1
|
Xue M, Yao T, Xue M, Francis F, Qin Y, Jia M, Li J, Gu X. Mechanism Analysis of Metabolic Fatty Liver on Largemouth bass (Micropterus salmoides) Based on Integrated Lipidomics and Proteomics. Metabolites 2022; 12:metabo12080759. [PMID: 36005631 PMCID: PMC9415018 DOI: 10.3390/metabo12080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Metabolic fatty liver disease caused by high-starch diet restricted the intensive and sustainable development of carnivorous fish such as largemouth bass. In this study, the combination liver proteomic and lipidomic approach was employed to investigate the key signaling pathways and identify the critical biomarkers of fatty liver in largemouth bass. Joint analysis of the correlated differential proteins and lipids revealed nine common metabolic pathways; it was determined that FABP1 were significantly up-regulated in terms of transporting more triglycerides into the liver, while ABCA1 and VDAC1 proteins were significantly down-regulated in terms of preventing the transport of lipids and cholesterol out of the liver, leading to triglyceride accumulation in hepatocyte, eventually resulting in metabolic fatty liver disease. The results indicate that FABP1, ABCA1 and VDAC1 could be potential biomarkers for treating metabolic fatty liver disease of largemouth bass.
Collapse
Affiliation(s)
- Moyong Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Functional & Evolutionary Entomology, Agro-Bio-Tech Gembloux, University of Liege, 5030 Gembloux, Belgium
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ting Yao
- Beijing Institute of Feed Control, Beijing 110108, China
| | - Min Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Frédéric Francis
- Functional & Evolutionary Entomology, Agro-Bio-Tech Gembloux, University of Liege, 5030 Gembloux, Belgium
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Junguo Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Correspondence:
| |
Collapse
|
2
|
Khalil MR, El-Demerdash RS, Elminshawy HH, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Therapeutic effect of bone marrow mesenchymal stem cells in a rat model of carbon tetrachloride induced liver fibrosis. Biomed J 2020; 44:598-610. [PMID: 32389821 PMCID: PMC8640564 DOI: 10.1016/j.bj.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/30/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Liver fibrosis is a major medical problem with high mortality and morbidity rates where the formation of regenerative nodules and cirrhosis leads to loss of liver function and may result in the development of hepatocellular carcinoma. bone marrow mesenchymal stem cells (BM-MSCs) have drawn attention as a novel approach for treatment of liver fibrosis. This study aimed to evaluate the therapeutic effect of BM-MSCs on the liver structure in carbon tetrachloride (CCl4) induced liver fibrosis in male rats relative to resveratrol and Silybum marianum as standard drugs derived from herbal plants. Methods Fifty adult male albino rats (Sprague Dawley strain; 180–220 g mean body weight) were purchased from the Laboratory Animal Unit in the Nile Center of Experimental Research, Mansoura, Egypt. Liver function were determined, isolation and preparation of BM- MSCs and detection of cell-surface markers by flow cytometry. Results Animals exposed to CCl4 developed liver injury characterized by significant increase of liver enzymes, malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and CYP450, inhibition of antioxidant enzymes, and decreased albumin. Treatment with stem cells enhanced liver state more effectively than resveratrol and S. marianum. It significantly decreased AST, ALT, ALP, MDA, TNF-α, and CYP450 and increased albumin, SOD, GSH, GST, and CAT. Histopathological study and atomic force microscope results confirmed the therapeutic effects of MSCs. Conclusions BM-MSCs could restore liver structure and function in CCL4 induced liver fibrosis rat model, ameliorating the toxicity of CCl4 and improving liver function tests.
Collapse
Affiliation(s)
- Mohammed R Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University, Damietta, Egypt
| | - Reda S El-Demerdash
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Hazem H Elminshawy
- Department of Internal Medicine, Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Pierre TH, Reynolds AS, Seise I, Pilz Z, McHale BJ, Gato WE. Evaluation of renal markers of T1D in Sprague-Dawley exposed to 2-aminoanthracene. ENVIRONMENTAL TOXICOLOGY 2020; 35:203-212. [PMID: 31714650 DOI: 10.1002/tox.22857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The incidence of type 1 diabetes (T1D) and its associated risks of chronic kidney disease or end-stage renal disease development are on the rise. T1D is an autoimmune disease in which insulin-producing beta cells are destroyed. Increased incidence of T1D has been suggested to be a result of environmental factors such as exposure to polycyclic aromatic hydrocarbons (PAHs). 2-aminoanthracene (2AA) is a PAH that has been associated with the onset of early diabetic symptoms. This study was conducted to assess if 2AA dietary ingestion would induce T1D renal injuries. To accomplish study goals, Sprague-Dawley rats were assigned into three 2AA dietary (0, 50, and 100 mg/kg-2AA) ingestion groups for 12 weeks. Animals were evaluated for various morphometric indices, clinical markers, and gene expression. The rats in the 100 mg/kg group lost 5% less weight than the other treatment groups and converted roughly 3% more of their food intake into body mass. Renal histopathology indicated no significant difference between groups. The kidney weight per bodyweight of the 100 mg/kg treatment group was 30.1% greater than the control group. Creatinine concentration of the 100 mg/kg group was 46.2% greater than the control group. Serum glucose levels were significantly elevated in rats exposed to 2AA. On the contrary, serum albumin concentration was significantly reduced in 2AA-treated rats. T1D and genetic markers of renal injury such as FABP1, SPP1, IL-1B, and IL-7 were elevated in treated groups. These results suggest that 2AA may induce the early diabetic renal injuries.
