1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Chen J, Zou J, Huang P, Gao X, Lun J, Li Y, Gong Z, Cao H. KYNA Ameliorates Glutamate Toxicity of HAND by Enhancing Glutamate Uptake in A2 Astrocytes. Int J Mol Sci 2024; 25:4286. [PMID: 38673879 PMCID: PMC11050540 DOI: 10.3390/ijms25084286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Cao
- Department of Microbiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China; (J.C.)
| |
Collapse
|
3
|
Wu H, Jiang N, Li J, Jin Q, Jin J, Guo J, Wei X, Wang X, Yao L, Meng D, Zhi X. Tumor cell SPTBN1 inhibits M2 polarization of macrophages by suppressing CXCL1 expression. J Cell Physiol 2024; 239:97-111. [PMID: 37921259 DOI: 10.1002/jcp.31146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/- mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Quanshan Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Porrini V, Pilotto A, Vezzoli M, Lanzillotta A, Gennari MM, Bonacina S, Alberici A, Turrone R, Bellucci A, Antonini A, Padovani A, Pizzi M. NF-κB/c-Rel DNA-binding is reduced in substantia nigra and peripheral blood mononuclear cells of Parkinson's disease patients. Neurobiol Dis 2023; 180:106067. [PMID: 36893901 DOI: 10.1016/j.nbd.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.
Collapse
Affiliation(s)
- Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Michele M Gennari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Sonia Bonacina
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy; IRCCS S. Camillo, Lido Alberoni, Venice 30126, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
5
|
Han EJ, Zhang C, Kim HS, Kim JY, Park SM, Jung WK, Ahn G, Cha SH. Sargachromenol Isolated from Sargassum horneri Attenuates Glutamate-Induced Neuronal Cell Death and Oxidative Stress through Inhibition of MAPK/NF-κB and Activation of Nrf2/HO-1 Signaling Pathway. Mar Drugs 2022; 20:710. [PMID: 36421988 PMCID: PMC9695719 DOI: 10.3390/md20110710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress-induced neuronal cell loss is considered to be the major mechanism underlying the pathogenesis of neurodegenerative diseases, which could be induced by a high concentration of glutamate. In this study, sargachromenol (SC) was isolated from a marine brown seaweed Sargassum horneri (S. horneri) and its neuroprotective effects against glutamate-induced oxidative stress in HT22 cells were investigated. An MTT assay was applied to assess the cytotoxicity of the SC, and the efficacies of SC were determined by flow cytometry, an analysis of ROS production, quantitative Real-Time PCR, and the Western blot assay. Our results showed that the pretreatment of SC reduced glutamate-induced apoptosis in HT22 cells via inhibiting the sub-G1 population, DNA fragmentation, and nuclear condensation, as well as up-regulating anti-apoptotic protein (Bcl-2) and down-regulating apoptotic proteins (Bax, p53, cleaved-PARP, caspase-3, caspase-9, and cytochrome c). Additionally, SC attenuated glutamate-induced oxidative stress by suppressing mitogen-activated protein kinases (MAPKs;ERK, JNK, and p38) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling (IκBα and NF-κB p65), while activating nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling (Nrf2; HO-1, and NQO-1). Our results suggest that SC could be used as a pharmacological candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Chunying Zhang
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Sang-Muyn Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, New Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| |
Collapse
|
6
|
Wu H, Chen S, Liu C, Li J, Wei X, Jia M, Guo J, Jin J, Meng D, Zhi X. SPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21. Eur J Pharmacol 2021; 909:174401. [PMID: 34358482 DOI: 10.1016/j.ejphar.2021.174401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023]
Abstract
SPTBN1 (spectrin beta, non-erythrocytic 1) has been linked to tumor progression and epithelial-mesenchymal transition (EMT). However, the role of SPTBN1 has yet to be investigated in breast cancer. This study aimed to evaluate the viability, growth, and migration ability of the breast cancer cell line MDA-MB-231 and BT549 using CCK-8 assay, xenograft models, and Transwell assays. The expression of SPTBN1, EMT-related genes, and miRNA21 in breast cancer cells and tissues were assessed by quantitative real-time polymerase chain reaction (qPCR) and Western blot. SPTBN1 staining of breast cancer tissues was analyzed by the Human Protein Atlas databases. Both chromatin immunoprecipitation qPCR and immunofluorescence were performed to detect how SPTBN1 regulates miRNA21. Our results showed that the expression of SPTBN1 in primary breast cancer tumors was dramatically lower than that in normal tissues and that lower levels of SPTBN1 were associated with significantly shorter progression-free survival. We also discovered that the loss of SPTBN1 promotes EMT, the viability of MDA-MB-231 and BT549 in vitro, and the growth of MDA-MB-231 tumor xenografts in vivo by upregulating miR-21 level. Furthermore, loss of SPTBN1-mediated miR-21 upregulation was dependent on the stability and nuclear translocation of NF-κB p65. Therefore, SPTBN1 is a pivotal regulator that inhibits EMT and the growth of breast cancer.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Attenuation of inhibitory PAS domain protein-induced cell death by synthetic peptides derived from Mcl-1 transmenbrane domain. Cell Death Discov 2021; 7:92. [PMID: 33947838 PMCID: PMC8093901 DOI: 10.1038/s41420-021-00475-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/18/2022] Open
Abstract
Expression of Inhibitory PAS domain protein (IPAS) induces apoptosis by inhibiting the anti-apoptotic activity of mitochondrial pro-survival proteins including Bcl-xL and Mcl-1 through direct binding. Analysis to examine the IPAS-binding region in Bcl-xL demonstrated that the C-terminal transmembrane (TM) domain is indispensable for the specific binding. A chimeric protein composed of the TM domain of Mcl-1 fused to the C-terminus of Citrine also exhibited a binding affinity to IPAS, and markedly attenuated apoptosis caused by the overexpression of Cerulean-IPAS in SH-SY5Y cells. HIV-1 TAT cell-penetrating peptide-conjugated synthetic peptides that cover whole or parts of the Mcl-1 TM domain showed anti-apoptotic activity in the CoCl2-induced cell death in PC12 cells. Administration of these highly effective anti-apoptotic peptides to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that produces a reliable mouse model of Parkinson’s disease (PD) decreased neuronal cell loss in the substantia nigra pars compacta. Therefore, the peptides may be considered promising therapeutic agents for neurodegenerative disorders such as PD and stroke.
