1
|
Olas B. The Cardioprotective Effect of Magnolia officinalis and Its Major Bioactive Chemical Constituents. Int J Mol Sci 2025; 26:4380. [PMID: 40362616 PMCID: PMC12072210 DOI: 10.3390/ijms26094380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
The genus Magnolia has been found to exhibit different biological properties, including antioxidant, anticancer, and others. For example, Magnolia officinalis is a classical traditional herb used in various Asian countries, especially China, South Korea, and Japan. Magnolia bark is the main medicinal part of this plant. This paper reviews the current state of knowledge regarding the M. officinalis bark and its active constituents, especially magnolol and honokiol, with a special emphasis on their cardioprotective activity in various models. This review paper also sheds new light on the cardioprotective mechanisms of magnolol and honokiol. However, their cardioprotective potential is limited to animal in vivo models and in vitro models. Only a single study has examined the cardiovascular properties of M. officinalis extract in obese mice. In addition, there is no clinical evidence for the absorption and bioavailability of M. officinalis extracts and their main bioactive compounds in humans. Moreover, there are no studies simultaneously comparing the activity of magnolol and honokiol. Therefore, there is a need for such studies. There are also no recommendations regarding their effective or safe doses for prophylaxis and the treatment of CVDs.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Han HJ, Hyun CG. Anti-Inflammatory Effects and Human Skin Safety of the Eastern Traditional Herb Mosla japonica. Life (Basel) 2025; 15:418. [PMID: 40141763 PMCID: PMC11943674 DOI: 10.3390/life15030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in LPS-stimulated RAW 264.7 macrophages and evaluates its safety for human skin applications. MJE significantly reduced inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and key cytokines (IL-1β, IL-6, TNF-α) in a dose-dependent manner. It also suppressed the expression of iNOS and COX-2, enzymes crucial for inflammation. Mechanistically, MJE inhibited NF-κB activation by stabilizing IκBα, thereby reducing inflammation-related gene expression. Additionally, it downregulated ERK, JNK, and p38 in the MAPK signaling pathway, further contributing to its anti-inflammatory effects. A primary skin irritation test confirmed MJE's safety, showing no significant skin reactions at 100 μg/mL. These findings highlight MJE's strong anti-inflammatory properties and potential for dermatological applications. This study underscores the pharmacological value of M. japonica and its integration into modern scientific research, aligning with global biodiversity frameworks such as the Nagoya Protocol. Future research may further expand its applications in medicine and skincare.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
3
|
Chu L, Wang C, Zhou H. Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med (Lausanne) 2024; 11:1307682. [PMID: 38420354 PMCID: PMC10899709 DOI: 10.3389/fmed.2024.1307682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Dry eye is a widespread chronic inflammatory disease that causes fatigue, tingling, burning, and other symptoms. Dry eye is attributed to rheumatic diseases, diabetes, hormone disorders, and contact lenses, which activate inflammatory pathways: mitogen-activated protein kinases (MAPK) and nuclear factor-B (NF-κB), promote macrophage inflammatory cell and T cell activation, and inflammation factors. Clinicians use a combination of anti-inflammatory drugs to manage different symptoms of dry eye; some of these anti-inflammatory drugs are being developed. This review introduces the dry eye inflammation mechanisms and the involved inflammatory factors. We also elucidate the anti-inflammatory drug mechanism and the detection limits.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Caiming Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Tarek H, Cho SS, Hossain MS, Yoo JC. Attenuation of Oxidative Damage via Upregulating Nrf2/HO-1 Signaling Pathway by Protease SH21 with Exerting Anti-Inflammatory and Anticancer Properties In Vitro. Cells 2023; 12:2190. [PMID: 37681922 PMCID: PMC10486937 DOI: 10.3390/cells12172190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative damage and inflammation are among the very significant aspects interrelated with cancer and other degenerative diseases. In this study, we investigated the biological activities of a 25 kDa protease (SH21) that was purified from Bacillus siamensis. SH21 exhibited very powerful antioxidant and reactive oxygen species (ROS) generation inhibition activity in a dose-dependent approach. The mRNA and protein levels of antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx-1) were enhanced in the SH21-treated sample. SH21 also increased the transcriptional and translational activities of NF-E2-related factor 2 (Nrf2) with the subsequent development of detoxifying enzyme heme oxygenase-1 (HO-1). In addition, SH21 showed potential anti-inflammatory activity via inhibition of nitric oxide (NO) and proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. At concentrations of 60, 80, and 100 μg/mL, SH21 potentially suppressed nitric oxide synthase (iNOS) and cytokine gene expressions. Furthermore, SH21 significantly released lactate dehydrogenase (LDH) enzyme in cancer cell supernatant in a concentration-dependent manner and showed strong activity against three tested cancer cell lines, including HL-60, A549, and Hela. Our results suggest that SH21 has effective antioxidant, anti-inflammatory, and anticancer effects and could be an excellent therapeutic agent against inflammation-related diseases.
Collapse
Affiliation(s)
- Hasan Tarek
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Md. Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea;
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
5
|
Wanas H, Elbadawy HM, Almikhlafi MA, Hamoud AE, Ali EN, Galal AM. Combination of Niclosamide and Pirfenidone Alleviates Pulmonary Fibrosis by Inhibiting Oxidative Stress and MAPK/Nf-κB and STATs Regulated Genes. Pharmaceuticals (Basel) 2023; 16:ph16050697. [PMID: 37242480 DOI: 10.3390/ph16050697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of pulmonary fibrosis (PF) is extremely complex and involves numerous intersecting pathways. The successful management of PF may require combining multiple agents. There is a growing body of evidence that suggests the potential benefits of niclosamide (NCL), an FDA-approved anthelminthic drug, in targeting different fibrogenesis molecules. This study aimed at investigating the anti-fibrotic potential of NCL alone and in combination with pirfenidone (PRF), an approved drug for PF, in a bleomycin (BLM) induced PF experimental model. PF was induced in rats by intratracheal BLM administration. The effect of NCL and PRF individually and in combination on different histological and biochemical parameters of fibrosis was investigated. Results revealed that NCL and PRF individually and in combination alleviated the histopathological changes, extracellular matrix deposition and myofibroblastic activation induced by BLM. NCL and PRF either individually or in combination inhibited the oxidative stress and subsequent pathways. They modulated the process of fibrogenesis by inhibiting MAPK/NF-κB and downstream cytokines. They inhibited STATs and downstream survival-related genes including BCL-2, VEGF, HIF-α and IL-6. Combining both drugs showed significant improvement in the tested markers in comparison to the monotherapy. NCL, therefore, has a potential synergistic effect with PRF in reducing the severity of PF.
