1
|
Kim JH, Seo HJ, Noh BW, He MT, Choi YH, Cho EJ, Noh JS. Protective effects of Cuscuta chinensis Lam. extract against learning and memory dysfunction induced by streptozotocin and amyloid β 25-35 in vivo model. Arch Physiol Biochem 2025:1-13. [PMID: 40353733 DOI: 10.1080/13813455.2025.2502861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
Alzheimer's disease (AD) is associated with hyperglycaemia and amyloid beta (Aβ) accumulation. In the present study, we investigated whether an aqueous extract of Cuscuta chinensis Lam. (CCWE) improved cognitive disorder in a hyperglycaemic and cognitive-impaired mouse model. Hyperglycaemia was induced by streptozotocin (STZ, 50 mg/kg) and a single intracerebroventricular injection of Aβ25-35 (25 nM) was performed. The Aβ25-35-injected hyperglycaemic mice were then administered CCWE (100 or 200 mg/kg/day) for 14-d. The protective effects of the CCWE were evaluated by behavioural tests and western blot analysis. The bioactive compounds in CCWE were isolated by UPLC-QTOF/MS analysis. The administration of CCWE improved the learning and memory function in STZ/Aβ25-35-injected mice. Moreover, CCWE positively regulated the amyloidogenic pathway-related proteins and insulin signalling-related proteins. The bioactive components in CCWE were also identified. These findings suggest the possibility of CCWE as a potential candidate for the dual-targeting treatment of hyperglycaemia and AD.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, Republic of Korea
| |
Collapse
|
2
|
Joodi SA, Ibrahim WW, Khattab MM. Drugs repurposing in the experimental models of Alzheimer's disease. Inflammopharmacology 2025; 33:195-214. [PMID: 39752040 PMCID: PMC11799062 DOI: 10.1007/s10787-024-01608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy. Additionally, we demonstrated the different repurposed drugs in the experimental models of AD including the anti-inflammatory, anti-hypertensive, anti-diabetic, antiepileptic, antidepressant and anticancer drugs. Further, we showed the pipeline and FDA approved drugs for AD. The repurposed drugs have a promising therapeutic activity against AD, confirming the value of the drugs repurposing technique to elucidate curative therapy for AD.
Collapse
Affiliation(s)
- Sheer A Joodi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [DOI: https:/doi.org/10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
5
|
Tian Y, Jing G, Ma M, Yin R, Zhang M. Microglial activation and polarization in type 2 diabetes-related cognitive impairment: A focused review of pathogenesis. Neurosci Biobehav Rev 2024; 165:105848. [PMID: 39142542 DOI: 10.1016/j.neubiorev.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-β deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
6
|
Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y, Shen J, Yang R. The role of PI3K signaling pathway in Alzheimer's disease. Front Aging Neurosci 2024; 16:1459025. [PMID: 39399315 PMCID: PMC11466886 DOI: 10.3389/fnagi.2024.1459025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressively neurodegenerative disease. The best-characterized hallmark of AD, which is marked by behavioral alterations and cognitive deficits, is the aggregation of deposition of amyloid-beta (Aβ) and hyper-phosphorylated microtubule-associated protein Tau. Despite decades of experimental progress, the control rate of AD remains poor, and more precise deciphering is needed for potential therapeutic targets and signaling pathways involved. In recent years, phosphoinositide 3-kinase (PI3K) and Akt have been recognized for their role in the neuroprotective effect of various agents, and glycogen synthase kinase 3 (GSK3), a downstream enzyme, is also crucial in the tau phosphorylation and Aβ deposition. An overview of the function of PI3K/Akt pathway in the pathophysiology of AD is provided in this review, along with a discussion of recent developments in the pharmaceuticals and herbal remedies that target the PI3K/Akt signaling pathway. In conclusion, despite the challenges and hurdles, cumulative findings of novel targets and agents in the PI3K/Akt signaling axis are expected to hold promise for advancing AD prevention and treatment.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yankai Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Suyan Chang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Chenlong Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjiang Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
7
|
Kale MB, Bhondge HM, Wankhede NL, Shende PV, Thanekaer RP, Aglawe MM, Rahangdale SR, Taksande BG, Pandit SB, Upaganlawar AB, Umekar MJ, Kopalli SR, Koppula S. Navigating the intersection: Diabetes and Alzheimer's intertwined relationship. Ageing Res Rev 2024; 100:102415. [PMID: 39002642 DOI: 10.1016/j.arr.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Rushikesh P Thanekaer
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sunil B Pandit
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
8
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
9
|
Farkhani S, Payab M, Sharifi F, Sharifi Y, Mohammadi S, Shadman Z, Fahimfar N, Heshmat R, Hadizadeh A, Shafiee G, Nabipour I, Tavakoli F, Larijani B, Ebrahimpur M, Ostovar A. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord 2024; 23:639-646. [PMID: 38932839 PMCID: PMC11196454 DOI: 10.1007/s40200-023-01325-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/27/2023] [Indexed: 06/28/2024]
Abstract
Background Persistent uncontrolled hyperglycemia is recognized as one of the risk factors for cognitive disorders. Accordingly, both type 1 and type 2 diabetes may predispose individuals to cognitive impairment, particularly in cases where glycemic control is insufficient. The objective of this comprehensive study is to separately assess cognitive dysfunctions in diabetic and non-diabetic older adults. Methods This cross-sectional study is part of phase 2 of the Bushehr elderly health program (BEHP). Cognitive function was evaluated using the Mini-cog and categorical verbal fluency tests (CFTs). Patients were classified as non-diabetics, pre-diabetics, or diabetics based on the diagnostic criteria for diabetes mellitus (DM). To compare the means of the two groups, we utilized the t-test or the Mann-Whitney test. Additionally Multivariable logistic regression models were used to determine the association between pre-diabetes or DM and cognitive impairment. Results Out of 1533 participants, 693 (45.2%) were identified as having cognitive impairment. The average hemoglobin A1C was higher in participants with cognitive impairment compared to those without cognitive impairment. (5.8 ± 1.6% vs. 5.5 ± 1.4%, P = 0.004). Furthermore, the mean blood glucose levels were found to be more elevated in cases of cognitive impairment (108.0 ± 47.4 mg/dL vs. 102.1 ± 0.35 mg/dL, P = 0.002). After adjusting for age, gender, body mass index (BMI), waist circumference, amount of physical activity, and smoking, the multivariable logistic regression model, declared an association between diabetes and cognitive impairment (OR = 1.48, P = 0.003). In addition, older patients, females, widows, and individuals with elevated LDL-Cs and those with high blood pressure were found to be more vulnerable to cognitive impairment. Conclusion The Bushehr Elderly Health Program (BEHP) study revealed that individuals affected with cognitive impairment may exhibit higher levels of HbA1c. This suggests a positive correlation between elevated HbA1c and cognitive impairment.