Collapse
|
8
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
9
|
Lan T, Bai M, Chen X, Wang Y, Li Y, Tian Y, He Y, Wu Z, Yu H, Chen Z, Chen C, Yu Y, Cheng K, Xie P. iTRAQ-based proteomics implies inflammasome pathway activation in the prefrontal cortex of CSDS mice may influence resilience and susceptibility. Life Sci 2020; 262:118501. [PMID: 32991880 DOI: 10.1016/j.lfs.2020.118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
AIMS Major depressive disorder, as a destructive mental health disorder, is a major contributor to disability and death. Numerous studies have illustrated that activation of inflammation and fluctuating immune reactions play a crucial role in the physiopathology of depression. The effectiveness of antidepressants is affected by the intensity of the inflammatory response. Thus, we aim to reveal the correlation of inflammatory factors and depression. MAIN METHODS Isobaric tags for relative and absolute quantitation (iTRAQ™)-based proteomics was applied to verify the quantitation of target proteins in the PFC of chronic social defeat stress (CSDS) model mice. Ingenuity pathway analysis (IPA) was performed to explore related pathways, and the involvement of molecules was validated by western blotting and real time-quantitative polymerase chain reaction (RT-qPCR). KEY FINDINGS According to the IPA results, CSDS-susceptible mice and CSDS-resilient mice both exhibited alterations of the inflammasome pathway in the PFC. Compared with control mice, susceptible mice subjected to CSDS showed an increased ATP-activated purinergic receptor P2X7 (also known as P2RX7) protein level. Nevertheless, the expression levels of cysteinyl aspartate-specific protease 1 (Caspase 1) and apoptosis-associated speck-like protein containing a CARD (ASC) were reduced in CSDS mice, and downregulation of interleukin-1β (IL-1β) was found in susceptible mice. Moreover, no significant difference was found in nuclear factor-κB levels among the three groups. SIGNIFICANCE CSDS administration leads to dysfunctions of key molecules in the inflammasome pathway, promoting depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Tianlan Lan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yong He
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Heming Yu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
11
|
Qu Z, D'Mello SR. Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp Biol Med (Maywood) 2018; 243:627-638. [PMID: 29486577 DOI: 10.1177/1535370218761149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defining feature of neurodegenerative diseases is the abnormal and excessive loss of neurons. One molecule that is particularly important in promoting neuronal death in a variety of cell culture and in vivo models of neurodegeneration is histone deacetylase-3 (HDAC3), a member of the histone deacetylase family of proteins. As a step towards understanding how HDAC3 promotes neuronal death, we conducted a proteomic screen aimed at identifying proteins that were regulated by HDAC3. HDAC3 was overexpressed in cultured rat cerebellar granule neurons (CGNs) and protein lysates were analyzed by mass spectrometry. Of over 3000 proteins identified in the screen, only 21 proteins displayed a significant alteration in expression. Of these, 12 proteins were downregulated whereas 9 proteins were upregulated. The altered expression of five of these proteins, TEX10, NPTX1, TFG, TSC1, and NFL, along with another protein that was downregulated in the proteomic screen, HIP1R, was confirmed using Western blots and commercially available antibodies. Because antibodies were not available for some of the proteins and since HDAC3 is a transcriptional regulator of gene expression, we conducted RT-PCR analysis to confirm expression changes. In separate analyses, we also included other proteins that are known to regulate neurodegeneration, including HDAC9, HSF1, huntingtin, GAPDH, FUS, and p65/RELA. Based on our proteomic screen and candidate protein approach, we identify three genes, Nptx1, Hip1r, and Hdac9, all known to regulate neurodegeneration that are robustly regulated by HDAC3. Given their suggested roles in regulating neuronal death, these genes are likely to be involved in regulating HDAC3-mediated neurotoxicity. Impact statement Neurodegenerative diseases are a major medical, social, and economic problem. Recent studies by several laboratories have indicated that histone deacetylase-3 (HDAC3) plays a key role in promoting neuronal death. But the downstream mediators of HDAC3 neurotoxicity have yet to be identified. We conducted a proteomic screen to identify HDAC3 targets the results of which have been described in this report. Briefly, we identify Nptx1, Hip1r, and Hdac9 as genes whose expression is altered by HDAC3. Investigating how these genes are involved in HDAC3 neurotoxicity could shed valuable insight into neurodegenerative disease and identify molecules that can be targeted to treat these devastating disorders.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
12
|
Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke. Int J Mol Sci 2018; 19:ijms19010172. [PMID: 29316653 PMCID: PMC5796121 DOI: 10.3390/ijms19010172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.
Collapse
|
13
|
Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, Baumann B, Wirth T. IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J 2018; 32:1916-1932. [PMID: 29187362 PMCID: PMC5893169 DOI: 10.1096/fj.201700826r] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults. After the initial injury, a poorly understood secondary phase, including a strong inflammatory response determines the final outcome of TBI. The inhibitor of NF-κB kinase (IKK)/NF-κB signaling system is the key regulator of inflammation and also critically involved in regulation of neuronal survival and synaptic plasticity. We addressed the neuron-specific function of IKK2/NF-κB signaling pathway in TBI using an experimental model of closed-head injury (CHI) in combination with mouse models allowing conditional regulation of IKK/NF-κB signaling in excitatory forebrain neurons. We found that repression of IKK2/NF-κB signaling in neurons increases the acute posttraumatic mortality rate, worsens the neurological outcome, and promotes neuronal cell death by apoptosis, thus resulting in enhanced proinflammatory gene expression. As a potential mechanism, we identified elevated levels of the proapoptotic mediators Bax and Bad and enhanced expression of stress response genes. This phenotype is also observed when neuronal IKK/NF-κB activity is inhibited just before CHI. In contrast, neuron-specific activation of IKK/NF-κB signaling does not alter the TBI outcome. Thus, this study demonstrates that physiological neuronal IKK/NF-κB signaling is necessary and sufficient to protect neurons from trauma consequences.-Mettang, M., Reichel, S. N., Lattke, M., Palmer, A., Abaei, A., Rasche, V., Huber-Lang, M., Baumann, B., Wirth, T. IKK2/NF-κB signaling protects neurons after traumatic brain injury.
Collapse
Affiliation(s)
- Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | - Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany.,Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Wu YL, Chang JC, Lin WY, Li CC, Hsieh M, Chen HW, Wang TS, Liu CS, Liu KL. Treatment with Caffeic Acid and Resveratrol Alleviates Oxidative Stress Induced Neurotoxicity in Cell and Drosophila Models of Spinocerebellar Ataxia Type3. Sci Rep 2017; 7:11641. [PMID: 28912527 PMCID: PMC5599504 DOI: 10.1038/s41598-017-11839-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a polyglutamine (polyQ) repeat in the protein ataxin-3 which is involved in susceptibility to mild oxidative stress induced neuronal death. Here we show that caffeic acid (CA) and resveratrol (Res) decreased reactive oxygen species (ROS), mutant ataxin-3 and apoptosis and increased autophagy in the pro-oxidant tert-butyl hydroperoxide (tBH)-treated SK-N-SH-MJD78 cells containing mutant ataxin-3. Furthermore, CA and Res improved survival and locomotor activity and decreased mutant ataxin-3 and ROS levels in tBH-treated SCA3 Drosophila. CA and Res also altered p53 and nuclear factor-κB (NF-κB) activation and expression in tBH-treated cell and fly models of SCA3, respectively. Blockade of NF-κB activation annulled the protective effects of CA and Res on apoptosis, ROS, and p53 activation in tBH-treated SK-N-SH-MJD78 cells, which suggests the importance of restoring NF-κB activity by CA and Res. Our findings suggest that CA and Res may be useful in the management of oxidative stress induced neuronal apoptosis in SCA3.
Collapse
Affiliation(s)
- Yu-Ling Wu
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung, 40203, Taiwan
| | - Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung, 40203, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 40203, Taiwan
| | - Mingli Hsieh
- Department of Life Science and Life Science Research Center, Tunghai University, Taichung, 40704, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 40203, Taiwan
| | - Chin-San Liu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Neurology and Vascular and Genomic Center, Changhua Christian Hospital, Changhua, 50094, Taiwan.