Collapse
Affiliation(s)
- Hanaa Wanas
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Amany E Hamoud
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Eid N Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
- Department of Anatomy, Faculty of Medicine, Taibah University, Madinah 41477, Saudi Arabia
| | - Amr M Galal
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| |
Collapse
|
6
|
Liu J, Poojary MM, Zhu L, Williams AR, Lund MN. Phenolic Acid-Amino Acid Adducts Exert Distinct Immunomodulatory Effects in Macrophages Compared to Parent Phenolic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2344-2355. [PMID: 36715127 DOI: 10.1021/acs.jafc.2c06658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Caffeic acid (CA) and chlorogenic acid (CGA) are commonly found phenolic acids in plant-derived foods and beverages. Their corresponding adducts with cysteine (Cys) have been detected in coffee-containing beverages. However, despite the well-documented antioxidant and anti-inflammatory activity of CA and CGA, the immunomodulatory activities of the Cys adducts (CA-Cys and CGA-Cys) are unknown. The adducts were therefore synthesized, and their immunomodulatory effects were studied in lipopolysaccharide (LPS)-treated RAW 264.7 cells and compared to the activity of the parent phenolic acids. CA and CGA generally down-regulated the inflammatory responses. However, RNA-sequencing showed that the LPS-induced pathways related to Toll-like receptor signaling, chemokine signaling, and NOD-like receptor signaling, and JAK-STAT/MAPK signaling pathways were upregulated in adduct-treated cells relative to parent phenolic acids, while neurodegenerative disorder-related pathways and metabolic pathways were downregulated. Production of prostaglandin E2 (PGE2), interleukin-6, tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) was all inhibited by CA and CGA (P < 0.05). PGE2 and TNF-α were further suppressed in adduct-stimulated cells (P < 0.05), but ROS production was increased. For example, TNF-α produced by 100 μM CGA-stimulated cells and 100 μM CGA-Cys adduct-stimulated cells were 4.46 ± 0.23 and 1.61 ± 0.18 ng/mL, respectively. Thus, the addition of the Cys moiety drastically alters the anti-inflammatory activity of phenolic compounds.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Duan X, Li J, Cui J, Li H, Hasan B, Xin X. Chemical component and in vitro protective effects of Matricaria chamomilla (L.) against lipopolysaccharide insult. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115471. [PMID: 35716917 DOI: 10.1016/j.jep.2022.115471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamomile (Matricaria chamomilla L.) is a popular herbal tea for the treatment of hepatitis and cholecystitis in traditional Uygur medicines. AIM OF THE STUDY To investigate the anti-inflammatory activity and chemical composition of M. chamomilla, and clarify its molecular mechanism. MATERIALS AND METHODS M. chamomilla was extracted with 75% ethanol and then extracted with different solvents to obtain five fractions, namely petroleum ether fraction (EOPE), dichloromethane fraction (EOD), ethyl acetate fraction (EOEA), n-butanol fraction (EOB), and water fraction (EOW). Cytotoxicity and the effect on the nitric oxide (NO) production of RAW264.7 cells induced by LPS of the five fractions were screened, and the most active one (EOD) was selected for further investigations. The components of EOD were identified by LC-MS/MS analysis in combination with comparison of retention time and UV absorption with authentic compounds by HPLC. In addition, five most abundant compounds of EOD were isolation by column chromatography and semi-preparative HPLC and their structures were further confirmed by HRMS and NMR data analysis and comparison with data in literatures. Then the underlying anti-inflammatory mechanism of EOD were predicted through Network pharmacology using the identified compounds from EOD, and further verified by Western Blot and ELISA experiments. RESULTS EOD showed the most significant inhibition ratio against NO in RAW264.7 cells without toxicity among the tested five fractions. Thirty-seven compounds including flavonoid-O-glycoside, flavonoid aglycone, methylated flavonoid aglycone, phenolic acid, coumarin, sesquiterpene, and triterpene were identified from EOD by LC-MS/MS and comparison with authentic compounds. The five most abundant compounds in EOD were isolated and determined to be axillarin (26), tricin (30), chrysoeriol (31), centaureidin (33) and chrysosplenetin (35). IL-6, NF-κB, ERK1 and ERK2 cascade, TNF were the most important anti-inflammatory targets of EOD predicted by Network pharmacology. Western Blot and ELISA experiments revealed that EOD significantly decreased the protein expression levels of inflammatory factors (PGE2, MCP-1, IL-6, TNF-α), iNOS, COX-2, NF-κB (p-P65 and p-IκBα), MAPKs (p-p38, p-ERK and p-JNK), and increased the protein expression levels of Nrf2, HO-1 and CYP2E1. In addition, EOD blocked the p65 protein into the nucleus and promoted the nuclear translocation of Nrf2 in RAW264.7 cells induced by LPS. CONCLUSION M. chamomilla exerted anti-inflammatory effect via NF-κB, MAPK and Nrf2/HO-1 pathways. It could be further applied as a safe anti-inflammatory agent from natural source.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongliang Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilal Hasan
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Department of Cardiology, Laboratory of Pulmonary Hypertension, 116 Huanghe Rd, Urumqi, Xinjiang, China.
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-κB, MAPK and STATs Activation. Molecules 2022; 27:molecules27144603. [PMID: 35889477 PMCID: PMC9322085 DOI: 10.3390/molecules27144603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Xanthatin (XT) is a sesquiterpene lactone isolated from the Chinese herb Xanthium, which belongs to the Asteraceae family. In this study, we developed an inflammation model via stimulating macrophage cell line (RAW 264.7 cells) with lipopolysaccharide (LPS), which was applied to assess the anti-inflammatory effect and probable mechanisms of xanthatin. When compared with the only LPS-induced group, cells that were pretreated with xanthatin were found to decrease the amount of nitric oxide (NO), reactive oxygen species (ROS) and associated pro-inflammatory factors (TNF-α, IL-1β and IL-6), and downregulate the mRNA expression of iNOS, COX-2, TNF-α, IL-1β, and IL-6. Interestingly, phosphorylated levels of related proteins (STAT3, ERK1/2, SAPK/JNK, IκBα, p65) were notably increased only with the LPS-activated cells, while the expression of these could be reverted by pre-treatment with xanthatin in a dose-dependent way. Meanwhile, xanthatin was also found to block NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. Collectively, these results demonstrated that xanthatin suppresses the inflammatory effects through downregulating the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STATs) signaling pathways. Taken together, xanthatin possesses the potential to act as a good anti-inflammatory medication candidate.
Collapse
|
9
|
Li K, Yang M, Tian M, Jia L, Du J, Wu Y, Li L, Yuan L, Ma Y. Lactobacillus plantarum 17-5 attenuates Escherichia coli-induced inflammatory responses via inhibiting the activation of the NF-κB and MAPK signalling pathways in bovine mammary epithelial cells. BMC Vet Res 2022; 18:250. [PMID: 35764986 PMCID: PMC9238091 DOI: 10.1186/s12917-022-03355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is one of the most prevalent diseases and causes considerable economic losses in the dairy farming sector and dairy industry. Presently, antibiotic treatment is still the main method to control this disease, but it also brings bacterial resistance and drug residue problems. Lactobacillus plantarum (L. plantarum) is a multifunctional probiotic that exists widely in nature. Due to its anti-inflammatory potential, L. plantarum has recently been widely researched in complementary therapies for various inflammatory diseases. In this study, the apoptotic ratio, the expression levels of various inflammatory mediators and key signalling pathway proteins in Escherichia coli-induced bovine mammary epithelial cells (BMECs) under different doses of L. plantarum 17–5 intervention were evaluated. Results The data showed that L. plantarum 17–5 reduced the apoptotic ratio, downregulated the mRNA expression levels of TLR2, TLR4, MyD88, IL1β, IL6, IL8, TNFα, COX2, iNOS, CXCL2 and CXCL10, and inhibited the activation of the NF-κB and MAPK signalling pathways by suppressing the phosphorylation levels of p65, IκBα, p38, ERK and JNK. Conclusions The results proved that L. plantarum 17–5 exerted alleviative effects in Escherichia coli-induced inflammatory responses of BMECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03355-9.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
10
|
Romero-Estrada A, Boto A, González-Christen J, Romero-Estudillo I, Garduño-Ramírez ML, Razo-Hernández RS, Marquina S, Maldonado-Magaña A, Columba-Palomares MC, Sánchez-Carranza JN, Alvarez L. Synthesis, Biological Evaluation, and Molecular Docking Study of 3-Amino and 3-Hydroxy- seco A Derivatives of α-Amyrin and 3-Epilupeol as Inhibitors of COX-2 Activity and NF-kB Activation. JOURNAL OF NATURAL PRODUCTS 2022; 85:787-803. [PMID: 35175765 DOI: 10.1021/acs.jnatprod.1c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a series of novel 3-seco-A derivatives of the natural triterpenes α-amyrin (1) and 3-epilupeol (2) were synthesized by a one-pot radical scission-oxidation procedure and evaluated in vitro and in vivo for their capacity to inhibit the inflammatory process. For the in vitro studies, the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f) were consistently effective in inhibiting NO, IL-6, and TNF-α secretion, as well as inhibition of NF-κB activation, in RAW cells stimulated by LPS. The further in vivo anti-inflammatory study revealed that the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f), together with 1g, were the most effective in inhibiting TPA-induced edema. Interestingly, the α-amyrin derivatives were the most potent inhibitors of COX-2, but inhibited COX-1 only to some extent. The hydroxyl derivative (1c) was selective for COX-2 inhibition (66.3 ± 1.1% at 17.5 μM) without affecting the COX-1 isoform and did not present toxicity. Molecular docking studies revealed that these compounds bind with their polar region in the cavity over Arg-120, and their lipophilic part is orientated to the HEM cofactor similarly to the natural substrate arachidonic acid in the catalytic site of COX-2. These results indicated that seco-A ursane derivatives could be considered promising candidates for the future development of selective NF-κB and COX-2 inhibitors.