Collapse
Affiliation(s)
- Tanya H Pierre
- Department of Biology and Chemistry, Agnes Scott College, Decatur, Georgia
| | - Ashley S Reynolds
- Department of Biology and Chemistry, King University, Bristol, Tennessee
| | - Isaiah Seise
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| | - Zach Pilz
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| | - Brittany J McHale
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| | - Worlanyo E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia
| |
Collapse
|
4
|
Rodrigues RM, Kollipara L, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann A, Kopp-Schneider A, Jiang X, Keun H, Hengstler J, Oorts M, Annaert P, Hoeben E, Gijbels E, De Kock J, Vanhaecke T, Rogiers V, Vinken M. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol 2018; 92:1939-1952. [PMID: 29761207 DOI: 10.1007/s00204-018-2214-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/26/2018] [Indexed: 11/24/2022]
Abstract
Bosentan is well known to induce cholestatic liver toxicity in humans. The present study was set up to characterize the hepatotoxic effects of this drug at the transcriptomic, proteomic, and metabolomic levels. For this purpose, human hepatoma-derived HepaRG cells were exposed to a number of concentrations of bosentan during different periods of time. Bosentan was found to functionally and transcriptionally suppress the bile salt export pump as well as to alter bile acid levels. Pathway analysis of both transcriptomics and proteomics data identified cholestasis as a major toxicological event. Transcriptomics results further showed several gene changes related to the activation of the nuclear farnesoid X receptor. Induction of oxidative stress and inflammation were also observed. Metabolomics analysis indicated changes in the abundance of specific endogenous metabolites related to mitochondrial impairment. The outcome of this study may assist in the further optimization of adverse outcome pathway constructs that mechanistically describe the processes involved in cholestatic liver injury.
Collapse
Affiliation(s)
- Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | - Umesh Chaudhari
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Hector Keun
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund, Dortmund, Germany
| | - Marlies Oorts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
5
|
Esmaeili Z, Mohammadi S, Nezami A, Rouini MR, Ardakani YH, Lavasani H, Ghazi-Khansari M. A disposition kinetic study of Tramadol in bile duct ligated rats in perfused rat liver model. Biomed Pharmacother 2017; 91:251-256. [DOI: 10.1016/j.biopha.2017.04.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
|
6
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
7
|
Younis N, Shaheen MA, Abdallah MH. Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the ability of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother 2016; 81:93-103. [PMID: 27261582 DOI: 10.1016/j.biopha.2016.03.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Some nano-formulations of silymarin (SM), a drug commonly used for liver diseases, were developed to overcome its poor solubility and poor bioavailability; antifibrotic effect of these formulations has not been tested yet. In this study we aimed to formulate and evaluate silymarin-loaded Eudragit(®) RS100 nanoparticles (SMnps) and to test the capability of SMnps to reverse an established fibrosis model. SMnps were prepared by solvent evaporation and nano-precipitation techniques. The influence of drug:polymer ratio, concentration of surfactant in the aqueous phase on particle size, drug entrapment efficiency (EE) % and in vitro drug releases were investigated. For in vivo evaluation, bile duct ligated (BDL)-rats were treated with either SM or SMnps every other day (125mg/kg) orally for 3 weeks started 3 weeks after BDL. Liver function tests, oxidative stress and fibrosis/fibrogenesis process were evaluated using biochemical and histopathological techniques. The formulation No (F4) of SMnps showed an average particle size of 632.28±12.15nm, a drug EE% of 89.47±1.65% and released the drug in a prolonged manner over 24h. The prepared SMnps were nearly spherical with smooth surfaces. In BDL-rats, treatments with either SM or SMnps corrected liver function and oxidative stress. Only SMnps was able to reverse the induced fibrosis; SMnps significantly decreased serum tumor necrosis factor- α (TNF-α), serum transforming growth factor- β1 (TGF-β1), hepatic hydroxyproline and downregulated the hepatic expression of tissue inhibitor metalloproteinase-1 (TIMP-1) and cytokeratin-19 (CK-19), whilst increased hepatic hepatocytes growth factor (HGF) and upregulated the hepatic expression of matrix metalloproteinase-2 (MMP-2) and increased MMP-2/TIMP-1 ratio at mRNA level. Livers of rats treated with SMnps showed very little collagen in ECM and restored hepatic architecture as compared to either BDL rats or rats treated with SM. CONCLUSION Formulation of silymarin as nanoparticles improved its ability to resolve cholestasis-induced liver fibrosis by restoring hepatic regenerative capabilities. Therefore, formulation of SMnps may represent a step forward in the field of anti-fibrotic drug development.
Collapse
Affiliation(s)
- N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Hail University, Saudi Arabia
| |
Collapse
|
8
|
Mohamed HE, Elswefy SE, Rashed LA, Younis NN, Shaheen MA, Ghanim AMH. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. Exp Biol Med (Maywood) 2016; 241:581-91. [PMID: 26811102 DOI: 10.1177/1535370215627219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sahar E Elswefy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Laila A Rashed
- Department of Medical Biochemistry, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amal M H Ghanim
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 2015; 56:2238-47. [PMID: 26443794 DOI: 10.1194/jlr.r056705] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency).