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung, 40203, Taiwan. .,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 40203, Taiwan.
| |
Collapse
|
15
|
Djordjevic J, Thomson E, Chowdhury SR, Snow WM, Perez C, Wong TP, Fernyhough P, Albensi BC. Brain region- and sex-specific alterations in mitochondrial function and NF-κB signaling in the TgCRND8 mouse model of Alzheimer's disease. Neuroscience 2017; 361:81-92. [PMID: 28802916 DOI: 10.1016/j.neuroscience.2017.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common late onset neurodegenerative disorder with indications that women are disproportionately affected. Mitochondrial dysfunction has been one of the most discussed hypotheses associated with the early onset and progression of AD, and it has been attributed to intraneuronal accumulation of amyloid β (Aβ). It was suggested that one of the possible mediators for Aβ-impaired mitochondrial function is the nuclear factor kappa B (NF-κB) signaling pathway. NF-κB plays important roles in brain inflammation and antioxidant defense, as well as in the regulation of mitochondrial function, and studies have confirmed altered NF-κB signaling in AD brain. In this study, we looked for sex-based differences in impaired bioenergetic processes and NF-κB signaling in the AD-like brain using transgenic (Tg) CRND8 mice that express excessive brain Aβ, but without tau pathology. Our results show that mitochondrial dysfunction is not uniform in affected brain regions. We observed increased basal and coupled respiration in the hippocampus of TgCRND8 females only, along with a decreased Complex II-dependent respiratory activity. Cortical mitochondria from TgCRND8 mice have reduced uncoupled respiration capacity, regardless of sex. The pattern of changes in NF-κB signaling was the same in both brain structures, but was sex specific. Whereas in females there was an increase in all three subunits of NF-κB, in males we observed increase in p65 and p105, but no changes in p50 levels. These results demonstrate that mitochondrial function and inflammatory signaling in the AD-like brain is region- and sex-specific, which is an important consideration for therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Djordjevic
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Wanda M Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Claudia Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Zhang B, Song C, Feng B, Fan W. Neuroprotection by triptolide against cerebral ischemia/reperfusion injury through the inhibition of NF-κB/PUMA signal in rats. Ther Clin Risk Manag 2016; 12:817-24. [PMID: 27307742 PMCID: PMC4888863 DOI: 10.2147/tcrm.s106012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent antitumor activity. Recently, triptolide was found to have protective effects against acute cerebral ischemia/reperfusion (I/R) injury through inhibition of cell apoptosis. However, the regulatory mechanism of the effect remains unclear. We hypothesize that the regulatory mechanisms of triptolide are mediated by nuclear factor κB (NF-κB) and p53-upregulated-modulator-of-apoptosis signal inhibition. To verify this hypothesis, we occluded the middle cerebral artery in male rats to establish focal cerebral I/R model. The rats received triptolide or vehicle at the onset of reperfusion following middle cerebral artery occlusion. At 24 hours after reperfusion, neurological deficits, infarct volume, and cell apoptosis were evaluated. The expression levels of NF-κBp65, PUMA, and caspase-3 were determined by Western blot. Real-time polymerase chain reaction was used to determine the levels of NF-κBp65 mRNA, PUMA mRNA, and caspase-3 mRNA. NF-κB activity was determined by electrophoretic mobility shift assay. Apoptotic cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. In I/R group, neurological deficit scores, cerebral infarct volume, expression of NF-κBp65, PUMA, caspase-3, NF-κB activity, and TUNEL-positive cells were found to be increased at 24 hours after I/R injury. The I/R/triptolide rats showed significantly better neurological deficit scores, decreased neural apoptosis, and reduced cerebral infarct volume. In addition, the expression of NF-κBp65, PUMA, caspase-3, and NF-κB activity was suppressed in the I/R/triptolide rats. These results indicate that the neuroprotective effects of triptolide during acute cerebral I/R injury are possibly related to the inhibition of apoptosis through suppression of NF-κB/PUMA signaling pathway.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Cunfeng Song
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Bo Feng
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Weibing Fan
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, People's Republic of China
| |
Collapse
|
17
|
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:339-51. [DOI: 10.1016/j.bbadis.2015.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
18
|
Pozniak PD, Darbinyan A, Khalili K. TNF-α/TNFR2 Regulatory Axis Stimulates EphB2-Mediated Neuroregeneration Via Activation of NF-κB. J Cell Physiol 2015; 231:1237-48. [PMID: 26492598 DOI: 10.1002/jcp.25219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
HIV-1 infected individuals are at high risk of developing HIV-associated neurocognitive disorders (HAND) as HIV infection leads to neuronal injury and synaptic loss in the central nervous system (CNS). The neurotoxic effects of HIV-1 are primarily a result of viral replication leading to the production of inflammatory chemokines and cytokines, including TNF-α. Given an important role of TNF-α in regulating synaptic plasticity, we investigated the effects of TNF-α on the development of neuronal processes after mechanical injury, and we showed that TNF-α treatment stimulates the regrowth of neuronal processes. To investigate transcriptional effects of TNF-α on synaptic plasticity, we analyzed both human neurosphere and isolated neuronal cultures for the regulation of genes central to synaptic alterations during learning and memory. TNF-α treatment upregulated Ephrin receptor B2 (EphB2), which is strongly involved in dendritic arborization and synaptic integrity. TNF-α strongly activates the NF-κB pathway, therefore, we propose that TNF-α-induced neurite regrowth occurs primarily through EphB2 signaling via stimulation of NF-κB. EphB2 promoter activity increased with TNF-α treatment and overexpression of NF-κB. Direct binding of NF-κB to the EphB2 promoter occurred in the ChIP assay, and site-directed mutagenesis identified binding sites involved in TNF-α-induced EphB2 activation. TNF-α induction of EphB2 was determined to occur specifically through TNF-α receptor 2 (TNFR2) activation in human primary fetal neurons. Our observations provide a new avenue for the investigation on the impact of TNF-α in the context of HIV-1 neuronal cell damage as well as providing a potential therapeutic target in TNFR2 activation of EphB2.
Collapse
Affiliation(s)
- Paul D Pozniak
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Armine Darbinyan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Division of Neuropathology, Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Lanzillotta A, Porrini V, Bellucci A, Benarese M, Branca C, Parrella E, Spano PF, Pizzi M. NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases. Front Neurol 2015; 6:98. [PMID: 26042083 PMCID: PMC4438602 DOI: 10.3389/fneur.2015.00098] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Marina Benarese
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Caterina Branca
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Pier Franco Spano
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| |
Collapse
|
20
|
Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 2014; 85:101-115. [PMID: 25533482 DOI: 10.1016/j.neuron.2014.11.018] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
Abnormal NFκB activation has been implicated in Alzheimer's disease (AD). However, the signaling pathways governing NFκB regulation and function in the brain are poorly understood. We identify complement protein C3 as an astroglial target of NFκB and show that C3 release acts through neuronal C3aR to disrupt dendritic morphology and network function. Exposure to Aβ activates astroglial NFκB and C3 release, consistent with the high levels of C3 expression in brain tissue from AD patients and APP transgenic mice, where C3aR antagonist treatment rescues cognitive impairment. Therefore, dysregulation of neuron-glia interaction through NFκB/C3/C3aR signaling may contribute to synaptic dysfunction in AD, and C3aR antagonists may be therapeutically beneficial.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Li Yang
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Allysa Cole
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Lu Sun
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Angie C-A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie W Fowler
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David J Shim
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joanna L Jankowsky
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine and the Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Shrestha RP, Qiao JM, Shen FG, Bista KB, Zhao ZN, Yang J. Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-κB in Acute Transection Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2014; 56:375-82. [PMID: 25535513 PMCID: PMC4272994 DOI: 10.3340/jkns.2014.56.5.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/09/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022] Open
Abstract
Objective To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-κB (NF-κB) in spinal cord injury (SCI) in rats. Methods BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-κB in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-κB positive cells and level of NF-κB messenger RNA in spinal cord at various time points between the groups. Activated NF-κB immunoreactivity and level of NF-κB mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion BMMNCs transplantation attenuates the expression of NF-κB in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.