Collapse
Affiliation(s)
- Antonio Romero-Estrada
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenuda Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Judith González-Christen
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Ivan Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Silvia Marquina
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Amalia Maldonado-Magaña
- Instituto Tecnológico de Milpa Alta. Independencia Sur No. 36, Col. San Salvador Cuauhténco, Alcaldía Milpa Alta CDMX 12300, México
| | - María C Columba-Palomares
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| |
Collapse
|
11
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
12
|
Anti-Inflammatory Activity of 4-((1 R,2 R)-3-Hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol Isolated from Juglans mandshurica Maxim. in LPS-Stimulated RAW 264.7 Macrophages and Zebrafish Larvae Model. Pharmaceuticals (Basel) 2021; 14:ph14080771. [PMID: 34451869 PMCID: PMC8398860 DOI: 10.3390/ph14080771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.
Collapse
|
13
|
Song HY, Jeong DE, Lee M. Bioactivity-Guided Extract Optimization of Osmanthus fragrans var. aurantiacus Leaves and Anti-Inflammatory Activities of Phillyrin. PLANTS (BASEL, SWITZERLAND) 2021; 10:1545. [PMID: 34451589 PMCID: PMC8398771 DOI: 10.3390/plants10081545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Hwa-Young Song
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Korea; (H.-Y.S.); (D.-E.J.)
| | - Da-Eun Jeong
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Korea; (H.-Y.S.); (D.-E.J.)
- Institute of Jinan Red Ginseng, 41 Hongsamhanbangno, Jinan-Gun 55442, Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Korea; (H.-Y.S.); (D.-E.J.)
| |
Collapse
|
14
|
Sunil MA, Sunitha VS, Santhakumaran P, Mohan MC, Jose MS, Radhakrishnan EK, Mathew J. Protective effect of (+)-catechin against lipopolysaccharide-induced inflammatory response in RAW 264.7 cells through downregulation of NF-κB and p38 MAPK. Inflammopharmacology 2021; 29:1139-1155. [PMID: 34115226 DOI: 10.1007/s10787-021-00827-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022]
Abstract
Catechin, a flavonol belonging to the flavonoid group of polyphenols is present in many plant foods. The present study was done to evaluate the effect of catechin on various inflammatory mediators using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The effect of catechin on total cyclooxygenase (COX) activity, 5-lipoxygenase (5-LOX), myeloperoxidase, nitrite and inducible nitric oxide synthase (iNOS) level, secretion of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were assessed in LPS-stimulated RAW 264.7 cells. The expression of COX-2, iNOS, TNF-α, nuclear factor-ĸB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) genes were also investigated. The effect was further analyzed using human PBMCs by assessing the level of TNF-α and IL-10. The study demonstrated that the inflammatory mediators such as COX, 5-LOX, nitrite, iNOS, and TNF-α were significantly inhibited by catechin in a concentration-dependent manner whereas IL-10 production was up-regulated in RAW 264.7 cells. Moreover, catechin down-regulated the mRNA level expression of COX-2, iNOS, TNF-α, NF-κB and p38 MAPK. The current study ratifies the beneficial effect of catechin as a dietary component in plant foods to provide protection against inflammatory diseases.
Collapse
Affiliation(s)
- M A Sunil
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | - V S Sunitha
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | | | - Mohind C Mohan
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University Kottayam, Kerala, 686560, India.
| |
Collapse
|
15
|
Ambati GG, Jachak SM. Natural Product Inhibitors of Cyclooxygenase (COX) Enzyme: A Review on Current Status and Future Perspectives. Curr Med Chem 2021; 28:1877-1905. [PMID: 32484764 DOI: 10.2174/0929867327666200602131100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several clinically used COX-1 and COX-2 inhibitor drugs were reported to possess severe side effects like GI ulcers and cardiovascular disturbances, respectively. Natural products being structurally diverse always attracted the attention of chemists/ medicinal chemists as a potential source of lead molecules in the drug discovery process. COX-2 inhibitory natural products also possess potential cancer chemopreventive property against various cancers including that of colon, breast and prostate. METHODS Various in vitro, in vivo and in silico standardized methods were used to evaluate COX inhibition property of different secondary metabolites isolated from plant, microbial and marine origin. RESULTS We had earlier reported a detailed account of natural product inhibitors of COX reported during 1995-2005, in 2006. In the proposed review, we report 158 natural product inhibitors of COX during 2006 to 2019 belonging to various secondary metabolite classes such as alkaloids, terpenoids, polyphenols as flavonoids, chromones, coumarins, lignans, anthraquinones, naphthalenes, curcuminoids, diarylheptanoids and miscellaneous compounds of plant and marine origin. Further Structure Activity Relationship (SAR) studies of possible leads are also included in the article. CONCLUSION COX inhibitors served as a potential source of lead molecules for the discovery and development of anti-inflammatory drugs. Compilation of natural product and semisynthetic inhibitors of COX may serve as valuable information to the researchers who are looking for possible lead molecules from a natural source to conduct further preclinical and clinical studies.
Collapse
Affiliation(s)
- Goutami G Ambati
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar 160062, Mohali, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar 160062, Mohali, India
| |
Collapse
|
16
|
Zhang L, Chen J, Liao H, Li C, Chen M. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Vega-García A, Rocha L, Guevara-Guzmán R, Guerra-Araiza C, Feria-Romero I, Gallardo JM, Neri-Gomez T, Suárez-Santiago JE, Orozco-Suarez S. Magnolia officinalis Reduces Inflammation and Damage Induced by Recurrent Status Epilepticus in Immature Rats. Curr Pharm Des 2020; 26:1388-1401. [PMID: 32196444 DOI: 10.2174/1381612826666200320121813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation induced in response to damage caused by status epilepticus (SE) activates the interleukin (IL)1-β pathway and proinflammatory proteins that increase vulnerability to the development of spontaneous seizure activity and/or epilepsy. OBJECTIVES The study aimed to assess the short-term anti-inflammatory and neuroprotective effects of Magnolia officinalis (MO) on recurrent SE in immature rats. METHODS Sprague-Dawley rats at PN day 10 were used; n = 60 rats were divided into two control groups, SHAM and KA, and two experimental groups, MO (KA-MO) and Celecoxib (KA-Clbx). The anti-inflammatory effect of a single dose of MO was evaluated at 6 and 24 hr by Western blotting and on day 30 PN via a subchronic administration of MO to assess neuronal preservation and hippocampal gliosis by immunohistochemistry for NeunN and GFAP, respectively. RESULTS KA-MO caused a decrease in the expression of IL1-β and Cox-2 at 6 and 24 h post-treatment, a reduction in iNOS synthase at 6 and 24 hr post-treatment and reduced neuronal loss and gliosis at postnatal day 30, similar to Clbx. CONCLUSION The results indicating that Magnolia officinalis is an alternative preventive treatment for early stages of epileptogenesis are encouraging.