Collapse
Affiliation(s)
- GuQi Wang
- Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC
| | - Herbert L Bonkovsky
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Andrew de Lemos
- Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | |
Collapse
|
10
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Schroeder F, Kier AB. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Arch Biochem Biophys 2015; 580:41-9. [PMID: 26116377 DOI: 10.1016/j.abb.2015.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, United States
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, United States.
| |
Collapse
|
11
|
Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:272617. [PMID: 25685776 PMCID: PMC4313725 DOI: 10.1155/2015/272617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 01/28/2023]
Abstract
The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S), which was fed the AIN-93M diet, and the standard plus iron group (SI), which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.
Collapse
|
12
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
13
|
Liu JW, Montero M, Bu L, De Leon M. Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury. J Neurochem 2014; 132:85-98. [PMID: 25147052 PMCID: PMC4270845 DOI: 10.1111/jnc.12934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP/FABP5/DA11) binds and transport long-chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E-FABP protects nerve growth factor-differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM-induced lipotoxicity (PAM-LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E-FABP. Antioxidants MCI-186 and N-acetyl cysteine prevented E-FABP's induction in expression by PAM-LTx, while tert-butyl hydroperoxide increased ROS and E-FABP expression. Non-metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E-FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE-FABP showed reduced E-FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E-FABP cellular levels by pre-loading the cells with recombinant E-FABP diminished the PAM-induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E-FABP expression and enhanced the resistance of NGFDPC12 cells to PAM-LTx. We conclude that E-FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS. Epidermal fatty acid-binding protein (E-FABP) may protect nerve cells from the damaging exposure to high levels of free fatty acids (FA). We show that E-FABP can neutralize the effects of reactive oxygen species (ROS) generated by the high levels of FA in the cell and protect PC12 cells from lipotoxic injuries common in Type 2 diabetes neuropathy. Potentially, E-FABP gene up-regulation may be mediated through the NFkB pathway and future studies are needed to further evaluate this proposition.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | |
Collapse
|
14
|
Liu P, Jin X, Lv H, Li J, Xu W, Qian HH, Yin Z. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects. In Vitro Cell Dev Biol Anim 2014; 50:899-908. [DOI: 10.1007/s11626-014-9792-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/19/2014] [Indexed: 12/16/2022]
|
15
|
Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB, Schroeder F. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J 2014; 281:2266-83. [PMID: 24628888 DOI: 10.1111/febs.12780] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferrari RS, Tieppo M, Rosa DPD, Forgiarini LA, Dias AS, Marroni NP. Lung and liver changes due to the induction of cirrhosis in two experimental models. ARQUIVOS DE GASTROENTEROLOGIA 2014; 50:208-13. [PMID: 24322193 DOI: 10.1590/s0004-28032013000200037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
Abstract
CONTEXT To evaluate lung and liver changes in two experimental models using intraperitoneal carbon tetrachloride (CCl4) and bile duct ligation (BDL). methods: Twenty-four male Wistar rats were divided into a control group (CO) and an experimental group (EX). We evaluated the liver transaminases (AST, ALT, AP), arterial blood gases (PaO2, PCO2 and SpO2) and lipid peroxidation by TBARS (substances that react to thiobarbituric acid) and chemiluminescence. We also evaluated the antioxidant enzyme superoxide dismutase (SOD) and histology of lung tissue and liver. RESULTS There were significant differences in AST, ALT, ALP and PaO2 between CO group and EX group (P<0.05). The levels of TBARS, chemiluminescence and activity of enzyme superoxide dismutase were increased to different degrees in the CCl4 groups: CO and in the BDL -EX (P<0.05, respectively). In the lung histology, an increase in the wall thickness of the pulmonary artery and a diameter reduction in the CCl4 animal model were observed: comparing CO group with EX group, we observed a reduction in thickness and an increase in the diameter of the artery wall lung. CONCLUSION Both experimental models have caused liver damage and alterations in the artery wall that are associated with major changes in pulmonary gas exchange.
Collapse
|
17
|
Gong Y, Wang G, Gong Y, Yan J, Chen Y, Burczynski FJ. Hepatoprotective role of liver fatty acid binding protein in acetaminophen induced toxicity. BMC Gastroenterol 2014; 14:44. [PMID: 24606952 PMCID: PMC3975289 DOI: 10.1186/1471-230x-14-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 03/03/2014] [Indexed: 02/07/2023] Open
Abstract
Background FABP1 has been reported to possess strong antioxidant properties. Upon successful transfection of the Chang cell line, which has undetectable FABP1 mRNA levels, with human FABP1 cDNA, the Chang cells were shown to express FABP1. Using the transfected and control (normal) Chang cells and subjecting them to oxidative stress, transfected cells were reported to be associated with enhanced cell viability. This study extends those observations by investigating the effect of FABP1 on acetaminophen (AAP)-induced hepatotoxicity. We hypothesized that presence of FABP1 would enhance cell viability compared to control cells (vector transfected cells). Methods Following AAP treatment of Chang FABP1 transfected and control cells, cell viability, oxidative stress, and apoptosis were evaluated using lactate dehydrogenase (LDH) release, the fluorescent probe DCF, and Bax expression, respectively. Results FABP1 cDNA transfected cells showed greater resistance against AAP toxicity than vector transfected cells. Significantly lower LDH levels (p < 0.05) were observed as were lower DCF fluorescence intensity (p < 0.05) in FABP1 cDNA transfected cells compared to vector transfected cells. FABP1 expression also attenuated the expression of Bax following AAP induced toxicity. Conclusion FABP1 attenuated AAP-induced toxicity and may be considered a cytoprotective agent in this in vitro model of drug induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank J Burczynski
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
18
|
Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G837-50. [PMID: 22859366 PMCID: PMC3469595 DOI: 10.1152/ajpgi.00489.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.