Collapse
Affiliation(s)
- Rajiv Prasad Shrestha
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jian Min Qiao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Fu Guo Shen
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Krishna Bahadur Bista
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Zhong Nan Zhao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jianhua Yang
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| |
Collapse
|
22
|
Franco DG, Markus RP. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture. PLoS One 2014; 9:e106332. [PMID: 25184316 PMCID: PMC4153619 DOI: 10.1371/journal.pone.0106332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/05/2014] [Indexed: 01/11/2023] Open
Abstract
The constitutive activation of nuclear factor-κB (NF-κB), a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS). The addition of melatonin (0.1 nM–1 µM) reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM) transiently (15 min) inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA) and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS) and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin.
Collapse
Affiliation(s)
- Daiane Gil Franco
- Laboratory of Chronopharmacology, Institute of Bioscience, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Regina P. Markus
- Laboratory of Chronopharmacology, Institute of Bioscience, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
23
|
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8:213. [PMID: 25120434 PMCID: PMC4114208 DOI: 10.3389/fncel.2014.00213] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Priti Talwar
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Avinash Parimisetty
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Christian Lefebvre d'Hellencourt
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| |
Collapse
|
24
|
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2563-2582. [PMID: 24892271 DOI: 10.1016/j.bbamcr.2014.05.014] [Citation(s) in RCA: 1432] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Inflammation occurs as a result of exposure of tissues and organs to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components. The primary physical manifestations of inflammation are redness, swelling, heat, pain, and loss of function to the affected area. These processes involve the major cells of the immune system, including monocytes, macrophages, neutrophils, basophils, dendritic cells, mast cells, T-cells, and B-cells. However, examination of a range of inflammatory lesions demonstrates the presence of specific leukocytes in any given lesion. That is, the inflammatory process is regulated in such a way as to ensure that the appropriate leukocytes are recruited. These events are in turn controlled by a host of extracellular molecular regulators, including members of the cytokine and chemokine families that mediate both immune cell recruitment and complex intracellular signalling control mechanisms that characterise inflammation. This review will focus on the role of the main cytokines, chemokines, and their receptors in the pathophysiology of auto-inflammatory disorders, pro-inflammatory disorders, and neurological disorders involving inflammation.
Collapse
Affiliation(s)
- Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Belinda Nedjai
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College, South Kensington, London SW7 2AZ, United Kingdom
| | - Tara Hurst
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, Whitechapel, London E1 2AT, United Kingdom
| |
Collapse
|
25
|
NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:612798. [PMID: 24678511 PMCID: PMC3942292 DOI: 10.1155/2014/612798] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/28/2013] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.
Collapse
|
26
|
Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2013; 9:133-41. [PMID: 24277482 DOI: 10.1007/s11481-013-9517-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor-alpha, TNF-α, is a cytokine that is a well-known factor in multiple disease conditions and is recognized for its major role in central nervous system signaling. TNF-α signaling is most commonly associated with neurotoxicity, but in some conditions it has been found to be neuroprotective. TNF-α has long been known to induce nuclear factor-kappa B, NF-κB, signaling by, in most cases, translocating the p65 (RelA) DNA binding factor to the nucleus. p65 is a key member of NF-κB, which is well established as a family of transcription factors that regulates many signaling events, including growth and process development, in neuronal cell populations. NF-κB has been shown to affect both the receiving aspect of neuronal signaling events in dendritic development as well as the sending of neuronal signals in axonal development. In both cases, NK-κB functions as a promoter and/or inhibitor of growth, depending on the environmental conditions and signaling cascade. In addition, NF-κB is involved in memory formation or neurogenesis, depending on the region of the brain in which the signaling occurs. The ephrin (Eph) receptor family represents a subfamily of receptor tyrosine kinases, RTKs, which received much attention due to its potential involvement in neuronal cell health and function. There are two subsets of ephrin receptors, Eph A and Eph B, each with distinct functions in cardiovascular and skeletal development and axon guidance and synaptic plasticity. The presence of multiple binding sites for NF-κB within the regulatory region of EphB2 gene and its potential regulation by NF-κB pathway suggests that TNF-α may modulate EphB2 via NF-κB and that this may contribute to the neuroprotective activity of TNF-α.
Collapse
Affiliation(s)
- Paul D Pozniak
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Room 741 MERB, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
27
|
Zhuang Z, Sun XJ, Zhang X, Liu HD, You WC, Ma CY, Zhu L, Zhou ML, Shi JX. Nuclear factor-κB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res 2013; 91:1599-608. [PMID: 24105634 DOI: 10.1002/jnr.23281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 01/01/2023]
Abstract
Early brain injury (EBI), a significant contributor to poor outcome after subarachnoid hemorrhage (SAH), is intimately associated with neuronal apoptosis. Recently, the protective role of hydrogen (H2 ) in the brain has been widely studied, but the underlying mechanism remains elusive. Numerous studies have shown nuclear factor-κB (NF-κB) as a crucial survival pathway in neurons. Here we investigated the role of H2 in EBI following SAH, focusing on the NF-κB pathway. A double blood injection model was used to produce experimental SAH, and H2 -rich saline was injected intraperitoneally. NF-κB activity within the occipital cortex was measured. Immunofluorescence was performed to demonstrate the activation of NF-κB; Bcl-xL and cleaved caspase-3 were determined via Western blot. Gene expression of Bcl-xL was detected by real-time PCR, and TUNEL and Nissl staining were performed to illustrate brain injury in the occipital cortex. SAH induced a significant increase of cleaved caspase-3. Correspondingly, TUNEL staining demonstrated obvious neuronal apoptosis following SAH. In contrast, H2 treatment markedly increased NF-κB activity and the expression of Bcl-xL and decreased the level of cleaved caspase-3. Additionally, H2 treatment significantly reduced post-SAH neuronal apoptosis. The current study shows that H2 treatment alleviates EBI in the rabbits following SAH and that NF-κB/Bcl-xL pathway is involved in the protective role of H2 .