Collapse
Affiliation(s)
- Angélica Vega-García
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico.,Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiologia, Centro de Investigacion y Estudios Avanzados, Tlalpan, Ciudad de Mexico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigacion Medica en Farmacologia, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Iris Feria-Romero
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Juan M Gallardo
- Unidad de Investigacion Medica en Enfermedades Nefrologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Teresa Neri-Gomez
- Unidad de Investigacion Biomolecular del Hospital de Cardiologia, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico DF, Mexico
| | | | - Sandra Orozco-Suarez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
18
|
Effect of Ultrafine Powderization and Solid Dispersion Formation via Hot-Melt Extrusion on Antioxidant, Anti-Inflammatory, and the Human Kv1.3 Channel Inhibitory Activities of Angelica gigas Nakai. Bioinorg Chem Appl 2020; 2020:7846176. [PMID: 32952541 PMCID: PMC7482008 DOI: 10.1155/2020/7846176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/08/2020] [Indexed: 12/28/2022] Open
Abstract
Angelica gigas Nakai (AGN) was first processed by ultrafine grinding technology and hot-melt extrusion (HME). The potential antioxidant and anti-inflammatory activities of AGN with a different process were compared, and the effect on the human Kv1.3 potassium channel was detected. The process of ultrafine powderization on AGN significantly increased the total phenolic and flavonoid contents, antioxidant activity, and DNA damage protective effect. On the contrary, AGN solid dispersion (AGN-SD) based on Soluplus® showed the highest inhibitory effect on NO production and the human Kv1.3 channel. In addition, AGN-SD inhibited the production of prostaglandin E2 and intracellular reactive oxygen species and the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin 1β, and interleukin 6. Taken together, these results suggest that ultrafine powderization and solid dispersion formation via HME can significantly improve the biological activities of AGN. The results also suggested that ultrafine powderization and HME may be developed and applied in the pharmaceutical industry.
Collapse
|
19
|
Anti-Inflammatory Activity of Diterpenoids from Celastrus orbiculatus in Lipopolysaccharide-Stimulated RAW264.7 Cells. J Immunol Res 2020; 2020:7207354. [PMID: 32802895 PMCID: PMC7414338 DOI: 10.1155/2020/7207354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1-17, including undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic data. To investigate the anti-inflammatory activity of compounds 1-17, nitric oxide (NO) secretion was evaluated in LPS-treated murine macrophages, RAW264.7 cells. Among compounds 1-17, deoxynimbidiol (1) and new trinorditerpenoid (3) showed the most potent inhibitory effects (IC50: 4.9 and 12.6 μM, respectively) on lipopolysaccharide- (LPS-) stimulated NO releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be considered a potential candidate for the treatment of inflammatory diseases.
Collapse
|
20
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
21
|
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98:103735. [PMID: 32171986 DOI: 10.1016/j.bioorg.2020.103735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Paeonol has been proved to have potential anti-inflammatory activity, but its clinical application is not extensive due to the poor anti-inflammatory activity (14.74% inhibitory activity at 20 μM). In order to discover novel lead compound with high anti-inflammatory activity, series of paeonol derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. Structure-activity relationships (SARs) have been fully concluded, and finally (E)-N-(4-(2-acetyl-5-methoxyphenoxy)phenyl)-3-(3,4,5-trimet-hoxyphenyl)acrylamide (compound 11a) was found to be the best active compound with low toxicity, which showed 96.32% inhibitory activity at 20 μM and IC50 value of 6.96 μM against LPS-induced over expression of nitric oxide (NO) in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4, resulting in inhibiting of NF-κB and MAPK pathways. Further studies have shown that compound 11a has obvious therapeutic effect against the adjuvant-induced rat arthritis model.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
22
|
Oh YC, Jeong YH, Li W, Go Y. Angelicae Gigantis Radix Regulates LPS-Induced Neuroinflammation in BV2 Microglia by Inhibiting NF-κB and MAPK Activity and Inducing Nrf-2 Activity. Molecules 2019; 24:molecules24203755. [PMID: 31635294 PMCID: PMC6832664 DOI: 10.3390/molecules24203755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea.
| |
Collapse
|
23
|
Inkanuwat A, Sukaboon R, Reamtong O, Asawanonda P, Pattaratanakun A, Saisavoey T, Sangtanoo P, Karnchanatat A. Nitric Oxide Synthesis Inhibition and Anti-Inflammatory Effect
of Polypeptide Isolated from Chicken Feather Meal
in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Food Technol Biotechnol 2019; 57:200-212. [PMID: 31537969 PMCID: PMC6718961 DOI: 10.17113/ftb.57.02.19.5964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) plays a key role in the pathogenesis of inflammation and has been implicated in endotoxin-induced tissue injury. Chicken feather meal is a rich source of amino acids that may serve as a peptide hydrolysate to inhibit NO activity. Anti-inflammatory hydrolysates of chicken feather meal were prepared and fractionated into five samples based on molecular mass. The smallest fraction (<0.65 kDa) exhibited the highest NO inhibitory activity without cytotoxicity towards macrophage RAW 264.7 cells. Further subfractions were sufficient to obtain amino acid sequences by Q-TOF LC-MS/MS ESI analysis. Of these, the SNPSVAGVR (885.97 Da) peptide and its corresponding pure synthetic peptide have inhibitory activity against NO production by RAW 264.7 cells (IC50=(55.2±0.2) mM) without cytotoxicity. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR results revealed that the peptide of the obtained fraction reduced transcript expression levels of the pro-inflammatory cytokines iNOS, TNF-α, COX-2 and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that the peptides derived from the chicken feather meal protein could potentially be used as a promising ingredient in functional foods or nutraceuticals against inflammatory diseases.
Collapse
Affiliation(s)
- Aurachorn Inkanuwat
- Technopreneurship and Innovation Management Program, Graduate School, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Romteera Sukaboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pravit Asawanonda
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Ake Pattaratanakun
- Department of Marketing, Faculty of Commerce and Accountancy, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Bhardwaj M, Mamadalieva NZ, Chauhan AK, Kang SC. α-Ecdysone suppresses inflammatory responses via the Nrf2 pathway in lipopolysaccharide-stimulated RAW 264.7 cells. Int Immunopharmacol 2019; 73:405-413. [DOI: 10.1016/j.intimp.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023]
|
25
|
Chou CH, Tsai MS, Lu HY, Chang CK, Cheng KC, Jhan MH, Hsieh CW. Enzymatic hydrolysates obtained from Trametes versicolor polysaccharopeptides protect human skin keratinocyte against AAPH-induced oxidative stress and inflammatory. J Cosmet Dermatol 2019; 18:2011-2018. [PMID: 31033173 DOI: 10.1111/jocd.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/18/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Polysaccharopeptides (PSPs) extracted from Trametes versicolor show antitumor, anti-inflammatory, and immunomodulation effects. According to our previous report, the enzymatic hydrolysates obtained from T versicolor PSPs by 80 U/mL β-1,3-D-glucanase (PSPs-EH80) did not change the functional groups of PSPs but enhanced their antioxidative activities. However, the mechanism elevating the antioxidant and anti-inflammatory effect of PSPs-EH80 is not clear. AIMS This research focused on the protective mechanism(s) of PSPs-EH80 against free radical and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage in human keratinocyte (HaCaT) cells. METHODS We evaluated the anti-inflammatory potential of PSPs-EH80 by assessing its free radical-induced oxidative damage. Using the HaCaT cell as the experimental system, we tested the protective effects of PSPs-EH80 on a model of AAPH-induced cellular oxidative damage through the assessment of cell survival rate. Heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase were determined using MTT assays and Western blotting. RESULTS We demonstrated that PSPs-EH80 significantly enhanced keratinocyte viability, and augmented the antioxidant HO-1 expressions through upregulation of the Nrf2, compared with PSPs. Furthermore, PSPs-EH80 significantly reduced AAPH-induced COX-2 expressions through downregulation of the ERK, p38, and NF-κB signaling pathways. CONCLUSION The PSPs-EH80 exhibits a stronger antioxidant and anti-inflammatory capacity than PSPs. Therefore, PSPs-EH80 could be effective for attenuating free radical-induced oxidative damage in human skin and can be applied widely in the fields of cosmetics and medicine.
