular immune responses as well as on cellular proliferation and immune mediator production are presented. One of the main features that distinguishes melatonin from the classical hormones is its synthesis by a number of non-endocrine extrapineal organs, including the immune system. Herein, we summarize the presence of immune system-synthesized melatonin, its direct immunomodulatory effects on cytokine production, and its masking effects on exogenous melatonin action. The mechanisms of action of melatonin in the immune system are also discussed, focusing attention on the presence of membrane and nuclear receptors and the characterization of several physiological roles mediated by some receptor analogs in immune cells. The review focuses on melatonin's actions in several immune pathologies including infection, inflammation, and autoimmunity together with the relation between melatonin, immunity, and cancer.
Collapse
Affiliation(s)
- Antonio Carrillo-Vico
- Department of Medical Biochemistry and Molecular Biology, The University of Seville School of Medicine and Virgen Macarena Hospital, Seville, Spain
| | | | | | | |
Collapse
|