Collapse
Affiliation(s)
- Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer's disease-induced rats. J Med Food 2013; 16:437-46. [PMID: 23631499 DOI: 10.1089/jmf.2012.0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the role of Salvia triloba L. and Piper nigrum extracts in ameliorating neuroinflammatory insults characteristic of Alzheimer's disease (AD) in an experimentally induced rat model. Adult male Sprague-Dawley rats were classified into Group 1 (n=10): normal healthy animals serving as the negative control group; Group 2 (n=60): the AD-induced group. After AD induction, animals in the AD-induced group were divided randomly and equally into 6 subgroups. The first subgroup served as AD control; the second one, which served as positive control, was treated orally with the conventional therapy for AD (rivastigmine) at a dose of 0.3 mg/kg body weight (b.w.) daily for 3 months. The third and fourth subgroups were, respectively, treated orally with the S. triloba extract at a dose of 750 and 375 mg/kg b.w. daily for 3 months. The fifth and sixth subgroups were, respectively, treated orally with the P. nigrum extract at a dose of 187.5 and 93.75 mg/kg b.w. daily for 3 months. Levels of brain acetylcholine (Ach), serum and brain acetylcholinesterase (AchE) activity, C-reactive protein (CRP), total nuclear factor kappa-B (NF-κB), and monocyte chemoattractant protein-1 (MCP-1) were estimated. The results showed that administration of AlCl3 resulted in a significant elevation in the levels of AchE activity, CRP, NF-κB, and MCP-1 accompanied with a significant depletion in the Ach level. Treatment of AD rats with each of the selected medicinal plant extracts caused marked improvement in the measured biochemical parameters. In conclusion, S. triloba and P. nigrum methanolic extracts have potent anti-inflammatory effects against neuroinflammation characterizing AD.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Center, Cairo 12622, Egypt.
| | | | | | | | | |
Collapse
|
29
|
Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, Wei L. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 2013; 244:16-30. [PMID: 23558089 DOI: 10.1016/j.neuroscience.2013.03.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Autophagy may contribute to ischemia-induced cell death in the brain, but the regulation of autophagic cell death is largely unknown. Nuclear factor kappa B (NF-κB) is a regulator of apoptosis in cerebral ischemia. We examined the hypothesis that autophagy-like cell death could contribute to ischemia-induced brain damage and the process was regulated by NF-κB. In adult wild-type (WT) and NF-κB p50 knockout (p50(-/-)) mice, focal ischemia in the barrel cortex was induced by ligation of distal branches of the middle cerebral artery. Twelve to 24h later, autophagic activity increased as indicated by enhanced expression of Beclin-1 and LC3 in the ischemic core and/or penumbra regions. This increased autophagy contributed to cell injury, evidenced by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) co-staining and a protective effect achieved by the autophagy inhibitor 3-methyladenine. The number of Beclin-1/TUNEL-positive cells was significantly more in p50(-/-) mice than in WT mice. Neuronal and vascular cell death, as determined by TUNEL-positive cells co-staining with NeuN or Collagen IV, was more abundant in p50(-/-) mice. Immunostaining of the endothelial cell tight junction marker occludin revealed more damage to the blood-brain barrier in p50(-/-) mice. Western blotting of the peri-infarct tissue showed a reduction of Akt-the mammalian target of rapamycin (mTOR) signaling in p50(-/-) mice after ischemia. These findings provide the first evidence that cerebral ischemia induced autophagy-like injury is regulated by the NF-κB pathway, which may suggest potential treatments for ischemic stroke.
Collapse
Affiliation(s)
- W-L Li
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 2013; 10:16. [PMID: 23394165 PMCID: PMC3598470 DOI: 10.1186/1742-4690-10-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
31
|
Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia. Mol Psychiatry 2012; 17:1328-39. [PMID: 21968932 DOI: 10.1038/mp.2011.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.
Collapse
|
32
|
Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L, Morelli M, Ingrassia R, Benarese M, Porrini V, Pellitteri M, Bertini G, Fabene PF, Sigala S, Spillantini MG, Liou HC, Spano PF, Pizzi M. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice. Brain 2012; 135:2750-65. [PMID: 22915735 PMCID: PMC3437025 DOI: 10.1093/brain/aws193] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel(-/-) mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel(-/-) mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel(-/-) mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel(-/-) mice may be a suitable model of Parkinson's disease.
Collapse
Affiliation(s)
- Cristina Baiguera
- Department of Biomedical Sciences and Biotechnologies, University of Brescia and National Institute of Neuroscience, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ho JWM, Ho PWL, Liu HF, So DHF, Chan KH, Tse ZHM, Kung MHW, Ramsden DB, Ho SL. UCP4 is a target effector of the NF-κB c-Rel prosurvival pathway against oxidative stress. Free Radic Biol Med 2012; 53:383-94. [PMID: 22580300 DOI: 10.1016/j.freeradbiomed.2012.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/08/2012] [Accepted: 05/01/2012] [Indexed: 01/11/2023]
Abstract
Mitochondrial uncoupling protein-4 (UCP4) enhances neuronal survival in 1-methyl-4-phenylpyridinium (MPP(+)) toxicity by suppressing oxidative stress and preserving intracellular ATP and mitochondrial membrane potential (MMP). NF-κB regulates neuronal viability via its complexes, p65 mediating cell death and c-Rel promoting cell survival. We reported previously that NF-κB mediates UCP4 neuroprotection against MPP(+) toxicity. Here, we investigated its link with the NF-κB c-Rel prosurvival pathway in alleviating mitochondrial dysfunction and oxidative stress. We overexpressed a c-Rel-encoding plasmid in SH-SY5Y cells and showed that c-Rel overexpression induced NF-κB activity without affecting p65 level. Overexpression of c-Rel increased UCP4 promoter activity and protein expression. Electrophoretic mobility shift assay showed that H(2)O(2) increased NF-κB binding to the UCP4 promoter and that NF-κB complexes were composed of p50/p50 and p50/c-Rel dimers. Under H(2)O(2)-induced oxidative stress, UCP4 knockdown significantly increased superoxide levels, decreased reduced glutathione (GSH) levels, and increased oxidized glutathione levels, compared to controls. UCP4 expression induced by c-Rel overexpression significantly decreased superoxide levels and preserved GSH levels and MMP under similar stress. These protective effects of c-Rel overexpression in H(2)O(2)-induced oxidative stress were significantly reduced after UCP4 knockdown, indicating that UCP4 is a target effector gene of the NF-κB c-Rel prosurvival pathway to mitigate the effects of oxidative stress.
Collapse
Affiliation(s)
- Jessica Wing-Man Ho
- Division of Neurology, University Department of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramsden DB, Ho PW, Ho JW, Liu H, So DH, Tse H, Chan K, Ho S. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2012; 2:468-78. [PMID: 22950050 PMCID: PMC3432969 DOI: 10.1002/brb3.55] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023] Open
Abstract
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- David B. Ramsden
- School of Medicine and School of Biosciences, University of Birmingham, United Kingdom
| | - Philip W.‐L. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Jessica W.‐M. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Hui‐Fang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Danny H.‐F. So
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Ho‐Man Tse
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Koon‐Ho Chan
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Shu‐Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
35
|
1B/(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/RelA acetylation at Lys310. PLoS One 2012; 7:e38019. [PMID: 22666436 PMCID: PMC3362534 DOI: 10.1371/journal.pone.0038019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/30/2012] [Indexed: 01/31/2023] Open
Abstract
The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (−IRE) protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(−)IRE DMT1 isoform significantly increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by deferoxamine treatment or (−)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which concomitantly decreased intracellular iron levels. We found evidence that 1B/(−)IRE DMT1 was a target gene for RelA activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1 promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (−)IRE DMT1 protein, as well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine 310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently offering neuroprotection. Our data showed that 1B/(−)IRE DMT1 expression and intracellular iron influx are early downstream responses to NF-κB/RelA activation and acetylation during brain ischemia and contribute to the pathogenesis of stroke-induced neuronal damage.