Collapse
Affiliation(s)
- Sara Farkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sammy Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farnaz Tavakoli
- Nephrology and Kidney Transplant Ward, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
11
|
Sonoda A, Shimada T, Saito K, Kosugi R, Taguchi Y, Inoue T. Light and Shadow of Na-Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Points for Improvement Based on Our Clinical Experience. Int J Endocrinol 2024; 2024:3937927. [PMID: 38304078 PMCID: PMC10834091 DOI: 10.1155/2024/3937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
We analyzed the effect of Na-glucose cotransporter 2 inhibitors (SGLT2-I) in diabetic patients visiting our hospital. The study included 236 patients treated with SGLT2-I alone or with codiabetic drugs for at least two years. We analyzed overtime changes in glycosylated hemoglobin A1c (HbA1c) in the patients by repeated analyses of variance (ANOVA) and evaluated the therapeutic effect. HbA1c levels decreased significantly in the first six months after treatment. Afterward, they leveled off and increased slightly over the next two years. Six months after treatment, the mean (SD) of HbA1c was 8.19 (1.46) %; the mean difference dropped by 0.91%, and HbA1c in mild DM2 did not drop by below 8.0%. Overall, there was only a slight improvement. We performed multivariate logistic regression analysis using a model with or without improvement as the objective variable and several explanatory variables. Na and Hct were significant factors. They increased considerably over six months and then leveled off. eGFR significantly reduced in the hyperfiltration group six months after treatment. The annual decline rate in eGFR was also faster, even in the nonhyperfiltration group than in the healthy subjects, which may be a characteristic of renal clearance in SGLT2-I treatment. In conclusion, SGLT2-I is an excellent antidiabetic, nephroprotective agent to eliminate hyperfiltration, but unfortunately, SGLT2-I alone does not have enough power to reduce blood glucose levels. SGLT2-I, with insulin or insulin secretagogues, enhances insulin resistance, induces hyperinsulinemia, and exacerbates type 2 DM. In contrast, SGLT2-I, with noninsulin antidiabetic agents and a low-carbohydrate diet, may bring better results.
Collapse
Affiliation(s)
- Akihiro Sonoda
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Toshio Shimada
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Clinical Laboratory, Shizuoka General Hospital, Shizuoka, Japan
| | - Kohei Saito
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Division of Diabetes, Endocrinology, and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| | - Rieko Kosugi
- Division of Diabetes, Endocrinology, and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| | - Yoshitaka Taguchi
- Division of Diabetes, Endocrinology, and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| | - Tatsuhide Inoue
- Division of Diabetes, Endocrinology, and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
12
|
Maryam K, Ali H. Aerobic and resistance exercises affect the BDNF/TrkB signaling pathway, and hippocampal neuron density of high-fat diet-induced obese elderly rats. Physiol Behav 2023; 264:114140. [PMID: 36870384 DOI: 10.1016/j.physbeh.2023.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Obesity, caused by a high-fat diet (HFD) in elderly, is a risk factor for insulin resistance and a precursor to diabetes and can lead to impaired cognitive function. Physical exercise has positive effects on decrease obesity and improvement brain function. We investigated which type of aerobic (AE) or resistance (RE) exercise can be more effective in reducing HFD-induced cognitive dysfunction in obese elderly rats. 48 male Wistar rats (19-monthold) were divided into six groups: Healthy control (CON), CON+AE, CON+RE, HFD, HFD+AE, and HFD+RE. Obesity was induced by 5 months of HFD feeding in older rats. After obesity confirmation, RT (with a range of 50% to 100%1RM/3 days/week) and AE (running at 8-m/min for 15-min to 26-m/min for 60-min /5 days/week) was performed for 12-weeks. Morris water maze Test was used to evaluate cognitive performance. All data were analyzed using two-way statistical test of variance. The results showed that obesity had a negative effect on glycemic index, increased inflammation, decreased antioxidant levels, decreased BDNF/TrkB and decreased nerve density in hippocampal tissue. The Morris water maze results clearly showed cognitive impairment in the obesity group. But 12 weeks after AE and RE, all the measured variables were on the improvement path, and in general, no difference was observed between the two exercise methods. Two mods of exercise (AE and RE) may be having same effects on nerve cell density, inflammatory, antioxidant and functional status of hippocampus of obese rats. Each of the AE and RE can create beneficial effects on the cognitive function of the elderly.
Collapse
Affiliation(s)
- Keshvari Maryam
- Faculty of Sport Sciences, Exercise Physiology Department, Bu-Ali Sina University, Hamadan, Iran
| | - Heidarianpour Ali
- Faculty of Sport Sciences, Exercise Physiology Department, Bu-Ali Sina University, Hamadan, Iran.
| |
Collapse
|
13
|
Lin HC, Chung CH, Chen LC, Wang JY, Chen CC, Huang KY, Tsai MH, Chien WC, Lin HA. Pioglitazone use increases risk of Alzheimer's disease in patients with type 2 diabetes receiving insulin. Sci Rep 2023; 13:6625. [PMID: 37095270 PMCID: PMC10126143 DOI: 10.1038/s41598-023-33674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Pioglitazone is an insulin resistance inhibitor widely used as monotherapy or combined with metformin or insulin in treating type 2 diabetes mellitus (T2DM). This study further investigated the relationship between pioglitazone use and the risk of developing Alzheimer's disease (AD) in patients newly diagnosed with T2DM, and examined the potential impact of insulin use on this association. Data were extracted from the National Health Insurance Research Database (NHIRD) of Taiwan. Our data exhibited that the risk of developing AD in the pioglitazone group was 1.584-fold (aHR = 1.584, 95% CI 1.203-1.967, p < 0.05) higher than that in the non-pioglitazone controls. Compared to patients without both insulin and pioglitazone, higher cumulative risk of developing AD was found in patients receiving both insulin and pioglitazone (aHR = 2.004, 95% CI = 1.702-2.498), pioglitazone alone (aHR = 1.596, 95% CI = 1.398-1.803), and insulin alone (aHR = 1.365, 95% CI = 1.125-1.572), respectively (all p < 0.05). A similar observation also found in the evaluation the use of diabetic drugs with a cumulative defined daily dose (cDDD). No interaction between pioglitazone and major risk factors (comorbidities) of AD was observed. In conclusion, alternative drug therapies may be an effective strategy for reducing risk of developing AD in T2DM patients.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei City, 11490, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Jui-Yang Wang
- Department of Family Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ming-Hang Tsai
- Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, 11490, Taiwan.