Collapse
Affiliation(s)
- Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Kerstin K. Landrock
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - H. Ross Payne
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| |
Collapse
|
19
|
Storey SM, McIntosh AL, Huang H, Landrock KK, Martin GG, Landrock D, Payne HR, Atshaves BP, Kier AB, Schroeder F. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G824-39. [PMID: 22241858 PMCID: PMC3355564 DOI: 10.1152/ajpgi.00195.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/07/2012] [Indexed: 01/31/2023]
Abstract
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qi ZH, Liu YF, Wang WN, Xin Y, Xie FX, Wang AL. Fatty acid binding protein 10 in the orange-spotted grouper (Epinephelus coioides): characterization and regulation under pH and temperature stress. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:447-55. [PMID: 22182678 DOI: 10.1016/j.cbpc.2011.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022]
Abstract
We have isolated and characterized a fatty acid binding protein from the liver of the orange-spotted grouper (Epinephelus coioides). Amino acid sequence similarity of the Ec-FABP (E. coioides-FABP) was highest to FABP10s isolated from the livers of catfish, chicken, salamander and iguana. The open-reading frame of the Ec-FABP codes for a protein of 14.0 kDa with a calculated isoelectric point of 8.5. We first expressed a FABP10 protein from orange-spotted grouper (E. coioides) in Pichia pastoris, and then characterized the antioxidative potential of our recombinant Ec-FABP by DCF fluorescence assay. RT-PCR assays showed that endogenous Ec-FABP mRNA is most strongly expressed in liver with the most abundance and intestine. Change in the groupers' blood cells respiratory burst activity was examined during and after exposure to the pH and temperature stress using flow cytometry. Further analysis of Ec-FABP gene expression in liver tissue by quantitative real-time PCR demonstrated that Ec-FABP transcript levels increased when the fish were exposed to both pH and temperature stress, but the time when its mRNA expression level peaked differed under these stresses. Western blot analyses confirmed that the Ec-FABP protein was strongly expressed in the liver after exposure to the pH and temperature stress. These results suggest that Ec-FABP expression is stimulated by pH and temperature stress and that it may play important roles in general adaptive and antioxidant responses.
Collapse
Affiliation(s)
- Zeng-hua Qi
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Jiang Z, Su Y, Chen M, Li F, Liu L, Sun L, Wang Y, Zhang S, Zhang L. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats. J Appl Toxicol 2012; 33:807-19. [DOI: 10.1002/jat.2736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Zhang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | | | - Yijing Su
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Mi Chen
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Fu Li
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Li Liu
- The School of Pharmaceutical Engineering and Life Sciences; Changzhou University; Changzhou; 213000; China
| | - Lixin Sun
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Yun Wang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | - Shuang Zhang
- Jiangsu Center of Drug Screening; China Pharmaceutical University; 24 Tong Jia Xiang; Nanjing; 210009; China
| | | |
Collapse
|
22
|
Sokolovic D, Nikolic J, Kocic G, Jevtovic-Stoimenov T, Veljkovic A, Stojanovic M, Stanojkovic Z, Sokolovic DM, Jelic M. The effect of ursodeoxycholic acid on oxidative stress level and DNase activity in rat liver after bile duct ligation. Drug Chem Toxicol 2012; 36:141-8. [PMID: 22385135 DOI: 10.3109/01480545.2012.658919] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of hydrophobic bile acids (BAs) during cholestasis plays an important role in apoptosis initiation as well as oxidative stress increase in liver cells. Ursodeoxycholic acid (UDCA) acts as a protector in BA-induced cell injury.The aim of the study was to evaluate the effect of UDCA on oxidative stress level and DNase I and II activity caused by liver injury in bile duct ligation (BDL) rats.Wistar rats were divided in four groups: group 1, control (sham-operated); group 2, sham-operated and injected with UDCA (30 mg/kg); group 3,animals with BDL; and group 4,UDCA-treatedcholestatic rats. Animals were sacrificed after 9 days. Malondialdehyde (MDA; lipid peroxidation end-product) level and protein-molecule oxidative modification (carbonyl group content) significantly increased in BDL rat liver. Catalase (CAT) activity in liver tissue was found to be decreased in BDL rats. In addition, xanthine oxidase (XO) activity, which is thought to be one of the key enzymes producing reactive oxygen species, was found to be increased in the cholestatic group. The apoptotic effect in cholestasis was probably triggered by the increased activation of DNase I and II. The protective effect of UDCA on liver tissue damage in BDL rats, in comparison to cholestatic liver, were 1) decrease of MDA levels, 2) increased CAT activity, 3) reduced XO activity, and 4) effect on terminal apoptotic reaction, shown as a decrease in DNase I and II activity.Therefore, UDCA may be useful in the preservation of liver function in cholestasis treatment.