Collapse
|
36
|
Sarnico I, Branca C, Lanzillotta A, Porrini V, Benarese M, Spano PF, Pizzi M. NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress. Brain Res 2012; 1476:203-10. [PMID: 22575713 DOI: 10.1016/j.brainres.2012.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022]
Abstract
Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost always mediated by changes in gene expression. To effect these changes, cells have developed an impressive repertoire of signaling systems designed to modulate the activity of numerous transcription factors and epigenetic mechanisms affecting the chromatin structure. Since its initial characterization in the nervous system, NF-κB has shown to respond to multiple signals and elicit pleiotropic activities suggesting that it may play a pivotal role in integration of different types of information within the brain. Ample evidence demonstrates that NF-κB factors are engaged in and necessary for neuronal development and synaptic plasticity, but they also regulate brain response to environmental noxae. By focusing on the complexity of NF-κB transcriptional activity in neuronal cell death, it emerged that the composition of NF-κB active dimers finely tunes the neuronal vulnerability to brain ischemia. Even though we are only beginning to understand the contribution of distinct NF-κB family members to the regulation of gene transcription in the brain, an additional level of regulation of NF-κB activity has emerged as operated by the epigenetic mechanisms modulating histone acetylation. We will discuss NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress and useful drug targets for restoration of brain function. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Ilenia Sarnico
- Department of Biomedical Sciences & Biotechnologies, University of Brescia and Istituto Nazionale di Neuroscienze, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Mokrushin AA, Pavlinova LI. Hsp70 promotes synaptic transmission in brain slices damaged by contact with blood clot. Eur J Pharmacol 2012; 677:55-62. [DOI: 10.1016/j.ejphar.2011.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 01/19/2023]
|
38
|
Agnati LF, Guidolin D, Leo G, Guescini M, Pizzi M, Stocchi V, Spano PF, Ghidoni R, Ciruela F, Genedani S, Fuxe K. Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J Recept Signal Transduct Res 2012; 31:315-31. [PMID: 21929287 DOI: 10.3109/10799893.2011.599393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been estimated that at least 50% of the drugs available on the market act on G-protein coupled receptors (GPCRs) and most of these are basically or agonists or antagonists of this type of receptors. Herein, we propose new putative targets for drug development based on recent data on GPCR allosterism and on the existence of receptor mosaics (RMs). The main target for drug development is still GPCRs, but the focus is not the orthosteric binding pocket. According to the mosaic model of the plasma membrane, we mainly discuss the possibility of indirect modulatory pharmacological actions on expression/function of GPCRs. In particular, the following two new targets will be analyzed: a) The possibility of pharmacological interventions on the roamer-type of volume transmission (VT), which allow the intercellular transfer of set of signal molecules such as GPCRs, tetraspanins and ribonucleic acids. Thus, there is the possibility of pharmacological interventions on the decoding capabilities of neurons and/or glial cells by means of an action on composition and release of micro-vesicles. b) The possibility of pharmacological interventions on epigenetic mechanisms by taking into account their inter-relationships with GPCRs. As a matter of fact, there are epigenetic changes that are characteristic of periods of developmental plasticity that could provide a target for therapeutic intervention in the event of brain damage. We believe that almost all the biochemical knowledge presently available on GPCRs can be used in the development of these new pharmacological approaches.
Collapse
|
39
|
Ghanizadeh A. Nuclear factor kappa B may increase insight into the management of neuroinflammation and excitotoxicity in autism. Expert Opin Ther Targets 2011; 15:781-3. [PMID: 21554160 DOI: 10.1517/14728222.2011.571212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Wang CE, Li S, Li XJ. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice. Mol Brain 2010; 3:33. [PMID: 21044321 PMCID: PMC2990748 DOI: 10.1186/1756-6606-3-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease results from expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (htt) and is characterized by preferential neurodegeneration in the striatum of the brain. N171-82Q mice that express N-terminal 171 amino acids of htt with an 82-glutamine repeat show severe neurological phenotypes and die early, suggesting that N-terminal mutant htt is pathogenic. In addition, various cellular factors and genetic modifiers are found to modulate the cytotoxicity of mutant htt. Understanding the contribution of these factors to HD pathogenesis will help identify therapeutics for this disease. To investigate the role of interleukin type 1 (IL-1), a cytokine that has been implicated in various neurological diseases, in HD neurological symptoms, we crossed N171-82Q mice to type I IL-1 receptor (IL-1RI) knockout mice. Mice lacking IL-1RI and expressing N171-82Q show more severe neurological symptoms than N171-82Q or IL-1RI knockout mice, suggesting that lack of IL-1RI can promote the neuronal toxicity of mutant htt. Lack of IL-1RI also increases the accumulation of transgenic mutant htt in the striatum in N171-82Q mice. Since IL-1RI signaling mediates both toxic and protective effects on neurons, its basal function and protective effects may be important for preventing the neuropathology seen in HD.
Collapse
Affiliation(s)
- Chuan-En Wang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Pyo JS, Ko YS, Kim WH, Kim M, Lee KW, Nam SY, Chung HY, Cho SJ, Baik TK, Lee BL. Impairment of nuclear factor-kappaB activation increased glutamate excitotoxicity in a motoneuron-neuroblastoma hybrid cell line expressing mutant (G93A) Cu/Zn-superoxide dismutase. J Neurosci Res 2010; 88:2494-503. [PMID: 20623531 DOI: 10.1002/jnr.22397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are linked to glutamate excitotoxicity in familial amyotrophic lateral sclerosis (fALS), but the underlying mechanism remains unclear. We investigated whether nuclear factor-kappaB (NF-kappaB) activation is involved in glutamate excitotoxicity by using motor neuron-neuroblastoma hybrid cells that expressed a mutant (G93A) SOD1 (mtSOD1) or wild-type SOD1 (wtSOD1). MtSOD1 cells were more vulnerable to glutamate excitotoxicity than wtSOD1 cells and showed higher NF-kappaB activity, higher nuclear cRel expression, and lower nuclear RelA expression under basal conditions. Glutamate treatment increased NF-kappaB activation along with nuclear expressions of RelA and cRel in wtSOD1 cells but induced only weak nuclear RelA expression in mtSOD1 cells. Suppression of NF-kappaB activation using transfection of the superrepressive mutant form of IkappaBalpha (mIkappaBalpha) inhibited nuclear RelA expression in both types of SOD1 cells, which increased glutamate excitotoxicity in wtSOD1 cells but not in mtSOD1 cells. Furthermore, immunohistochemistry confirmed stronger RelA immunoreactivity in the nuclei of motor neurons of spinal cord in wild-type SOD1 transgenic mice than in those in SOD1 G93A transgenic mice. In addition, we found that glutamate treatment decreased XIAP expression and increased caspase-3 activity in mtSOD1 cells and mIkappaBalpha-overexpressing wtSOD1 cells. Our results suggest that glutamate excitotoxicity in motor neurons of SOD1-linked fALS is attributable, at least in part, to the impairment of IkappaBalpha-dependent RelA activation and subsequent apoptosis mediated by XIAP inhibition and caspase-3 activation.