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, No. 131, Jiankang Rd., Songshan District, Taipei City, 10581, Taiwan.
| |
Collapse
|
14
|
Mielke MM, Aggarwal NT, Vila‐Castelar C, Agarwal P, Arenaza‐Urquijo EM, Brett B, Brugulat‐Serrat A, DuBose LE, Eikelboom WS, Flatt J, Foldi NS, Franzen S, Gilsanz P, Li W, McManus AJ, van Lent DM, Milani SA, Shaaban CE, Stites SD, Sundermann E, Suryadevara V, Trani J, Turner AD, Vonk JMJ, Quiroz YT, Babulal GM, for the Diversity and Disparity Professional Interest Area Sex and Gender Special Interest Group. Consideration of sex and gender in Alzheimer's disease and related disorders from a global perspective. Alzheimers Dement 2022; 18:2707-2724. [PMID: 35394117 PMCID: PMC9547039 DOI: 10.1002/alz.12662] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 01/31/2023]
Abstract
Sex or gender differences in the risk of Alzheimer's disease and related dementias (ADRD) differ by world region, suggesting that there are potentially modifiable risk factors for intervention. However, few epidemiological or clinical ADRD studies examine sex differences; even fewer evaluate gender in the context of ADRD risk. The goals of this perspective are to: (1) provide definitions of gender, biologic sex, and sexual orientation. and the limitations of examining these as binary variables; (2) provide an overview of what is known with regard to sex and gender differences in the risk, prevention, and diagnosis of ADRD; and (3) discuss these sex and gender differences from a global, worldwide perspective. Identifying drivers of sex and gender differences in ADRD throughout the world is a first step in developing interventions unique to each geographical and sociocultural area to reduce these inequities and to ultimately reduce global ADRD risk. HIGHLIGHTS: The burden of dementia is unevenly distributed geographically and by sex and gender. Scientific advances in genetics and biomarkers challenge beliefs that sex is binary. Discrimination against women and sex and gender minority (SGM) populations contributes to cognitive decline. Sociocultural factors lead to gender inequities in Alzheimer's disease and related dementias (ADRD) worldwide.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Neelum T. Aggarwal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Clara Vila‐Castelar
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
| | - Puja Agarwal
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Benjamin Brett
- Department of NeurosurgeryMedical College of WisconsinWisconsinMilwaukeeUSA
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Atlantic Fellow for Equity in Brain HealthThe University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lyndsey E. DuBose
- Department of Medicine, Division of GeriatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Willem S. Eikelboom
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jason Flatt
- Social and Behavioral Health Program, School of Public HealthUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Nancy S. Foldi
- Department of Psychology, Queens College and The Graduate CenterCity University of New YorkNew YorkUSA
- Department of PsychiatryNew York University Long Island School of MedicineNew YorkUSA
| | - Sanne Franzen
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alison J. McManus
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Debora Melo van Lent
- UT Health San AntonioGlenn Biggs Institute for Alzheimer's and Neurodegenerative diseasesSan AntonioTexasUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sadaf Arefi Milani
- Division of Geriatrics & Palliative Medicine, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shana D. Stites
- Department of PsychiatryPerlman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Erin Sundermann
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Vidyani Suryadevara
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jean‐Francoise Trani
- Department of Public HealthWashington University in St. LouisSt. LouisMissouriUSA
| | - Arlener D. Turner
- Department of Psychiatry & Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jet M. J. Vonk
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Julius Center for Health Sciences and Primary CareDepartment of EpidemiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
- Grupo de Neurociencias de Antioquia of Universidad de AntioquiaMedellinColumbiaUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMississippiUSA
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- Department of Psychology, Faculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
| | | |
Collapse
|
15
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
16
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Artichoke Leaf Extract-Mediated Neuroprotection against Effects of Aflatoxin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4421828. [PMID: 35909495 PMCID: PMC9325642 DOI: 10.1155/2022/4421828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Attenuation of adverse effects of aflatoxin (AFB1) in brains of B1 rats by extracts of leaves of artichoke was studied. The active ingredients in extracts of leaves of artichoke, Cynara scolymus L., were determined by HPLC analysis. In the 42-day experiment, rats were exposed to either sterile water, 4% DMSO, 100 mg artichoke leaf extract/kg body mass, 72 μg aflatoxin B1/kg body mass, or AFB1 plus artichoke leaf extract. Neurotoxicity of AFB1 was determined by an increase in profile of lipids, augmentation of plasmatic glucose and concentrations of insulin, oxidative stress, increased activities of cholinergic enzymes, and a decrease in activities of several antioxidant enzymes and pathological changes in brain tissue. Extracts of artichoke leaf significantly reduced adverse effects caused by AFB1, rescuing most of the parameters to values similar to unexposed controls, which demonstrated that adverse, neurotoxic effects caused by aflatoxin B1 could be significantly reduced by simultaneous dietary supplementation with artichoke leaf extract, which itself is not toxic.
Collapse
|
18
|
Yoo JE, Han K, Kim B, Park SH, Kim SM, Park HS, Nam GE. Changes in Physical Activity and the Risk of Dementia in Patients With New-Onset Type 2 Diabetes: A Nationwide Cohort Study. Diabetes Care 2022; 45:1091-1098. [PMID: 35192690 DOI: 10.2337/dc21-1597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/28/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the association between interval changes in physical activity (PA) and dementia risk among patients with new-onset type 2 diabetes. RESEARCH DESIGN AND METHODS We identified 133,751 participants newly diagnosed with type 2 diabetes in a health screening (2009-2012), with a follow-up health screening within 2 years (2010-2015). PA level changes were categorized into continuous lack of PA, decreaser, increaser, and continuous PA groups. Dementia was determined using dementia diagnosis codes and antidementia drug prescriptions. RESULTS During the median follow-up of 4.8 years, 3,240 new cases of all-cause dementia developed. Regular PA was associated with lower risks of all-cause dementia (adjusted hazard ratio [aHR] 0.82; 95% CI 0.75-0.90), Alzheimer disease (AD) (aHR 0.85; 95% CI 0.77-0.95), and vascular dementia (VaD) (aHR 0.78; 95% CI 0.61-0.99). Increasers who started to engage in regular PA had a lower risk of all-cause dementia (aHR 0.86; 95% CI 0.77-0.96). Moreover, the risk was further reduced among those with continuous regular PA: all-cause dementia (aHR 0.73; 95% CI 0.62-0.85), AD (aHR 0.74; 95% CI 0.62-0.88), and VaD (aHR 0.62; 95% CI 0.40-0.94). Consistent results were noted in various subgroup analyses. CONCLUSIONS Regular PA was independently associated with lower risks of all-cause dementia, AD, and VaD among individuals with new-onset type 2 diabetes. Those with continuous regular PA and, to a lesser extent, those who started to engage in regular PA had a lower risk of dementia. Regular PA should be encouraged to prevent dementia in high-risk populations and those with new-onset type 2 diabetes.