Collapse
Affiliation(s)
| | - Ming-Shiun Tsai
- Department of Food Science and Biotechnology, Da-Yeh University, Chang-Hua, Taiwan, ROC
| | - Hsin-Yu Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chao-Kai Chang
- College of Biotechnology and Bioresources, Da-Yeh University, Chang-Hua, Taiwan, ROC
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Hsin Jhan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chang-Hua, Taiwan, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
26
|
Shepherd's Purse Polyphenols Exert Its Anti-Inflammatory and Antioxidative Effects Associated with Suppressing MAPK and NF- κB Pathways and Heme Oxygenase-1 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7202695. [PMID: 30733853 PMCID: PMC6348798 DOI: 10.1155/2019/7202695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 01/24/2023]
Abstract
Shepherd's purse (Capsella bursa-pastoris (L.) Medik.), a wild herb as a traditional herbal medicine, has been proved with multiple healthy benefits. In this study, the chemical constituents of shepherd's purse were identified by UPLC-QTOF-MS/MS. The antioxidative and anti-inflammatory potential of shepherd's purse extract (SPE) were also investigated applying lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 macrophages and a carrageenan-induced mice paw edema model. Twenty-four chemical compounds were identified mainly including phenolic acids and flavonoids. The data also indicated SPE inhibited the productions of NO, PGE2, TNF-α, and IL-6 stimulated with LPS. In addition, SPE inhibited the increase of reactive oxygen species (ROS) and upregulated the expression of heme oxygenase-1 (HO-1). We further found that SPE inhibited the phosphorylation of P38 MAPK and activation of NF-κB. In vivo mice model also indicated that SPE showed strong antioxidative and anti-inflammatory activity.
Collapse
|
27
|
Song YJ, Kim A, Kim GT, Yu HY, Lee ES, Park MJ, Kim YJ, Shim SM, Park TS. Inhibition of lactate dehydrogenase A suppresses inflammatory response in RAW 264.7 macrophages. Mol Med Rep 2018; 19:629-637. [PMID: 30483780 DOI: 10.3892/mmr.2018.9678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/13/2018] [Indexed: 11/06/2022] Open
Abstract
Lactate is an important metabolite in cellular metabolism and fluctuates in certain disease conditions including cancer and immune diseases. It was hypothesized that a decrease in lactate would modulate the inflammatory response elicited by lipopolysaccharides (LPS) in macrophages. When RAW 264.7 macrophages were treated with FX11, a specific lactate dehydrogenase (LDHA) inhibitor, the expression of the cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX‑2) was downregulated due to reduced cellular lactate levels. Genetic suppression of LDHA by small interfering RNA (siRNA) downregulated the LPS‑activated expression of interleukin (IL)‑6, iNOS, and COX‑2, and reduced the production of IL‑6 and nitrites. Pharmacological and genetic suppression of LDHA inhibited the phosphorylation of p38 mitogen‑activated protein kinase. Microarray gene expression profile demonstrated that the genes involved in cell proliferation and inflammation were mainly altered by siRNA‑mediated LDHA suppression. Collectively, the present observations suggest that lactate may be an important metabolite and implicated in regulation of inflammatory response.
Collapse
Affiliation(s)
- Yoo-Jeong Song
- Department of Life Science, Gachon University, Sungnam, Gyeonggi 13120, Republic of Korea
| | - Ahyeon Kim
- Department of Life Science, Gachon University, Sungnam, Gyeonggi 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam, Gyeonggi 13120, Republic of Korea
| | - Han Young Yu
- Department of Life Science, Gachon University, Sungnam, Gyeonggi 13120, Republic of Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Mi Jin Park
- Department of Dermatology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
28
|
Kim W, Cho Y, Song MK, Lim JH, Kim JY, Gye MC, Ryu JC. Effect of particulate matter 2.5 on gene expression profile and cell signaling in JEG-3 human placenta cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1123-1134. [PMID: 29975000 DOI: 10.1002/tox.22591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter the environmental toxicant, with a diameter less than or equal to 2.5 μm (PM2.5 ) is a common cause of several respiratory diseases. In recent years, several studies have suggested that PM2.5 can influence diverse diseases, such as respiratory diseases, cardiovascular diseases, metabolic diseases, dementia, and female reproductive disorders, and unhealthy birth outcomes. In addition, several epidemiological studies have reported that adverse health effects of PM2.5 can differ depending on regional variations. In the present study, to evaluate specific adverse health effects of PM2.5 , we collected two different PM2.5 samples from an underground parking lot and ambient air, and we evaluated cytotoxicity with eight different cell lines originating from human organs. Then, we selected JEG-3 human placenta cells, which show high cytotoxicity to both PM samples. Through RNA sequencing, gene expression profiling, and a gene ontology (GO) analysis of JEG-3 after exposure to two different PM2.5 samples, we identified 1021 commonly expressed genes involved in immune responses, the regulation of apoptosis, and so forth, which are known to induce several adverse health effects. In addition, we identified genes related to the calcium-signaling pathway, steroid hormone biosynthesis, and the cytokine-cytokine receptor interaction through a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then, we confirmed these gene expressions using qRT-PCR, and the protein levels of mitogen-activated protein kinases and COX-2 with progesterone decreased using western blotting and enzyme-linked immunosorbent assay. In conclusion, this study suggests the possible toxic mechanism of human placenta that might be associated with PM2.5 -induced female reproductive disorders.
Collapse
Affiliation(s)
- Woong Kim
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, College of Natural Sciences, Hangyang University, Seoul, South Korea
| | - Yoon Cho
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mi-Kyung Song
- National Center for Efficacy evaluation for Respiratory disease product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Jung-Hee Lim
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jin Young Kim
- Fuel Cell Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, College of Natural Sciences, Hangyang University, Seoul, South Korea
| | - Jae-Chun Ryu
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmacology and Toxicology, Human and Environmental Toxicology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Ghalem M, Murtaza B, Belarbi M, Akhtar Khan N, Hichami A. Antiinflammatory and antioxidant activities of a polyphenol‐rich extract from
Zizyphus lotus
L fruit pulp play a protective role against obesity. J Food Biochem 2018. [DOI: 10.1111/jfbc.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Meriem Ghalem
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR INSERM U1231 Lipides Université de Bourgogne Franche‐Comté Dijon France
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO) University of Abou‐Bekr Belkaid Tlemcen Algeria
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR INSERM U1231 Lipides Université de Bourgogne Franche‐Comté Dijon France
| | - Meriem Belarbi
- Laboratory of Natural Products University of Abou‐Bekr Belkaid Tlemcen Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR INSERM U1231 Lipides Université de Bourgogne Franche‐Comté Dijon France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR INSERM U1231 Lipides Université de Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
30
|
Anti-Inflammatory, Anti-Diabetic, and Anti-Alzheimer's Effects of Prenylated Flavonoids from Okinawa Propolis: An Investigation by Experimental and Computational Studies. Molecules 2018; 23:molecules23102479. [PMID: 30262742 PMCID: PMC6222853 DOI: 10.3390/molecules23102479] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Okinawa propolis (OP) and its major ingredients were reported to have anti-cancer effects and lifespan-extending effects on Caenorhabditis elegans through inactivation of the oncogenic kinase, p21-activated kinase 1 (PAK1). Herein, five prenylated flavonoids from OP, nymphaeol-A (NA), nymphaeol-B (NB), nymphaeol-C (NC), isonymphaeol-B (INB), and 3'-geranyl-naringenin (GN), were evaluated for their anti-inflammatory, anti-diabetic, and anti-Alzheimer's effects using in vitro techniques. They showed significant anti-inflammatory effects through inhibition of albumin denaturation (half maximal inhibitory concentration (IC50) values of 0.26⁻1.02 µM), nitrite accumulation (IC50 values of 2.4⁻7.0 µM), and cyclooxygenase-2 (COX-2) activity (IC50 values of 11.74⁻24.03 µM). They also strongly suppressed in vitro α-glucosidase enzyme activity with IC50 values of 3.77⁻5.66 µM. However, only INB and NA inhibited acetylcholinesterase significantly compared to the standard drug donepezil, with IC50 values of 7.23 and 7.77 µM, respectively. Molecular docking results indicated that OP compounds have good binding affinity to the α-glucosidase and acetylcholinesterase proteins, making non-bonded interactions with their active residues and surrounding allosteric residues. In addition, none of the compounds violated Lipinski's rule of five and showed notable toxicity parameters. Density functional theory (DFT)-based global reactivity descriptors demonstrated their high reactive nature along with the kinetic stability. In conclusion, this combined study suggests that OP components might be beneficial in the treatment of inflammation, type 2 diabetes mellitus, and Alzheimer's disease.