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Anatomy and Neurosciences, Eulji University School of Medicine, Daejon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chuang YC, Chen SD, Lin TK, Chang WN, Lu CH, Liou CW, Chan SHH, Chang AYW. Transcriptional upregulation of nitric oxide synthase II by nuclear factor-kappaB promotes apoptotic neuronal cell death in the hippocampus following experimental status epilepticus. J Neurosci Res 2010; 88:1898-907. [PMID: 20155797 DOI: 10.1002/jnr.22369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Whereas status epilepticus, or the condition of continuous epileptic seizures, produces a characteristic pattern of preferential neuronal cell loss in the hippocampus, the underlying mechanism is still unsettled. Based on an experimental model of temporal lobe status epilepticus, we demonstrated previously that prolonged seizures prompted an overproduction of nitric oxide (NO) by upregulation of NO synthase II (NOS II) in the hippocampal CA3 subfield, followed by the activation of mitochondrial apoptotic signaling cascade. Using the same animal model, the present study evaluated the hypothesis that transcriptional upregulation of NOS II gene by nuclear factor-kappaB (NF-kappaB) promotes apoptotic neuronal cell death in the hippocampus following status epilepticus. In Sprague-Dawley rats, significantly augmented nucleus-bound translocation of NF-kappaB p50 and p65 subunits and DNA binding activity of NF-kappaB were observed in hippocampal CA3 neurons as early as 30 min after elicitation of sustained seizure activity by microinjection of kainic acid into the CA3 subfield, followed by a progressive elevation that peaked at 90 min. In addition, application bilaterally into the hippocampal CA3 subfield of a selective NF-kappaB inhibitor, pyrrolidine dithiocarbamate or double-stranded kappaB decoy DNA significantly antagonized the activated NOS II-peroxynitrite signaling cascade (3 hr) and the associated manifestations of apoptotic cell death (7 days) in the hippocampus. We conclude that activation of NF-kappaB in hippocampal CA3 neurons upregulates NOS II gene expression following experimental temporal lobe status epilepticus, leading to apoptotic neuronal cell death in the hippocampus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung County, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Meneghini V, Francese MT, Carraro L, Grilli M. A novel role for the Receptor for Advanced Glycation End-products in neural progenitor cells derived from adult SubVentricular Zone. Mol Cell Neurosci 2010; 45:139-50. [PMID: 20600932 DOI: 10.1016/j.mcn.2010.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/12/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023] Open
Abstract
The Receptor for Advanced Glycation End-products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors which interacts with a wide range of ligands, such as High-Mobility Group Box-1 (HMGB-1), S100B, advanced glycation end-products (AGEs). Here we provided evidence for the restricted expression of RAGE in the undifferentiated neural stem/progenitor cells of mouse adult SubVentricular Zone (SVZ) neurogenic region and adult SVZ-derived neurospheres. Additionally, RAGE ligands stimulated both proliferation and neuronal differentiation of SVZ-derived neural progenitor cells (NPC) in vitro. NF-kappaB nuclear translocation occurred upon RAGE activation in SVZ-derived neurospheres and its blockade (by SN-50) or its absence (in p50(-/-) derived NPC) resulted in the inhibition of the ligand-mediated effects on neuronal differentiation. These novel findings delineate an interesting scenario where the RAGE-NF-kappaB axis may contribute to regulate adult neural stem/progenitor cell function in physiological and possibly pathological conditions where this axis is upregulated.
Collapse
Affiliation(s)
- Vasco Meneghini
- DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | |
Collapse
|
44
|
Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010; 465:223-6. [PMID: 20428114 DOI: 10.1038/nature08971] [Citation(s) in RCA: 976] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 03/02/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) has its onset in middle age and is a progressive disorder characterized by degeneration of motor neurons of the primary motor cortex, brainstem and spinal cord. Most cases of ALS are sporadic, but about 10% are familial. Genes known to cause classic familial ALS (FALS) are superoxide dismutase 1 (SOD1), ANG encoding angiogenin, TARDP encoding transactive response (TAR) DNA-binding protein TDP-43 (ref. 4) and fused in sarcoma/translated in liposarcoma (FUS, also known as TLS). However, these genetic defects occur in only about 20-30% of cases of FALS, and most genes causing FALS are unknown. Here we show that there are mutations in the gene encoding optineurin (OPTN), earlier reported to be a causative gene of primary open-angle glaucoma (POAG), in patients with ALS. We found three types of mutation of OPTN: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Analysis of cell transfection showed that the nonsense and missense mutations of OPTN abolished the inhibition of activation of nuclear factor kappa B (NF-kappaB), and the E478G mutation revealed a cytoplasmic distribution different from that of the wild type or a POAG mutation. A case with the E478G mutation showed OPTN-immunoreactive cytoplasmic inclusions. Furthermore, TDP-43- or SOD1-positive inclusions of sporadic and SOD1 cases of ALS were also noticeably immunolabelled by anti-OPTN antibodies. Our findings strongly suggest that OPTN is involved in the pathogenesis of ALS. They also indicate that NF-kappaB inhibitors could be used to treat ALS and that transgenic mice bearing various mutations of OPTN will be relevant in developing new drugs for this disorder.
Collapse
|
45
|
Tansey MG, Goldberg MS. Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010; 37:510-8. [PMID: 19913097 PMCID: PMC2823829 DOI: 10.1016/j.nbd.2009.11.004] [Citation(s) in RCA: 794] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, after Alzheimer's disease. The potential causes of PD remain uncertain, but recent studies suggest neuroinflammation and microglia activation play important roles in PD pathogenesis. Major unanswered questions include whether protein aggregates cause the selective loss of dopaminergic neurons in the substantia nigra that underlies the clinical symptoms and whether neuroinflammation is a consequence or a cause of nigral cell loss. Within the microenvironment of the brain, glial cells play a critical role in homeostatic mechanisms that promote neuronal survival. Microglia have a specialized immune surveillance role and mediate innate immune responses to invading pathogens by secreting a myriad of factors that include, cytokines, chemokines, prostaglandins, reactive oxygen and nitrogen species, and growth factors. Some of these factors have neuroprotective and trophic activities and aid in brain repair processes; while others enhance oxidative stress and trigger apoptotic cascades in neurons. Therefore, pro- and anti-inflammatory responses must be in balance to prevent the potential detrimental effects of prolonged or unregulated inflammation-induced oxidative stress on vulnerable neuronal populations. In this review, we discuss potential triggers of neuroinflammation and review the strongest direct evidence that chronic neuroinflammation may have a more important role to play in PD versus other neurodegenerative diseases. Alternatively, we propose that genetic deficiency is not the only way to reduce protective factors in the brain which may function to keep microglial responses in check or regulate the sensitivity of DA neurons. If chronic inflammation can be shown to decrease the levels of neuroprotective factors in the midbrain, in essence genetic haploinsufficiency of protective factors such as Parkin or RGS10 may result from purely environmental triggers (aging, chronic systemic disease, etc.), increasing the vulnerability to inflammation-induced nigral DA neuron death and predisposing an individual to development of PD. Lastly, we review the latest epidemiological and experimental evidence supporting the potential use of anti-inflammatory and immunomodulatory drugs as neuroprotective agents to delay the progressive nigrostriatal degeneration that leads to motor dysfunction in PD.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30324, USA.