Collapse
Affiliation(s)
- Dusan Sokolovic
- Department of Biochemistry, the University of Nis Medical School, Nis, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiong T, Chen D, Duan Z, Qu Y, Mu D. Clofibrate for unconjugated hyperbilirubinemia in neonates: a systematic review. Indian Pediatr 2012; 49:35-41. [PMID: 22318100 DOI: 10.1007/s13312-012-0012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To evaluate the effect of clofibrate for unconjugated hyperbilirubinemia in neonates. METHODS A systematic review with meta-analysis of randomized controlled trials or quasi-randomized controlled trials was conducted to evaluate the clofibrate treatment in neonates with unconjugated hyperbilirubinemia. We followed the guidelines from the Cochrane review group and the PRISMA statement. RESULTS Of 148 studies identified, a total of 13 studies on 867 infants were included. A single oral administration of clofibrate was associated with decreased need of phototherapy (RR:.38, 95% CI: 0.21 to 0.68), shortened duration of phototherapy (mean duration: 23.88 h, 95% CI: 33.03 to -14.72 h) and reduced peak total serum bilirubin (mean duration: -1.62 mg/dL, 95% CI: 2.13 to -1.11 mg/dL). These effects were especially obvious in term infants and infants without hemolytic diseases. Data regarding mortality or kernicterus were not available from included studies. CONCLUSIONS Clofibrate may have short-term benefits for the infants with hyperbilirubinaemia, especially for population of term infants and infants without hemolytic diseases. Large RCTs with long-term followup are required to verify the safety of clofibrate and assess its long-term effects.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
24
|
de Cerio OD, Bilbao E, Cajaraville MP, Cancio I. Regulation of xenobiotic transporter genes in liver and brain of juvenile thicklip grey mullets (Chelon labrosus) after exposure to Prestige-like fuel oil and to perfluorooctane sulfonate. Gene 2012; 498:50-8. [PMID: 22343007 DOI: 10.1016/j.gene.2012.01.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 12/12/2022]
Abstract
Xenobiotic transport proteins are involved in cellular defence against accumulation of xenobiotics participating in multixenobiotic resistance (MXR). In order to study the transcriptional regulation of MXR genes in fish exposed to common chemical pollutants we selected the thicklip grey mullet (Chelon labrosus), since mugilids are widespread in highly degraded estuarine environments where they have to survive through development and adulthood. Partial sequences belonging to genes coding for members of 3 different families of ATP binding cassette (ABC) transporter proteins (ABCB1; ABCB11; ABCC2; ABCC3; ABCG2) and a vault protein (major vault protein, MVP) were amplified and sequenced from mullet liver. Their liver and brain transcription levels were examined in juvenile mullets under exposure to perfluorooctane sulfonate (PFOS) and to fresh (F) and weathered (WF) Prestige-like heavy fuel oil for 2 and 16 days. In liver, PFOS significantly up-regulated transcription of abcb1, abcb11 and abcg2 while in brain only abcb11 was up-regulated. Both fuel treatments significantly down-regulated abcb11 in liver at day 2 while abcc2 was only down-regulated by WF. mvp was significantly up-regulated by F and down-regulated by WF at day 2 in the liver. At day 16 only a significant up-regulation of abcb1 in the F group was recorded. Brain abcc3 and abcg2 were down-regulated by both fuels at day 2, while abcb1 and abcc2 were only down-regulated by F exposure. After 16 days of exposure only abcb11 and abcg2 were regulated. In conclusion, exposure to organic xenobiotics significantly alters transcription levels of genes participating in xenobiotic efflux, especially after short periods of exposure. Efflux transporter gene transcription profiling could thus constitute a promising tool to assess exposure to common pollutants.
Collapse
Affiliation(s)
- Oihane Diaz de Cerio
- Dept. of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa E-48940, Basque Country, Spain
| | | | | | | |
Collapse
|
25
|
Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur J Gastroenterol Hepatol 2012; 24:179-85. [PMID: 22241216 DOI: 10.1097/meg.0b013e32834f3123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Several studies have suggested that oxidative stress may play an important role in the pathogenesis of hepatic injury during cholestasis in rats and humans. The aim of this study was to evaluate the ability of N-acetylcysteine (NAC) to prevent the damage induced by bile duct ligation (BDL) for 28 days in male Wistar rats. METHODS NAC was administered daily (300 mg/kg, orally) for 28 days. Alanine aminotransferase was quantified in the serum; lipid peroxidation, glutathione, and catalase activity were measured in the liver. Fibrosis was assessed by measuring the liver hydroxyproline content; transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-10 were determined in the liver by a western blot and quantified densitometrically. RESULTS The induction of cholestatic damage by BDL was associated with an increase in alanine aminotransferase. Oxidative stress was also evaluated; lipid peroxidation increased, whereas the liver glutathione content and catalase activity decreased by BDL. NAC treatment prevented these alterations. Hydroxyproline was increased by chronic BDL, but NAC preserved the normal hydroxyproline levels. Cytokines TGF-β, IL-6, and IL-10 increased after 28 days of BDL. NAC was effectively significant in preventing TGF-β and IL-6 expression and further augmented the IL-10 expression. CONCLUSION Our data indicate that in the development to cholestatic liver damage, oxidative stress plays an important role and this in turn leads to fibrosis. This study shows that the beneficial effects of NAC are because of its antioxidant and immunomodulatory properties.