Collapse
|
31
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
32
|
Lee SA, Moon SM, Han SH, Hwang EJ, Hong JH, Park BR, Choi MS, Ahn H, Kim JS, Kim HJ, Chun HS, Kim DK, Kim CS. In Vivo and In Vitro Anti-Inflammatory Effects of Aqueous Extract of Anthriscus sylvestris Leaves. J Med Food 2018; 21:585-595. [DOI: 10.1089/jmf.2017.4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Korea
| | - Sung-Min Moon
- Department of Oral Biology Research Institute, College of Dentistry, Chosun University, Gwangju, Korea
- CStech Research Institute, Gwangju, Korea
| | | | - Eun Ju Hwang
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Korea
| | - Joon Ho Hong
- Nano Bio Research Center, Jeonnam Bioindustry Foundation, Jang Seong, Jeollanam-do, Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, Chodang University, Muan, Muan-eup, Korea
| | - Mi Suk Choi
- Department of Dental Hygiene, Chodang University, Muan, Muan-eup, Korea
| | - Hoon Ahn
- Department of Dental Hygiene, Chodang University, Muan, Muan-eup, Korea
| | - Jae-Sung Kim
- Department of Oral Biology Research Institute, College of Dentistry, Chosun University, Gwangju, Korea
| | - Heung-Joong Kim
- Department of Oral Biology Research Institute, College of Dentistry, Chosun University, Gwangju, Korea
| | - Hong Sung Chun
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Do Kyung Kim
- Department of Oral Biology Research Institute, College of Dentistry, Chosun University, Gwangju, Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Korea
- Department of Oral Biology Research Institute, College of Dentistry, Chosun University, Gwangju, Korea
| |
Collapse
|
33
|
Zhou Y, Lei L, Zhang Z, Zhang R, Song Q, Li X. Cation instructed steroidal prodrug supramolecular hydrogel. J Colloid Interface Sci 2018; 528:10-17. [PMID: 29803956 DOI: 10.1016/j.jcis.2018.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/12/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we propose an ionic coordination strategy for the design of a steroidal prodrug supramolecular hydrogel. The hydrogel composed of nanofibril networks formed spontaneously by the introduction of divalent cations (e.g., Mg2+, Ca2+, Zn2+ and Fe2+) and NH4+ to a succinated dexamethasone (Dex-SA) aqueous solution at room temperature. The formation of the nanofibril structure was dominantly driven by the ionic coordination with the assistance of a delicate balance of multiple noncovalent interactions. A rheological analysis indicated that the formed Ca2+/Dex-SA supramolecular hydrogel exhibits dominant elastic and thixotropic properties. The formed Ca2+/Dex-SA supramolecular hydrogel allowed the gradual release of Dex and Dex-SA in vitro, and the drug release behaviour can be finely tuned by changing the Ca2+ concentration. Storage stability studies showed that Dex-SA in hydrogel underwent an apparent chemical decomposition at 4 °C and 37 °C. In contrast, the Dex-SA xerogel was quite stable without any obvious chemical decomposition of Dex-SA in storage at -20 °C for 35 days, and it was able to turn into a hydrogel again within one minute after rehydration. The formed Ca2+/Dex-SA supramolecular hydrogel caused negligible cytotoxicity against HCEC and L-929 cells at drug concentrations up to 2 mM, as indicated by the in vitro cytotoxicity tests. Additionally, the proposed Ca2+/Dex-SA supramolecular hydrogel displayed a comparable anti-inflammatory efficacy with Dexp via the downregulation of NO, TNF-α and IL-6 expression in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. Overall, the cation instructed steroidal prodrug supramolecular hydrogel might be a promising ophthalmic drug delivery system for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yanfang Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Zhaoliang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Renshu Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Qianqian Song
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
34
|
Da Rocha M, Alemán A, Baccan GC, López-Caballero ME, Gómez-Guillén C, Montero P, Prentice C. Anti-Inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2018. [DOI: 10.1080/10498850.2018.1461160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Meritaine Da Rocha
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, Brazil
| | - Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | | | | | | | - Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Carlos Prentice
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, Brazil
| |
Collapse
|
35
|
The Anti-Inflammatory Effects of Shinbaro3 Is Mediated by Downregulation of the TLR4 Signalling Pathway in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm 2018; 2018:4514329. [PMID: 29849490 PMCID: PMC5907526 DOI: 10.1155/2018/4514329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Shinbaro3, a formulation derived from the hydrolysed roots of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, has been clinically used in the pharamacopuncture treatment of arthritis in Korea. In the present study, Shinbaro3 inhibited NO generation in LPS-induced RAW 264.7 cells in a dose-dependent manner. Shinbaro3 also downregulated the mRNA and protein expression of inflammatory mediators in a dose-dependent manner. Three mechanisms explaining the effects of Shinbaro3 in RAW 264.7 cells were identified as follows: (1) inhibition of the extracellular signal-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase (SAPK)/c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways; (2) suppression of IκB kinase-α/β (IKK-α/β) phosphorylation and nuclear factor-kappa B (NF-κB) subunits in the NF-κB pathway, which are involved in MyD88-dependent signalling; and (3) downregulation of IFN-β mRNA expression via inhibition of interferon regulatory factor 3 (IRF3) and Janus-activated kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) phosphorylation, which is involved in TRIF-dependent signalling. Shinbaro3 exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophage cells through modulation of the TLR4/MyD88 pathways, suggesting that Shinbaro3 is a novel anti-inflammatory therapeutic candidate in the field of pharmacopuncture.