Collapse
Affiliation(s)
- Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Sang-Hyun Park
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Seon Mee Kim
- Department of Family Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Soon Park
- Department of Family Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Republic of Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
20
|
Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF. Higher baseline inflammatory marker levels predict greater cognitive decline in older people with type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 Diabetes Study. Diabetologia 2022; 65:467-476. [PMID: 34932135 PMCID: PMC8803673 DOI: 10.1007/s00125-021-05634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS We aimed to determine the longitudinal association of circulating markers of systemic inflammation with subsequent long-term cognitive change in older people with type 2 diabetes. METHODS The Edinburgh Type 2 Diabetes Study is a prospective cohort study of 1066 adults aged 60 to 75 years with type 2 diabetes. Baseline data included C-reactive protein, IL-6, TNF-α fibrinogen and neuropsychological testing on major cognitive domains. Cognitive testing was repeated after 10 years in 581 participants. A general cognitive ability score was derived from the battery of seven individual cognitive tests using principal component analysis. Linear regression was used to determine longitudinal associations between baseline inflammatory markers and cognitive outcomes at follow-up, with baseline cognitive test results included as covariables to model cognitive change over time. RESULTS Following adjustment for age, sex and baseline general cognitive ability, higher baseline fibrinogen and IL-6 were associated with greater decline in general cognitive ability (standardised βs = -0.059, p=0.032 and -0.064, p=0.018, respectively). These associations lost statistical significance after adjustment for baseline vascular and diabetes-related covariables. When assessing associations with individual cognitive tests, higher IL-6 was associated with greater decline in tests of executive function and abstract reasoning (standardised βs = 0.095, p=0.006 and -0.127, p=0.001, respectively). Similarly, raised fibrinogen and C-reactive protein levels were associated with greater decline in processing speed (standardised βs = -0.115, p=0.001 and -0.111, p=0.001, respectively). These associations remained statistically significant after adjustment for the diabetes- and vascular-related risk factors. CONCLUSIONS/INTERPRETATION Higher baseline levels of inflammatory markers, including plasma IL-6, fibrinogen and C-reactive protein, were associated with subsequent cognitive decline in older people with type 2 diabetes. At least some of this association appeared to be specific to certain cognitive domains and to be independent of vascular and diabetes-related risk factors.
Collapse
Affiliation(s)
- Anniek J Sluiman
- Usher Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | | | | | | | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jackie F Price
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
El Sayed NS, Kandil EA, Ghoneum MH. Enhancement of Insulin/PI3K/Akt Signaling Pathway and Modulation of Gut Microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in Sporadic Alzheimer's Disease Model in Mice. Front Pharmacol 2021; 12:666502. [PMID: 34366841 PMCID: PMC8346028 DOI: 10.3389/fphar.2021.666502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 02/04/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and β-amyloid (Aβ1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aβ1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3β and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.
Collapse
Affiliation(s)
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
22
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Shim M, Bang WJ, Oh CY, Lee YS, Cho JS. Androgen deprivation therapy and risk of cognitive dysfunction in men with prostate cancer: is there a possible link? Prostate Int 2021; 10:68-74. [PMID: 35510099 PMCID: PMC9042678 DOI: 10.1016/j.prnil.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023] Open
Abstract
The expansion of the indication to use androgen deprivation therapy (ADT) to treat patients with advanced or metastatic prostate cancer has dramatically increased over the recent decades, resulting in the progress of patients’ survival. However, chronic health implications can become more apparent as the number of long-term cancer survivors is expected to be increased along with the adverse effect of ADT. In particular, interest in investigating ADT, especially luteinizing hormone-releasing hormone (LHRH) agonist association with cognitive dysfunction has been growing. Previous studies in animals and humans suggest that the level of androgen decreases with age and that cognitive decline occurs with decreases in androgen. Correspondingly, some of the extensive studies using common neurocognitive tests have shown that LHRH agonists may affect specific domains of cognitive function (e.g., visuospatial abilities and executive function). However, the results from these studies have not consistently demonstrated the association because of its intrinsic limitations. Large-scale studies based on electronic databases have also failed to show consistent results to make decisive conclusions because of its heterogeneity, complexity of covariates, and possible risk of biases. Thus, this review article summarizes key findings and discusses the results of several studies investigating the ADT association with cognitive dysfunction and risk of dementia from various perspectives.
Collapse
|
24
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
25
|
Gardener SL, Rainey-Smith SR. The dietary approaches to stop hypertension (DASH) and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets and brain aging. FACTORS AFFECTING NEUROLOGICAL AGING 2021:553-565. [DOI: 10.1016/b978-0-12-817990-1.00048-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153320. [PMID: 32920285 DOI: 10.1016/j.phymed.2020.153320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are primarily characterized by selective neuronal loss in the brain. Alzheimer's disease as the most common NDDs and the most prevalent cause of dementia is characterized by Amyloid-beta deposition, which leads to cognitive and memory impairment. Parkinson's disease is a progressive neurodegenerative disease characterized by the dramatic death of dopaminergic neuronal cells, especially in the SNc and caused alpha-synuclein accumulation in the neurons. Silymarin, an extract from seeds of Silybum marianum, administered mostly for liver disorders and also had anti-oxidant and anti-carcinogenic activities. PURPOSE The present comprehensive review summarizes the beneficial effects of Silymarin in-vivo and in-vitro and even in animal models for these NDDs. METHODS A diagram model for systematic review is utilized for this search. The research is conducted in the following databases: PubMed, Web of Science, Scopus, and Science Direct. RESULTS Based on the inclusion criteria, 83 studies were selected and discussed in this review. CONCLUSION Lastly, we review the latest experimental evidences supporting the potential effects of Silymarin, as a neuroprotective agent in NDDs.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
| | - Zahra Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Yoo ID, Park MW, Cha HW, Yoon S, Boonpraman N, Yi SS, Moon JS. Elevated CLOCK and BMAL1 Contribute to the Impairment of Aerobic Glycolysis from Astrocytes in Alzheimer's Disease. Int J Mol Sci 2020; 21:E7862. [PMID: 33114015 PMCID: PMC7660350 DOI: 10.3390/ijms21217862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Altered glucose metabolism has been implicated in the pathogenesis of Alzheimer's disease (AD). Aerobic glycolysis from astrocytes is a critical metabolic pathway for brain energy metabolism. Disturbances of circadian rhythm have been associated with AD. While the role of circadian locomotor output cycles kaput (CLOCK) and brain muscle ARNT-like1 (BMAL1), the major components in the regulation of circadian rhythm, has been identified in the brain, the mechanism by which CLOCK and BMAL1 regulates the dysfunction of astrocytes in AD remains unclear. Here, we show that the protein levels of CLOCK and BMAL1 are significantly elevated in impaired astrocytes of cerebral cortex from patients with AD. We demonstrate that the over-expression of CLOCK and BMAL1 significantly suppresses aerobic glycolysis and lactate production by the reduction in hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) protein levels in human astrocytes. Moreover, the elevation of CLOCK and BMAL1 induces functional impairment by the suppression of glial fibrillary acidic protein (GFAP)-positive filaments in human astrocytes. Furthermore, the elevation of CLOCK and BMAL1 promotes cytotoxicity by the activation of caspase-3-dependent apoptosis in human astrocytes. These results suggest that the elevation of CLOCK and BMAL1 contributes to the impairment of astrocytes by inhibition of aerobic glycolysis in AD.