Collapse
|
26
|
Aller MA, Heras N, Blanco-Rivero J, Arias JI, Lahera V, Balfagón G, Arias J. Portal hypertensive cardiovascular pathology: the rescue of ancestral survival mechanisms? Clin Res Hepatol Gastroenterol 2012; 36:35-46. [PMID: 22264837 DOI: 10.1016/j.clinre.2011.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/26/2011] [Indexed: 02/04/2023]
Abstract
The portal system derives from the vitelline system, which is an extra-embryonic venous system. It could be suggested that this extraembryonic origin determines some of the characteristics attributed to portal hypertension, both compensated, i.e. prehepatic, and decompensated, i.e. fibrotic or cirrhotic. The experimental models most frequently used for studying both types of portal hypertension are portal vein ligation and common bile duct ligation in rats, respectively. We propose that in partial portal vein ligated rats, a low-grade inflammatory response, formed by the successive expression of three overlapping phenotypes - ischemia-reperfusion, vitellogenic-like and remodeling or gastrulation-like - is produced. The names of these inflammatory phenotypes developed in compensated portal hypertension are based on some metabolic similarities that can be established with the abovementioned phases of embryonic development. In bile-duct ligated rats, decompensation related to hepatic insufficiency would induce a high-grade inflammatory response. In this experimental model, the splanchnic interstitium, the mesenteric lymph and the peritoneal mesothelium seem to create an inflammatory axis that produces ascites. The functional comparison between the ascitic and the amniotic fluids would imply that, in the decompensated portal hypertensive syndrome, the abdominal mesothelium acquires properties of the amniotic membranes or amnion. In conclusion, the hypothetical comparison between the inflammatory portal hypertensive evolutive types and the evolutive phases of embryonic development could allow for translational research.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery I, School of Medicine, Complutense University of Madrid, Plaza de Ramon y Cajal s.n., 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Aller MA, Arias N, Prieto I, Santamaria L, Miguel MPD, Arias JL, Arias J. Portal hypertension-related inflammatory phenotypes: From a vitelline and amniotic point of view. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.37110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Yan J, Gong Y, Wang G, Gong Y, Burczynski FJ. Regulation of liver fatty acid binding protein expression by clofibrate in hepatoma cells. Biochem Cell Biol 2010; 88:957-67. [DOI: 10.1139/o10-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists such as clofibrate are known to affect liver fatty acid binding protein (L-FABP) levels, which in turn influence hepatocellular oxidant status. The mechanism of clofibrate’s modulation of L-FABP levels is not clear. In this study we used clofibrate (PPARα agonist), MK886 (PPARα antagonist), and GW9662 (PPARγ antagonist) in determining the regulating mechanism of L-FABP expression and its antioxidant activity in CRL-1548 hepatoma cells. Antioxidant activity was assessed by determining intracellular reactive oxygen species (ROS) using dichlorofluorescein (DCF) fluorescence. The effect of clofibrate on cytosolic activity of the intracellular antioxidant enzymes was also assessed. RT-PCR and mRNA stability assay showed that clofibrate treatment enhanced L-FABP mRNA stability, which resulted in increased L-FABP levels. A nuclear run-off assay and RT-PCR measurements of L-FABP mRNA revealed that clofibrate increased the L-FABP gene transcription rate. The increased L-FABP was associated with reduced cytosolic ROS. Levels of superoxide dismutase, glutathione peroxidase, and catalase were not affected by clofibrate treatment. L-FABP siRNA knockdown studies showed that a reduction in L-FABP expression was associated with increased DCF fluorescence. We conclude that clofibrate enhanced L-FABP gene transcription and mRNA stability, thus affecting L-FABP expression and ultimately cellular antioxidant activity.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guqi Wang
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yu Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Frank J. Burczynski
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- McColl–Lockwood Laboratory, Cannon Research Center, Charlotte, NC 28232-2861, USA
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
29
|
Aller MA, Prieto I, Argudo S, de Vicente F, Santamaría L, de Miguel MP, Arias JL, Arias J. The interstitial lymphatic peritoneal mesothelium axis in portal hypertensive ascites: when in danger, go back to the sea. Int J Inflam 2010; 2010:148689. [PMID: 21152120 PMCID: PMC2990101 DOI: 10.4061/2010/148689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/10/2010] [Accepted: 07/26/2010] [Indexed: 12/19/2022] Open
Abstract
Portal hypertension induces a splanchnic and systemic low-grade inflammatory response that could induce the expression of three phenotypes, named ischemia-reperfusion, leukocytic, and angiogenic phenotypes.During the splanchnic expression of these phenotypes, interstitial edema, increased lymph flow, and lymphangiogenesis are produced in the gastrointestinal tract. Associated liver disease increases intestinal bacterial translocation, splanchnic lymph flow, and induces ascites and hepatorenal syndrome. Extrahepatic cholestasis in the rat allows to study the worsening of the portal hypertensive syndrome when associated with chronic liver disease. The splanchnic interstitium, the mesenteric lymphatics, and the peritoneal mesothelium seem to create an inflammatory pathway that could have a key pathophysiological relevance in the production of the portal hypertension syndrome complications. The hypothetical comparison between the ascitic and the amniotic fluids allows for translational investigation. From a phylogenetic point of view, the ancestral mechanisms for amniotic fluid production were essential for animal survival out of the aquatic environment. However, their hypothetical appearance in the cirrhotic patient is considered pathological since ultimately they lead to ascites development. But, the adult human being would take advantage of the potential beneficial effects of this “amniotic-like fluid” to manage the interstitial fluids without adverse effects when chronic liver disease aggravates.