Collapse
|
36
|
Dong J, Qu Y, Li J, Cui L, Wang Y, Lin J, Wang H. Cortisol inhibits NF-κB and MAPK pathways in LPS activated bovine endometrial epithelial cells. Int Immunopharmacol 2018; 56:71-77. [PMID: 29367089 DOI: 10.1016/j.intimp.2018.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023]
Abstract
The bovine uterus is subject to infection after calving, which may lead to endometritis. Elevated cortisol levels have been observed in postpartum cattle. However, the role of cortisol in the inflammatory response of the uterus has not been reported. The aim of this study was to investigate the anti-inflammatory effects of cortisol on lipopolysaccharide (LPS)-induced primary bovine endometrial epithelial cells (BEECs). BEECs were treated with various concentrations of cortisol (5, 15 and 30 ng/mL) in the presence of LPS. The mRNA expression of TLR4 and proinflammatory cytokines was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blotting and immunofluorescence. Cortisol induced the down-regulation of the mRNA expression of toll-like receptor 4 (TLR4) and proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS). Cortisol inhibited the activity of nuclear factor-κB (NF-κB) via blocking the phosphorylation and degradation of IκB. Cortisol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK1/2), p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). These results demonstrated that cortisol may exert its anti-inflammatory actions by regulating NF-κB activation and MAPK phosphorylation.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yang Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yefan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jiaqi Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
37
|
Kim ME, Na JY, Lee JS. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol Immunotoxicol 2018; 40:219-224. [DOI: 10.1080/08923973.2018.1424902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mi Eun Kim
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Ju Yong Na
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| |
Collapse
|
38
|
Mah SH, Teh SS, Ee GCL. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia. PHARMACEUTICAL BIOLOGY 2017; 55:920-928. [PMID: 28152649 PMCID: PMC6130616 DOI: 10.1080/13880209.2017.1285322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. OBJECTIVES This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. MATERIALS AND METHODS S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC50 values. GC-MS analysis was carried out on the n-hexane extract. RESULTS AND DISCUSSION The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. CONCLUSIONS The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.
Collapse
Affiliation(s)
- Siau Hui Mah
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Department of Engineering and Processing, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Gwendoline Cheng Lian Ee
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Tuan Anh HL, Kim DC, Ko W, Ha TM, Nhiem NX, Yen PH, Tai BH, Truong LH, Long VN, Gioi T, Hong Quang T, Minh CV, Oh H, Kim YC, Kiem PV. Anti-inflammatory coumarins from Paramignya trimera. PHARMACEUTICAL BIOLOGY 2017; 55:1195-1201. [PMID: 28245363 PMCID: PMC6130569 DOI: 10.1080/13880209.2017.1296001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 05/21/2023]
Abstract
CONTEXT Paramignya trimera (Oliv.) Burkill (Rutaceae) has been used to treat liver diseases and cancer. However, the anti-inflammatory effects of this medicinal plant and its components have not been elucidated. OBJECTIVE This study investigated chemical constituents of the P. trimera stems and evaluated anti-inflammatory effects of isolated compounds. MATERIALS AND METHODS Cytotoxicity of isolated compounds (5-40 μM) toward BV2 cells was tested using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) for 24 h. Inhibitory effects of isolated compounds (5-40 μM) on nitrite and PGE2 concentrations were determined using Griess reaction and PGE2 ELISA kit, respectively (pretreated with the compounds for 3 h and then stimulated for 18 h with LPS). Inhibitory effects of compounds (5-40 μM) on iNOS and COX-2 protein expression were evaluated by Western blot analysis (pretreated with the compounds for 3 h and then stimulated for 24 h with LPS). RESULTS Seven coumarins were isolated and identified as: ostruthin (1), ninhvanin (2), 8-geranyl-7-hydroxycoumarin (3), 6-(6',7'-dihydroxy-3',7'-dimethylocta-2'-enyl)-7-hydroxycoumarin (4), 6-(7-hydroperoxy-3,7-dimethylocta-2,5-dienyl)-7-hydroxycoumarin (5), 6-(2-hydroxyethyl)-2,2-dimethyl-2H-1-benzopyran (6), and luvangetin (7). Compounds 1-4 and 7 inhibited NO and PGE2 production in LPS-stimulated BV2 cells, with IC50 values ranging from 9.8 to 46.8 and from 9.4 to 52.8 μM, respectively. Ostruthin (1) and ninhvanin (2) were shown to suppress LPS-induced iNOS and COX-2 protein expression. DISCUSSION AND CONCLUSION The present study provides a scientific rationale for the use of P. trimera in the prevention and treatment of neuroinflammatory diseases. Ostruthin and ninhvanin might have potential therapeutic effects and should be considered for further development as new anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Hoang Le Tuan Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Dong-Cheol Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Tran Minh Ha
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Luu Hong Truong
- Southern Institute of Ecology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Vu Ngoc Long
- Southern Institute of Ecology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Tran Gioi
- Khanh Hoa Association for Conservation of Nature and Environment, Khanh Hoa, Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Youn-Chul Kim College of Pharmacy, Wonkwang University, Iksan570-749, Republic of Korea
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- CONTACT Phan Van Kiem Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
40
|
Asperflavin, an Anti-Inflammatory Compound Produced by a Marine-Derived Fungus, Eurotium amstelodami. Molecules 2017; 22:molecules22111823. [PMID: 29109367 PMCID: PMC6150366 DOI: 10.3390/molecules22111823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022] Open
Abstract
In the present study, 16 marine-derived fungi were isolated from four types of marine materials including float, algae, animals and drift woods along with the coast of Jeju Island, Korea and evaluated for anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 24.7 cells. The broth and mycelium extracts from the 16 fungi were prepared and the broth extract (BE) of Eurotium amstelodami (015-2) inhibited nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells without cytotoxicity. By further bioassay-guided isolation, three compounds including asperflavin, neoechinulin A and preechinulin were successfully isolated from the BE of E. amstelodami. It was revealed that asperflavin showed no cytotoxicity up to 200 μM and significantly inhibited LPS-induced NO and PGE2 production in a dose-dependent manner. In the western blot results, asperflavin suppressed only inducible NOS (iNOS), but COX-2 were slightly down-regulated. Asperflavin was also observed to inhibit the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6. In conclusion, this study reports a potential use of asperflavin isolated from a marine fungus, E. amstelodami as an anti-inflammatory agent via suppression of iNOS and pro-inflammatory cytokines as well as no cytotoxicity.
Collapse
|
41
|
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017; 18:194-214. [PMID: 28271656 DOI: 10.1631/jzus.b1600299] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traditional Chinese herbal drugs have been used for thousands of years in Chinese pharmacopoeia. The bark of Magnolia officinalis Rehder & E. Wilson, known under the pinyin name "Houpo", has been traditionally used in Chinese and Japanese medicines for the treatment of anxiety, asthma, depression, gastrointestinal disorders, headache, and more. Moreover, Magnolia bark extract is a major constituent of currently marketed dietary supplements and cosmetic products. Much pharmacological activity has been reported for this herb and its major compounds, notably antioxidant, anti-inflammatory, antibiotic and antispasmodic effects. However, the mechanisms underlying this have not been elucidated and only a very few clinical trials have been published. In vitro and in vivo toxicity studies have also been published and indicate some intriguing features. The present review aims to summarize the literature on M. officinalis bark composition, utilisation, pharmacology, and safety.
Collapse
Affiliation(s)
- Mélanie Poivre
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| |
Collapse
|
42
|
Zahoor I, de Koning DJ, Hocking PM. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature. Genet Sel Evol 2017; 49:69. [PMID: 28931372 PMCID: PMC5607596 DOI: 10.1186/s12711-017-0346-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. RESULTS Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. CONCLUSIONS Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.