Collapse
Affiliation(s)
- Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan 31151, Chungcheongnam-do, Korea;
| | - Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Korea; (M.W.P.); (H.W.C.)
| | - Hyeon Woo Cha
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Korea; (M.W.P.); (H.W.C.)
| | - Sunmi Yoon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (S.Y.); (N.B.)
| | - Napissara Boonpraman
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (S.Y.); (N.B.)
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (S.Y.); (N.B.)
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Korea; (M.W.P.); (H.W.C.)
| |
Collapse
|
28
|
Choi JW, Kim TH, Han E. Anemia and incidence of dementia in patients with new-onset type 2 diabetes: a nationwide population-based cohort study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001289. [PMID: 32747381 PMCID: PMC7398094 DOI: 10.1136/bmjdrc-2020-001289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION This study aimed to examine the association between anemia and the incidence of dementia in patients with new-onset type 2 diabetes. RESEARCH DESIGN AND METHODS This study used the Korean National Health Insurance Service-Health Screening Cohort and included 32 590 participants aged ≥40 years who were diagnosed with new-onset type 2 diabetes between 2004 and 2007 and followed up until 2013. Anemia was defined according to the criteria provided by the WHO, hemoglobin <120 g/L for women and <130 g/L for men, and was measured from after diagnosis date of type 2 diabetes to 2007. Dementia was defined by the Classification of Diseases 10th revision code as primary diagnosis and was measured from after hemoglobin measurement to 2013. We calculated the adjusted HR (AHR) and 95% CI to assess the risk of dementia using multivariable Cox proportional hazards regression models. RESULTS We identified 1682 patients who developed dementia within a 7.5-year follow-up. Among patients with type 2 diabetes, patients with anemia were associated with an increased risk of dementia than those without anemia (AHR, 1.21; 95% CI 1.06 to 1.39). Patients with mild (AHR, 1.18; 95% CI 1.03 to 1.38) and moderate (AHR, 1.39; 95% CI 1.06 to 1.83) anemia were associated with an increased risk of dementia than those without anemia among patients with type 2 diabetes. Men (AHR, 1.47; 95% CI 1.16 to 1.83) and middle-aged adults (AHR, 1.31; 95% CI 1.03 to 1.75) with anemia were associated with an increased risk of dementia than their counterparts without anemia among patients with type 2 diabetes. CONCLUSIONS Our findings suggest that anemia is significantly associated with an increased risk of dementia among patients with newly diagnosed type 2 diabetes.
Collapse
Affiliation(s)
- Jae Woo Choi
- College of Pharmacy, Yonsei University, Incheon, Korea (the Republic of)
| | - Tae Hyun Kim
- Graduate School of Public Health, Yonsei University, Seoul, Korea (the Republic of)
| | - Euna Han
- College of Pharmacy, Yonsei University, Incheon, Korea (the Republic of)
| |
Collapse
|
29
|
Blumenthal JA, Smith PJ, Mabe S, Hinderliter A, Welsh-Bohmer K, Browndyke JN, Doraiswamy PM, Lin PH, Kraus WE, Burke JR, Sherwood A. Longer Term Effects of Diet and Exercise on Neurocognition: 1-Year Follow-up of the ENLIGHTEN Trial. J Am Geriatr Soc 2020; 68:559-568. [PMID: 31755550 PMCID: PMC7056586 DOI: 10.1111/jgs.16252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the longer term changes in executive functioning among participants with cardiovascular disease (CVD) risk factors and cognitive impairments with no dementia (CIND) randomized to a diet and exercise intervention. DESIGN A 2 (Exercise) × 2 (Dietary Approaches to Stop Hypertension [DASH] eating plan) factorial randomized clinical trial. SETTING Academic tertiary care medical center. PARTICIPANTS Volunteer sample of 160 older sedentary adults with CIND and at least one additional CVD risk factor enrolled in the ENLIGHTEN trial between December 2011 and March 2016. INTERVENTIONS Six months of aerobic exercise (AE), DASH diet counseling, combined AE + DASH, or health education (HE) controls. MEASUREMENTS Neurocognitive battery recommended by the Neuropsychological Working Group for Vascular Cognitive Disorders including measures of executive function, memory, and language/verbal fluency. Secondary outcomes included the Clinical Dementia Rating-Sum of Boxes (CDR-SB), Six-Minute Walk Distance (6MWD), and CVD risk including blood pressure, body weight, and CVD medication burden. RESULTS Despite discontinuation of lifestyle changes, participants in the exercise groups retained better executive function 1 year post-intervention (P = .041) compared with non-exercise groups, with a similar, albeit weaker, pattern in the DASH groups (P = .054), without variation over time (P's > .867). Participants in the exercise groups also achieved greater sustained improvements in 6MWD compared with non-Exercise participants (P < .001). Participants in the DASH groups exhibited lower CVD risk relative to non-DASH participants (P = .032); no differences in CVD risk were observed for participants in the Exercise groups compared with non-Exercise groups (P = .711). In post hoc analyses, the AE + DASH group had better performance on executive functioning (P < .001) and CDR-SB (P = .011) compared with HE controls. CONCLUSION For participants with CIND and CVD risk factors, exercise for 6 months promoted better executive functioning compared with non-exercisers through 1-year post-intervention, although its clinical significance is uncertain. J Am Geriatr Soc 68:559-568, 2020.
Collapse
Affiliation(s)
- James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Stephanie Mabe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Alan Hinderliter
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kathleen Welsh-Bohmer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Jeffrey N. Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - P. Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Pao-Hwa Lin
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - William E. Kraus
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - James R. Burke
- Department of Neurology, Duke University Medical Center, Durham, NC
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| |
Collapse
|
30
|
Abstract
Adiponectin is the most important adipokine secreted by the adipose tissue. It carries out an important role in setting up the metabolism and improving the function of various organs. Adiponectin in the kidneys prevents degradation of the renal arteries, reduces protein excretion, and improves filtration. This role is accomplished by regulating anabolic pathways and reducing oxidative stress in the renal tissue. This hormone in the liver prevents the accumulation of fat and free radicals that cause damage to liver cells and tissue. This adipokine, by preventing inflammatory processes, oxidative stress, obesity and insulin resistance, improves vascular function and prevents the development of atherosclerosis. It seems that adiponectin can also be a therapeutic target for many metabolic diseases. This study aims to clarify the adipose tissue discharge. Here, the diverse physiological actions of adiponectin were reviewed to provide an overview of its therapeutic potential in different metabolic disorders.