Collapse
Affiliation(s)
- M A Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ren Q, Du ZQ, Zhao XF, Wang JX. An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2009; 27:739-747. [PMID: 19766195 DOI: 10.1016/j.fsi.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
Acyl-CoA-binding protein (ACBP) and fatty acid-binding protein (FABP) are involved in lipid metabolism. ACBP plays a key role in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, vesicular trafficking, and gene regulation. In our study, a 536 bp cDNA of ACBP (FcACBP) was cloned and identified as a widely distributed gene in the Chinese white shrimp, Fenneropenaeus chinensis. Its expression in intestine was upregulated in response to white spot syndrome virus (WSSV) or Vibrio anguillarum infection. The expression patterns were confirmed by Western blot analysis. FABPs, members of the lipid-binding protein superfamily, play an important role in lipid metabolism and also participate in vertebrate innate immunity. A cDNA of FABP (FcFABP) cloned from the hepatopancreas of the shrimp was 715 bp in size and encoded a 14 kDa protein. FcFABP appeared to be a basic fatty acid binding protein with a predicted isoelectric point of 9.16. It showed sequence similarity to both vertebrate and invertebrate FABPs. Phylogenetic analysis showed that FcFABP, together with LvFABP, were clustered into one group. FcFABP was detected mainly in the hepatopancreas and expression level increased after a challenge with WSSV. FcFABP was down-regulated by V. anguillarum challenge. The protein also had bacterial binding activity. These two lipid metabolism related proteins may play important roles in shrimp innate immunity.
Collapse
Affiliation(s)
- Qian Ren
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | | | | | | |
Collapse
|
31
|
Yan J, Gong Y, She YM, Wang G, Roberts MS, Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res 2009; 50:2445-54. [PMID: 19474456 DOI: 10.1194/jlr.m900177-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of approximately 80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or alpha-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP's antioxidant activity is through inactivation of the free radicals by L-FABP's methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Early transcriptional deregulation of hepatic mitochondrial biogenesis and its consequent effects on murine cholestatic liver injury. Apoptosis 2009; 14:890-9. [DOI: 10.1007/s10495-009-0357-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Nomoto M, Miyata M, Yin S, Kurata Y, Shimada M, Yoshinari K, Gonzalez FJ, Suzuki K, Shibasaki S, Kurosawa T, Yamazoe Y. Bile acid-induced elevated oxidative stress in the absence of farnesoid X receptor. Biol Pharm Bull 2009; 32:172-8. [PMID: 19182371 PMCID: PMC2829856 DOI: 10.1248/bpb.32.172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The major function of farnesoid X receptor (FXR) is to maintain bile acid and lipid homeostasis. Fxr-null mice, in which the levels of hepatic bile acid and lipid have been elevated, develop spontaneous liver tumors. We evaluated differences in hepatic bile acid and triglyceride concentrations, and in generation of oxidative stress between wild-type mice and Fxr-null mice. The hepatic levels of 8-hydroxy-2'-deoxyguanosine (8OHdG), thiobarbituric acid-reactive substance (TBARS) and hydroperoxides, oxidative stress-related genes, and nuclear factor (erythroid-2 like) factor 2 (Nrf2) protein in Fxr-null mice were significantly higher than those in wild-type mice. An increase in the hepatic bile acid concentration in Fxr-null mice fed a cholic acid (CA) diet resulted in an increase in the hepatic levels of hydroperoxides, TBARS and 8OHdG, whereas a decrease in the hepatic concentration in mice fed a diet containing ME3738 (22beta-methoxyolean-12-ene-3beta,24(4beta)-diol) resulted in a decrease in these oxidative stress marker levels. A good correlation was observed between the hepatic bile acid concentrations and the hepatic oxidative stress marker levels, although there was no significant correlation between the hepatic triglyceride concentrations and oxidative stress. The results show that oxidative stress is spontaneously enhanced in Fxr-null mice, which may be attributable to a continuously high level of hepatic bile acids.
Collapse
Affiliation(s)
- Masahiro Nomoto
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shanai Yin
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Yasushi Kurata
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Miki Shimada
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, U.S.A
| | - Kokichi Suzuki
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Shigeki Shibasaki
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Tohru Kurosawa
- Applied Pharmacology Research Labs., Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- CRESCENDO, The Tohoku University 21 Century “Center of Excellence” Program, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Liu P, Lu HX, Yin ZF. Advance in liver-type fatty acid binding protein. Shijie Huaren Xiaohua Zazhi 2008; 16:3523-3527. [DOI: 10.11569/wcjd.v16.i31.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver-type fatty acid binding protein (L-FABP) is an important member of FABP family, and mainly expressed in liver, intestine and kidney. In the past, it was found that L-FABP was related to the absorption, translocation and redistribution of long-chain fatty acid in intestine and cell compartments. Recent studtes indicated L-FABP is one pivotal signal molecular related to alcoholic or non-alcoholic fatty liver, kidney parenchymal injury, diabetes, ischemia injury and so on. In regard to its small molecular weight and membrane infiltration ability, L-FABP may be a high-sensitive marker of liver or kidney injury. Here, we review the research progress in the physical function, regulation mechanism and clinical application of L-FABP.