| | | |
Collapse
|
46
|
Gorbacheva L, Pinelis V, Ishiwata S, Strukova S, Reiser G. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience 2010; 165:1138-46. [PMID: 19931359 DOI: 10.1016/j.neuroscience.2009.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/29/2022]
Abstract
Brain injury is associated with neuroinflammation, neurodegeneration, and also blood coagulation with thrombin formation and generation of activated protein C (APC). We have previously shown that APC, a serine protease of hemostasis, at very low concentrations has protective effects in rat hippocampal and cortical neurons at glutamate-induced excitotoxicity through protease-activated receptor-1 (PAR-1) or endothelial receptor of protein C (EPCR)/PAR-1. The transcription factor nuclear factor kappaB (NF-kappaB) takes part in regulating neuronal survival in several pathological conditions. To elucidate the impact of NF-kappaB in APC-mediated cell survival, we investigated nuclear translocation of NF-kappaB p65 at glutamate- or thrombin-induced toxicity in hippocampal neurons. We used immunoassay and immunostaining with confocal microscopy with anti-NF-kappaBp65 antibody. We show that APC at concentrations as low as 1-2 nM inhibits translocation of NF-kappaB p65 into the nucleus of cultured rat hippocampal neurons, induced by 100 muM glutamate or 50 nM thrombin (but not 10 nM). The blocking effect of APC on NF-kappaB p65 translocation was observed at 1 and 4 h after treatment of neurons with glutamate, when the NF-kappaBp 65 level in the nucleus was significantly above the basal level. Then we investigated whether the binding of APC to EPCR/PAR-1 is required to control NF-kappaB activation. Antibodies blocking PAR-1 (ATAP2) or EPCR (P-20) abolished the APC-induced decrease of nuclear level of NF-kappaB p65 at glutamate-induced toxicity, whereas control antibodies to PAR-1 (S-19) and EPCR (IgG) exerted no effect. Thus, we suggest that the activation of NF-kappaB in rat hippocampal neurons mediates the glutamate- and thrombin-activated cell death program, which is reduced by exposure of cells to APC. APC induces the reduction of the nuclear level of NF-kappaB p65 in hippocampal neurons at glutamate-induced excitotoxicity via binding to EPCR and subsequent PAR-1 activation and signaling.
Collapse
Affiliation(s)
- L Gorbacheva
- Lomonosov Moscow State University, Department of Human and Animal Physiology, Moscow, Russia
| | | | | | | | | |
Collapse
|
47
|
Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 2009; 157:1072-84. [PMID: 19466982 PMCID: PMC2737666 DOI: 10.1111/j.1476-5381.2009.00213.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Phenolic compounds exert cytoprotective effects; our purpose was to investigate whether the isosteric polyphenolic compounds clovamide and rosmarinic acid are neuroprotective. EXPERIMENTAL APPROACH Three in vitro models of neuronal death were selected: (i) differentiated SH-SY5Y human neuroblastoma cells exposed to tert-butylhydroperoxide (t-BOOH), for oxidative stress; (ii) differentiated SK-N-BE(2) human neuroblastoma cells treated with L-glutamate, for excitotoxicity; and (iii) differentiated SH-SY5Y human neuroblastoma cells exposed to oxygen-glucose deprivation/reoxygenation, for ischaemia-reperfusion. Cell death was evaluated by lactate dehydrogenase measurements in the cell media, while the mechanisms underlying the effects by measuring: (i) t-BOOH-induced glutathione depletion and increase in lipoperoxidation; and (ii) L-glutamate-induced intracellular Ca(2+) overload (fura-2 method) and inducible gene expression (c-fos, c-jun), by reverse transcriptase-PCR. The ability of compounds to modulate nuclear factor-kappaB and peroxisome proliferator-activated receptor-gamma activation was evaluated by Western blot in SH-SY5Y cells not exposed to harmful stimuli. KEY RESULTS Both clovamide and rosmarinic acid (10-100 micromol x L(-1)) significantly protected neurons against insults with similar potencies and efficacies. The EC(50) values were in the low micromolar range (0.9-3.7 micromol x L(-1)), while the maximal effects ranged from 40% to -60% protection from cell death over untreated control at 100 micromol x L(-1). These effects are mediated by the prevention of oxidative stress, intracellular Ca(2+) overload and c-fos expression. In addition, rosmarinic acids inhibited nuclear factor-kappaB translocation and increased peroxisome proliferator-activated receptor-gamma expression in SH-SY5Y cells not exposed to harmful stimuli. CONCLUSION AND IMPLICATIONS Clovamide and rosmarinic acid are neuroprotective compounds of potential use at the nutritional/pharmaceutical interface.
Collapse
Affiliation(s)
- S Fallarini
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche, e Farmacologiche, University of Piemonte Orientale Amedeo Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M. NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 2009; 108:475-85. [PMID: 19094066 DOI: 10.1111/j.1471-4159.2008.05783.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diverse nuclear factor-kappaB subunits mediate opposite effects of extracellular signals on neuron survival. While RelA is activated by neurotoxic agents, c-Rel drives neuroprotective effects. In brain ischaemia RelA and p50 factors rapidly activate, but how they associate with c-Rel to form active dimers and contribute to the changes in diverse dimer activation for neuron susceptibility is unknown. We show that in both cortical neurons exposed to oxygen glucose deprivation (OGD) and mice subjected to brain ischaemia, activation of p50/RelA was associated with inhibition of c-Rel/RelA dimer and no change p50/c-Rel. Targeting c-Rel and RelA expression revealed that c-Rel dimers reduced while p50/RelA enhanced neuronal susceptibility to anoxia. Activation of p50/RelA complex is known to induce the pro-apoptotic Bim and Noxa genes. We now show that c-Rel-containing dimers, p50/c-Rel and RelA/c-Rel, but not p50/RelA, promoted Bcl-xL transcription. Accordingly, the OGD exposure induced Bim, but reduced Bcl-xL promoter activity and decreased the content of endogenous Bcl-xL protein. These findings demonstrate that within the same neuronal cell, the balance between activation of p50/RelA and c-Rel-containing complexes fine tunes the threshold of neuron vulnerability to the ischaemic insult. Selective targeting of different dimers will unravel new approaches to limit ischaemia-associated apoptosis.
Collapse
Affiliation(s)
- Ilenia Sarnico
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences & Biotechnologies, School of Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J 2009; 276:27-35. [PMID: 19087197 DOI: 10.1111/j.1742-4658.2008.06767.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) has been proposed to serve a dual function as a regulator of neuron survival in pathological conditions associated with neurodegeneration. NF-kappaB is a transcription family of factors comprising five different proteins, namely p50, RelA/p65, c-Rel, RelB and p52, which can combine differently to form active dimers in response to external stimuli. Recent research shows that diverse NF-kappaB dimers lead to cell death or cell survival in neurons exposed to ischemic injury. While the p50/p65 dimer participates in the pathogenesis of post-ischemic injury by inducing pro-apoptotic gene expression, c-Rel-containing dimers increase neuron resistance to ischemia by inducing anti-apoptotic gene transcription. We present, in this report, the latest findings and consider the therapeutic potential of targeting different NF-kappaB dimers to limit ischemia-associated neurodegeneration.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy.
| | | | | | | | | |
Collapse
|
50
|
Ridder D, Schwaninger M. NF-κB signaling in cerebral ischemia. Neuroscience 2009; 158:995-1006. [DOI: 10.1016/j.neuroscience.2008.07.007] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 01/04/2023]
|