Collapse
Affiliation(s)
- S Esmaili
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - M Hemmati
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - M Karamian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
31
|
Chen R, Shu Y, Zeng Y. Links Between Adiponectin and Dementia: From Risk Factors to Pathophysiology. Front Aging Neurosci 2020; 11:356. [PMID: 31969813 PMCID: PMC6960116 DOI: 10.3389/fnagi.2019.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
With the aging population, dementia is becoming one of the most serious and troublesome global public health issues. Numerous studies have been seeking for effective strategies to delay or block its progression, but with little success. In recent years, adiponectin (APN) as one of the most abundant and multifunctional adipocytokines related to anti-inflammation, regulating glycogen metabolism and inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread attention. In this article, we summarize recent studies that have contributed to a better understanding of the extent to which APN influences the risks of developing dementia as well as its pathophysiological progression. In addition, some controversial results interlinked with its effects on cognitive dysfunction diseases will be critically discussed. Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in circulation and suggest potential therapeutic target and future research strategies.
Collapse
Affiliation(s)
- RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Lin C, Chen K, Zhang R, Fu W, Yu J, Gao L, Ni H, Song J, Chen D. The prevalence, risk factors, and clinical characteristics of insulin resistance in Chinese patients with schizophrenia. Compr Psychiatry 2020; 96:152145. [PMID: 31710880 DOI: 10.1016/j.comppsych.2019.152145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Studies have shown that patients with schizophrenia are at a high risk of developing insulin resistance (IR). We investigated the prevalence of IR and its clinical correlates in hospitalized Chinese patients with schizophrenia. METHODS A total of 193 patients with schizophrenia (113 males and 80 females) were recruited for the study. We collected their demographic and clinical data, including data on their plasma glucose and lipid levels. All patients were rated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to assess cognitive function, while Positive and Negative Syndrome Scale (PANSS) was used to assess psychopathology. The cut-off value for the homeostasis model assessment of insulin resistance (HOMA-IR) was set at 1.7. RESULTS The prevalence of IR was 37.82% (73/193). The IR patients had significantly higher waist-to-hip ratio and body mass index (BMI), and higher fasting plasma glucose (FPG), triglyceride (TG), and low density lipoprotein (LDL) levels compared to non-IR patients (all p<.05). Binary logistic regression analysis showed that smoking, BMI, and TG and LDL levels are significant predictors of IR. In addition, correlation analysis showed that IR was significantly correlated with the waist-to-hip ratio, BMI, and LDL level (Bonferroni corrected p<.05). The multivariable linear regression analysis indicated that the BMI and FPG are associated with the IR index. There was no significant difference in IR index between patients who were taking different antipsychotics. CONCLUSION We found a high prevalence of IR and its risk factors in Chinese patients with schizophrenia. Active weight control to reduce the BMI and waist circumference and reducing the number of cigarettes consumed, may be essential to decrease the incidence of IR in patients with schizophrenia.
Collapse
Affiliation(s)
- Chen Lin
- Department of Psychosomatic Medicine, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, PR China
| | - Ke Chen
- Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | | | - Weihong Fu
- Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Jianjin Yu
- Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Lan Gao
- Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Haiqing Ni
- Guangzhou Brain Hospital, Guangzhou, 510450, PR China
| | - Jiaqi Song
- Peking University Health Science Center, Beijing, 100191, PR China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| |
Collapse
|
33
|
Carmichael O, Stuchlik P, Pillai S, Biessels GJ, Dhullipudi R, Madden-Rusnak A, Martin S, Hsia DS, Fonseca V, Bazzano L. High-Normal Adolescent Fasting Plasma Glucose Is Associated With Poorer Midlife Brain Health: Bogalusa Heart Study. J Clin Endocrinol Metab 2019; 104:4492-4500. [PMID: 31058974 PMCID: PMC6736207 DOI: 10.1210/jc.2018-02750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/30/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT It is unclear how adolescent glycemic status relates to brain health in adulthood. OBJECTIVE To assess the association between adolescent fasting plasma glucose (FPG) and MRI-based brain measures in midlife. DESIGN Between 1973 and 1992, the Bogalusa Heart Study (BHS) collected FPG from children, 3 to 18 years old, and followed up between 1992 and 2018. Cognitive tests and brain MRI were collected in 2013 to 2016 and 2018. SETTING Observational longitudinal cohort study. PARTICIPANTS Of 1298 contacted BHS participants, 74 completed screening, and 50 completed MRI. MAIN OUTCOME MEASURES Mean FPG per participant at ages <20, 20 to 40, and over 40 years old; brain white matter hyperintensity (WMH) volume, gray matter volume, and functional MRI (fMRI) activation to a Stroop task; tests of logical and working memory, executive function, and semantic fluency. RESULTS At MRI, participants were middle aged (51.3 ± 4.4 years) and predominantly female (74%) and white (74%). Mean FPG was impaired for zero, two, and nine participants in pre-20, 20 to 40, and over-40 periods. The pre-20 mean FPG above the pre-20 median value (i.e., above 83.5 mg/dL) was associated with greater WMH volume [mean difference: 0.029% of total cranial volume, CI: (0.0059, 0.052), P = 0.015] and less fMRI activation [-1.41 units (-2.78, -0.05), P = 0.043] on midlife MRI compared with below-median mean FPG. In controlling for over-40 mean FPG status did not substantially modify the associations. Cognitive scores did not differ by pre-20 mean FPG. CONCLUSIONS High-normal adolescent FPG may be associated with preclinical brain changes in midlife.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Correspondence and Reprint Requests: Owen Carmichael, PhD, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808. E-mail:
| | | | | | - Geert-Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Ram Dhullipudi
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Shane Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Vivian Fonseca
- Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
34
|
Park HS, Park SS, Kim CJ, Shin MS, Kim TW. Exercise Alleviates Cognitive Functions by Enhancing Hippocampal Insulin Signaling and Neuroplasticity in High-Fat Diet-Induced Obesity. Nutrients 2019; 11:nu11071603. [PMID: 31311133 PMCID: PMC6683269 DOI: 10.3390/nu11071603] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity, caused by a high-fat diet (HFD), leads to insulin resistance, which is a precursor of diabetes and a risk factor for impaired cognitive function, dementia, and brain diseases, such as Alzheimer’s disease. Physical exercise has positive effects on obesity and brain functions. We investigated whether the decline in cognitive function caused by a HFD could be improved through exercise by examining insulin signaling pathways and neuroplasticity in the hippocampus. Four-week-old C57BL/6 male mice were fed a HFD or a regular diet for 20 weeks, followed by 12 weeks of treadmill exercise. To ascertain the effects of treadmill exercise on impaired cognitive function caused by obesity, the present study implemented behavioral testing (Morris water maze, step-down). Moreover, insulin-signaling and neuroplasticity were measured in the hippocampus and dentate gyrus. Our results demonstrated that HFD-fed obesity-induced insulin resistance was improved by exercise. In addition, the HFD group showed a decrease in insulin signaling and neuroplasticity in the hippocampus and the dentate gyrus and increased cognitive function impairment, which were reversed by physical exercise. Overall, our findings indicate that physical exercise may act as a non-pharmacologic method that protects against cognitive dysfunction caused by obesity by improving hippocampal insulin signaling and neuroplasticity.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul 02447, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul 02447, Korea
| | - Mal-Soon Shin
- School of Global sport studies, Korea University, Sejong 30019, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul 02447, Korea.
- Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul 03016, Korea.
| |
Collapse
|
35
|
Nam GE, Park YG, Han K, Kim MK, Koh ES, Kim ES, Lee MK, Kim B, Hong OK, Kwon HS. BMI, Weight Change, and Dementia Risk in Patients With New-Onset Type 2 Diabetes: A Nationwide Cohort Study. Diabetes Care 2019; 42:1217-1224. [PMID: 31177182 DOI: 10.2337/dc18-1667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/31/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study examined the association between baseline BMI, percentage weight change, and the risk of dementia in patients newly diagnosed with type 2 diabetes. RESEARCH DESIGN AND METHODS Using the South Korean National Health Insurance Service-National Health Screening Cohort database, we identified 167,876 subjects aged ≥40 years diagnosed with new-onset type 2 diabetes between 2007 and 2012. Their weight changes were monitored for ∼2 years after diagnosis, with follow-up assessments occurring for an average of 3.5 years. The hazard ratios (HRs) and Bonferroni-adjusted 95% CIs of all-cause dementia, Alzheimer disease (AD), and vascular dementia were estimated using multivariable Cox proportional hazards regression models. RESULTS We identified 2,563 incident dementia cases during follow-up. Baseline BMI among patients with new-onset type 2 diabetes was inversely associated with the risk of all-cause dementia and AD, independent of confounding variables (P for trend <0.001). The percentage weight change during the 2 years after a diagnosis of type 2 diabetes showed significant U-shaped associations with the risk of all-cause dementia development (P < 0.001); the HRs of the disease increased significantly when weight loss or gain was >10% (1.34 [95% CI 1.11-1.63] and 1.38 [1.08-1.76], respectively). Additionally, weight loss >10% was associated with an increased risk of AD (HR 1.26 [95% CI 1.01-1.59]). CONCLUSIONS A lower baseline BMI was associated with increased risks of all-cause dementia and AD in patients with new-onset type 2 diabetes. Weight loss or weight gain after the diagnosis of diabetes was associated with an increased risk of all-cause dementia. Weight loss was associated with an increased risk of AD.
Collapse
Affiliation(s)
- Ga Eun Nam
- Department of Family Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Gyu Park
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University Medical Center, Gyeonggi-do, Republic of Korea
| | - Bongsung Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Oak-Kee Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
36
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer's disease. Exp Neurol 2019; 313:79-87. [PMID: 30576640 PMCID: PMC6370304 DOI: 10.1016/j.expneurol.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.
Collapse
Affiliation(s)
- Hilaree N Frazier
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Adam O Ghoweri
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Katie L Anderson
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Ruei-Lung Lin
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Nada M Porter
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Olivier Thibault
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
37
|
Blumenthal JA, Smith PJ, Mabe S, Hinderliter A, Lin PH, Liao L, Welsh-Bohmer KA, Browndyke JN, Kraus WE, Doraiswamy PM, Burke JR, Sherwood A. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology 2018; 92:e212-e223. [PMID: 30568005 DOI: 10.1212/wnl.0000000000006784] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine the independent and additive effects of aerobic exercise (AE) and the Dietary Approaches to Stop Hypertension (DASH) diet on executive functioning in adults with cognitive impairments with no dementia (CIND) and risk factors for cardiovascular disease (CVD). METHODS A 2-by-2 factorial (exercise/no exercise and DASH diet/no DASH diet) randomized clinical trial was conducted in 160 sedentary men and women (age >55 years) with CIND and CVD risk factors. Participants were randomly assigned to 6 months of AE, DASH diet nutritional counseling, a combination of both AE and DASH, or health education (HE). The primary endpoint was a prespecified composite measure of executive function; secondary outcomes included measures of language/verbal fluency, memory, and ratings on the modified Clinical Dementia Rating Scale. RESULTS Participants who engaged in AE (d = 0.32, p = 0.046) but not those who consumed the DASH diet (d = 0.30, p = 0.059) demonstrated significant improvements in the executive function domain. The largest improvements were observed for participants randomized to the combined AE and DASH diet group (d = 0.40, p = 0.012) compared to those receiving HE. Greater aerobic fitness (b = 2.3, p = 0.049), reduced CVD risk (b = 2.6, p = 0.042), and reduced sodium intake (b = 0.18, p = 0.024) were associated with improvements in executive function. There were no significant improvements in the memory or language/verbal fluency domains. CONCLUSIONS These preliminary findings show that AE promotes improved executive functioning in adults at risk for cognitive decline. CLINICALTRIALSGOV IDENTIFIER NCT01573546. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that for adults with CIND, AE but not the DASH diet significantly improves executive functioning.