Collapse
|
35
|
Experimental obstructive cholestasis: the wound-like inflammatory liver response. FIBROGENESIS & TISSUE REPAIR 2008; 1:6. [PMID: 19014418 PMCID: PMC2637833 DOI: 10.1186/1755-1536-1-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 11/03/2008] [Indexed: 02/08/2023]
Abstract
Obstructive cholestasis causes hepatic cirrhosis and portal hypertension. The pathophysiological mechanisms involved in the development of liver disease are multiple and linked. We propose grouping these mechanisms according to the three phenotypes mainly expressed in the interstitial space in order to integrate them.Experimental extrahepatic cholestasis is the model most frequently used to study obstructive cholestasis. The early liver interstitial alterations described in these experimental models would produce an ischemia/reperfusion phenotype with oxidative and nitrosative stress. Then, the hyperexpression of a leukocytic phenotype, in which Kupffer cells and neutrophils participate, would induce enzymatic stress. And finally, an angiogenic phenotype, responsible for peribiliary plexus development with sinusoidal arterialization, occurs. In addition, an intense cholangiocyte proliferation, which acquires neuroendocrine abilities, stands out. This histopathological finding is also associated with fibrosis.It is proposed that the sequence of these inflammatory phenotypes, perhaps with a trophic meaning, ultimately produces a benign tumoral biliary process - although it poses severe hepatocytic insufficiency. Moreover, the persistence of this benign tumor disease would induce a higher degree of dedifferentiation and autonomy and, therefore, its malign degeneration.
Collapse
|
36
|
Aller MA, Arias JL, Cruz A, Arias J. Inflammation: a way to understanding the evolution of portal hypertension. Theor Biol Med Model 2007; 4:44. [PMID: 17999758 PMCID: PMC2206015 DOI: 10.1186/1742-4682-4-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/13/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Portal hypertension is a clinical syndrome that manifests as ascites, portosystemic encephalopathy and variceal hemorrhage, and these alterations often lead to death. HYPOTHESIS Splanchnic and/or systemic responses to portal hypertension could have pathophysiological mechanisms similar to those involved in the post-traumatic inflammatory response.The splanchnic and systemic impairments produced throughout the evolution of experimental prehepatic portal hypertension could be considered to have an inflammatory origin. In portal vein ligated rats, portal hypertensive enteropathy, hepatic steatosis and portal hypertensive encephalopathy show phenotypes during their development that can be considered inflammatory, such as: ischemia-reperfusion (vasodilatory response), infiltration by inflammatory cells (mast cells) and bacteria (intestinal translocation of endotoxins and bacteria) and lastly, angiogenesis. Similar inflammatory phenotypes, worsened by chronic liver disease (with anti-oxidant and anti-enzymatic ability reduction) characterize the evolution of portal hypertension and its complications (hepatorenal syndrome, ascites and esophageal variceal hemorrhage) in humans. CONCLUSION Low-grade inflammation, related to prehepatic portal hypertension, switches to high-grade inflammation with the development of severe and life-threatening complications when associated with chronic liver disease.
Collapse
Affiliation(s)
- María-Angeles Aller
- Surgery I Department. Medical School, Complutense University, 28040 Madrid, Spain
| | - Jorge-Luis Arias
- Psychobiology Laboratory, School of Psychology, University of Oviedo, Asturias, Spain
| | - Arturo Cruz
- Surgery I Department. Medical School, Complutense University, 28040 Madrid, Spain
- General Surgery Department, Virgen de la Luz General Hospital, 16002 Cuenca, Spain
| | - Jaime Arias
- Surgery I Department. Medical School, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
37
|
Aller MA, Arias JL, Arias J. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension. J Transl Med 2007; 5:44. [PMID: 17892556 PMCID: PMC2034541 DOI: 10.1186/1479-5876-5-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 09/24/2007] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension is a clinical syndrome that is difficult to study in an isolated manner since it is always associated with a greater or lesser degree of liver functional impairment. The aim of this review is to integrate the complications related to chronic liver disease by using both, the array of mast cell functions and mediators, since they possibly are involved in the pathophysiological mechanisms of these complications. The portal vein ligated rat is the experimental model most widely used to study this syndrome and it has been considered that a systemic inflammatory response is produced. This response is mediated among other inflammatory cells by mast cells and it evolves in three linked pathological functional systems. The nervous functional system presents ischemia-reperfusion and edema (oxidative stress) and would be responsible for hyperdynamic circulation; the immune functional system causes tissue infiltration by inflammatory cells, particularly mast cells and bacteria (enzymatic stress) and the endocrine functional system presents endothelial proliferation (antioxidative and antienzymatic stress) and angiogenesis. Mast cells could develop a key role in the expression of these three phenotypes because their mediators have the ability to produce all the aforementioned alterations, both at the splanchnic level (portal hypertensive enteropathy, mesenteric adenitis, liver steatosis) and the systemic level (portal hypertensive encephalopathy). This hypothetical splanchnic and systemic inflammatory response would be aggravated during the progression of the chronic liver disease, since the antioxidant ability of the body decreases. Thus, a critical state is produced, in which the appearance of noxious factors would favor the development of a dedifferentiation process protagonized by the nervous functional system. This system rapidly induces an ischemia-reperfusion phenotype with hydration and salinization of the body (hepatorenal syndrome, ascites) which, in turn would reduce the metabolic needs of the body and facilitate its temporary survival.
Collapse
Affiliation(s)
- María-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain
| | - Jorge-Luis Arias
- Psychobiology Department, School of Psychology, University of Oviedo, Asturias, Spain
| | - Jaime Arias
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain
| |
Collapse
|