Collapse
Affiliation(s)
- Imran Zahoor
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Dirk-Jan de Koning
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Paul M Hocking
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
43
|
Udompong S, Mankhong S, Jaratjaroonphong J, Srisook K. Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl](4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2017; 50:6-13. [DOI: 10.1016/j.intimp.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
|
44
|
Yang D, Xiao CX, Su ZH, Huang MW, Qin M, Wu WJ, Jia WW, Zhu YZ, Hu JF, Liu XH. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:15-23. [PMID: 28732803 DOI: 10.1016/j.phymed.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). PURPOSE The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. STUDY DESIGN/METHODS The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. RESULTS Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. CONCLUSION Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a promising vascular protective drug.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen-Xi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng-Hua Su
- Department of Pharmaceutical Chemistry, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Meng-Wei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Jun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wan-Wan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xin-Hua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
45
|
Evaluation of nitric oxide inhibition effect in LPS-stimulated RAW 264.7 macrophages by phytochemical constituents from Mesua beccariana, Mesua congestiflora, and Mesua ferrea. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed Pharmacother 2017; 93:1055-1064. [PMID: 28738499 DOI: 10.1016/j.biopha.2017.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Codium fragile (Suringar) Hariot has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria and has been shown to have various biological effects. In this study, we evaluated the anti-inflammatory effects of aqueous extract of C. fragile (AECF) using in vitro and in vivo models. Nitric oxide (NO), prostaglandin E2 (PGE2), inflammatory-related mRNAs, and proteins were determined using the Griess assay, enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR), and western blotting, respectively. Our results indicate that pretreatment of cells with AECF (50, 100 and 200μg/mL) significantly inhibited LPS-induced secretion of NO and PGE2 in RAW264.7 cells without cytotoxicity. We also found that AECF (100 and 200μg/mL) inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 expression in a dose-dependent manner. Additionally, pretreatment of cells with AECF (100 and 200μg/mL) inhibited LPS-induced production of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. It also prevented the nuclear translocation of nuclear factor (NF)-κB by suppressing the phosphorylation and degradation of inhibitor of NF-κB (IκB)-α. Furthermore, AECF (100 and 200μg/mL) inhibited the phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. In addition, orally administered 50, 100, and 200mg/kg body weight of AECF dose-dependently suppressed carrageenan-induced rat paw edema thickness by 6%, 31%, and 50% respectively, after 4h. Furthermore, the anti-inflammatory effect was comparable to that observed in animals treated with the standard drug diclofenac sodium (56%) in vivo. Collectively, our results suggest that AECF exerts potential anti-inflammatory effects by suppressing NF-κB activation and MAPKs pathways in vitro, as well as inhibiting carrageenan-induced rat paw edema thickness in vivo. These findings indicate that AECF could be further developed as an anti-inflammatory drug.
Collapse
|
47
|
Debnath T, Kim EK, Deb Nath NC, Lee KG. Therapeutic effects of Ligularia stenocephala against inflammatory bowel disease by regulating antioxidant and inflammatory mediators. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1332008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Trishna Debnath
- Department of Food Science and Biotechnology, Dongguk University - Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Republic of Korea
| | | | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University - Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
48
|
Bi X, Wang P, Ma Q, Han L, Wang X, Mu Y, Guan P, Qu X, Wang Z, Huang X. Anti-Inflammatory Activities and Liver Protection of Alisol F and 25-Anhydroalisol F through the Inhibition of MAPK, STAT3, and NF-κB Activation In Vitro and In Vivo. Molecules 2017; 22:molecules22060951. [PMID: 28594379 PMCID: PMC6152757 DOI: 10.3390/molecules22060951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Alisol F and 25-anhydroalisol F isolated from Alisma orientale, were proved to exhibit anti-inflammatory potential in our previous work. In the current study, the anti-inflammatory effects and action mechanisms of alisol F and 25-anhydroalisol F were investigated in vitro. Moreover, the pharmacological effects of alisol F in lipopolysaccharide (LPS)/d-galactosamine (d-gal)-induced acute liver-injured mice were evaluated. The results demonstrated that alisol F and 25-anhydroalisol F could suppress LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), as well as inhibit the mRNA and protein levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2). In addition, we investigated the role of alisol F and 25-anhydroalisol F in mediating mitogen-activated protein kinases (MAPKs), signal transducers, and activators of transcription 3 (STAT3) and nuclear factor κB (NF-κB) pathways involved in the inflammation process of LPS-stimulated RAW 264.7 cells. The phosphorylation of ERK, JNK, p38, and STAT3, and the NF-κB signaling pathway, were obviously suppressed in alisol F and 25-anhydroalisol F treated cells. Results obtained from in vitro experiments suggested alisol F obviously improved liver pathological injury by inhibiting the production of TNF-α, IL-1β, and IL-6, and significantly decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in LPS/d-gal-induced mice. Furthermore, the reduction of phosphorylation of ERK and JNK, as well as suppression of the NF-κB signaling pathway, were also observed in liver tissues of the alisol F-treated mice model. Alisol F and 25-anhydroalisol F may serve as potential leads for development of anti-inflammatory agents for acute liver failure treatment.
Collapse
Affiliation(s)
- Xiaoxu Bi
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Qingjuan Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Li Han
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xingbo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Yu Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Peipei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xiaodan Qu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Zhanyou Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xueshi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
49
|
Toopcham T, Mes JJ, Wichers HJ, Yongsawatdigul J. Immunomodulatory activity of protein hydrolysates derived from Virgibacillus halodenitrificans SK1-3-7 proteinase. Food Chem 2017; 224:320-328. [PMID: 28159274 DOI: 10.1016/j.foodchem.2016.12.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/12/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Modulation of inflammation-related immune response on THP-1 macrophages of protein hydrolysates derived from tilapia mince, casein and pea protein, were investigated. The protein substrates were hydrolyzed by Virgibacillus halodenitrificans SK1-3-7 proteinase. The degree of hydrolysis (DH) of casein was observed to be the highest throughout the course of hydrolysis. When challenging THP-1 macrophages, tilapia mince hydrolysate (TMH) enhanced innate immunity through induction of IL-1β and COX-2 expression. Anti-inflammatory activity was observed in casein hydrolysate (CH) and pea protein hydrolysate (PPH) by attenuating lipopolysaccharide- (LPS) induced pro-inflammatory gene expression in THP-1 macrophages. CH suppressed IL-1β, IL-6, IL-8, TNF-α and COX-2, while PPH reduced LPS-induced IL-6 and TNF-α responses. In addition, CH and PPH showed stronger suppression of LPS-induced pro-inflammatory gene expression compared with non-hydrolyzed casein and pea protein. These results suggest that TMH, CH and PPH prepared from V. halodenitrificans SK1-3-7 proteinase are potential functional food ingredients with immunomodulatory activity.
Collapse
Affiliation(s)
- Tidarat Toopcham
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jurriaan J Mes
- Food & Biobased Research, Wageningen University and Research Centre, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry J Wichers
- Food & Biobased Research, Wageningen University and Research Centre, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
50
|
Zhuang L, Chen LF, Zhang YB, Liu Z, Xiao XH, Tang W, Wang GC, Song WJ, Li YL, Li MM. Watsonianone A from Rhodomyrtus tomentosa Fruit Attenuates Respiratory-Syncytial-Virus-Induced Inflammation In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3481-3489. [PMID: 28436225 DOI: 10.1021/acs.jafc.7b00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens. Immoderate inflammation plays a great role in causing RSV-induced diseases. In the present study, watsonianone A, isolated from the fruit of Rhodomyrtus tomentosa (Ait.) Hassk, was found to show a good inhibitory effect on RSV-induced NO production, with a half-maximal inhibitory concentration of 37.2 ± 1.6 μM. Enzyme-linked immunosorbent assay and fluorescence quantitative polymerase chain reaction analyses indicated that watsonianone A markedly reduced both mRNA and protein levels of tumor necrosis factor α, interleukin 6, and monocyte chemoattractant protein 1 in RSV-infected RAW264.7 cells. Mechanistically, watsonianone A inhibited nuclear factor κB (NF-κB) activation by suppressing IκBα phosphorylation. Further analysis revealed that watsonianone A activated the thioredoxin system and decreased intracellular reactive oxygen species (ROS) levels, which are closely associated with NF-κB activation in RSV-infected cells. These results reveal that watsonianone A can attenuate RSV-induced inflammation via the suppression of ROS-sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Ling Zhuang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Li-Feng Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhong Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Xu-Hui Xiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wei Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wen-Jun Song
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|