Collapse
Affiliation(s)
- James A Blumenthal
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill.
| | - Patrick J Smith
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Stephanie Mabe
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Alan Hinderliter
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Pao-Hwa Lin
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Lawrence Liao
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Kathleen A Welsh-Bohmer
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Jeffrey N Browndyke
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - William E Kraus
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - P Murali Doraiswamy
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - James R Burke
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| | - Andrew Sherwood
- From the Departments of Psychiatry and Behavioral Sciences (J.A.B., P.J.S., S.M., K.A.W.-B., J.N.B., P.M.D., A.S.), Medicine (P.-H.L., L.L., W.E.K., P.M.D.), and Neurology (K.A.W.-B., J.R.B.), Duke University Medical Center, Durham; and Department of Medicine (A.H.), University of North Carolina at Chapel Hill
| |
Collapse
|
38
|
Li JC, Shen XF, Shao JA, Tao MM, Gu J, Li J, Huang N. The total alkaloids from Coptis chinensis Franch improve cognitive deficits in type 2 diabetic rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2695-2706. [PMID: 30214157 PMCID: PMC6124445 DOI: 10.2147/dddt.s171025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Coptis chinensis Franch is extensively used in traditional Chinese medicine to treat diabetes and dementia. Alkaloids are the main active ingredients of C. chinensis. Purpose This study was designed to probe the effects and possible mechanisms of the total alkaloids from C. chinensis (TAC) on cognitive deficits in type 2 diabetic rats. Methods Cognitive deficits were induced in rats by streptozotocin and high glucose/high fat diet. After treatment with TAC (80, 120, and 180 mg/kg) for 24 weeks, the behavioral parameters of each rat were assessed by Morris water maze and Y-maze tests. The indexes of glucose and lipid metabolism, pathological changes of brain tissue, and the phosphorylation levels of insulin signaling related proteins were also evaluated. Results The type 2 diabetic rats showed significantly elevated levels of fasting blood glucose, glycosylated hemoglobin and glycosylated serum protein, as well as apolipoprotein B, free fatty acid, triglyceride and total cholesterol but decreased the content of apolipoprotein A1, and TAC treatment dose-dependently reversed these abnormal changes. Furthermore, the behavioral results showed that TAC alleviated the cognitive deficits in type 2 diabetic rats. Moreover, immunohistochemical and histopathologic examinations indicated that the diabetic rats showed significant Aβ deposition, and neuronal damage and loss, which can be reversed by TAC treatment. The western blot results showed that TAC treatment markedly increased the phosphorylation of IRS, PI3K, and Akt, and inhibited the overactivation of GSK3β in the brain of type 2 diabetic rats. Conclusion These findings conclude that TAC prevents diabetic cognitive deficits, most likely by ameliorating the disorder of glucose and lipid metabolism, attenuating Aβ deposition, and enhancing insulin signaling.
Collapse
Affiliation(s)
- Jia-Chuan Li
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ; .,Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ao Shao
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Meng-Min Tao
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ;
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ;
| |
Collapse
|
39
|
Mohamed HE, Abo-ELmatty DM, Mesbah NM, Saleh SM, Ali AMA, Sakr AT. Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced Alzheimer disease in rats. Biomed Pharmacother 2018; 107:1166-1174. [PMID: 30257330 DOI: 10.1016/j.biopha.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Obesity is a proven risk factor for neurodegenerative disease like Alzheimer's disease (AD). Accumulating evidences suggested that nutritional interventions provide potential for prevention and treatment of AD. The present study aimed to investigate the effect of dietary treatment of obese rats with natural Raspberry ketone (RK) and their relationship with neurodegeneration. Obesity was first induced in 40 male Wistar rats (140-160 g) by feeding high fat diet (HFD) for 16 weeks. Obese rats were then assigned into 4 groups (n = 10 each). (O-AD) is obese induced AD group maintained on HFD for another 6 weeks. OCR is obese group received calorie restricted diet for 6 weeks. OCRRK is obese group received calorie restricted diet and RK (44 mg/kg body weight, daily, orally) for 6 weeks and OCRD is obese group received calorie restricted diet and orlistate (10 mg/kg body weight, daily orally) for 6 weeks. Another 10 normal rats received normal diet were used as normal control group (NC). Body weight, visceral white adipose tissue weight (WAT), lipid profile, oxidative stress markers, adiponectin, cholinergic activity and amyloid extracellular plaques were examined. In addition to histological changes in brain tissues were evaluated.Raspberry ketone (RK) via its antioxidant properties attenuated oxidative damage and dyslipidemia in O-AD group. It inhibited acetylcholinesterase enzyme (AchE) and hence increased acetylcholine level (Ach) in brain tissues of O-AD rats. It is also impeded the upregulation of beta-secretase-1 (BACE-1) and the accumulation of amyloid beta (Aβ) plaques which crucially involved in AD. The combination of CR diet with RK was more effective than CR diet with orlistate (antiobese drug) in abrogating the neurodegenerative changes induced by obesity. Results from this study suggested that concomitant supplementation of RK with calorie restricted regimen effectively modulate the neurodegenerative changes induced by obesity and delay the progression of AD.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Zagazig University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Dina M Abo-ELmatty
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Noha M Mesbah
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Samy M Saleh
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Abdel-Moniem A Ali
- Zagazig University, Department of Pathology, Faculty of Veterinary Medicine, Egypt
| | - Amr T Sakr
- Ministry of Health, Zagazig, Sharkia, Egypt.
| |
Collapse
|
40
|
Impact of glycemic status on longitudinal cognitive performance in men with and without HIV infection. AIDS 2018; 32:1849-1860. [PMID: 29746300 DOI: 10.1097/qad.0000000000001842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To determine the relationship between glycemic status and cognitive performance in men living with HIV (MLWH) and without HIV infection. DESIGN A prospective HIV/AIDS cohort study in four US cities between 1999 and 2016. METHODS Glycemic status was categorized as normal glucose, impaired fasting glucose, controlled diabetes mellitus and uncontrolled diabetes mellitus at each semiannual visit. Cognitive performance was evaluated using nine neuropsychological tests which measure attention, constructional ability, verbal learning, executive functioning, memory and psychomotor speed. Linear mixed models were used to assess the association between glycemic status and cognition. RESULTS Overall, 900 MLWH and 1149 men without HIV were included. MLWH had significantly more person-visits with impaired fasting glucose (52.1 vs. 47.9%) and controlled diabetes mellitus (58.2 vs. 41.8%) than men without HIV (P < 0.05). Compared with men with normal glucose, men with diabetes mellitus had significantly poorer performance on psychomotor speed, executive function and verbal learning (all P < 0.05). There was no difference in cognition by HIV serostatus. The largest effect was observed in individuals with uncontrolled diabetes mellitus throughout the study period, equivalent to 16.5 and 13.4 years of aging on psychomotor speed and executive function, respectively, the effect of which remained significant after adjusting for HIV-related risk factors. Lower CD4+ nadir was also associated with worse cognitive performance. CONCLUSION Abnormalities in glucose metabolism were more common among MLWH than men without HIV and were related to impaired cognitive performance. Metabolic status, along with advanced age and previous immunosuppression, may be important predictors of cognition in the modern antiretroviral therapy era.
Collapse
|
41
|
Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, Gautam T, Zhang XA, Sonntag WE, de Cabo R, Farkas E, Elliott MH, Kinter MT, Deak F, Ungvari Z, Csiszar A. Nrf2 Deficiency Exacerbates Obesity-Induced Oxidative Stress, Neurovascular Dysfunction, Blood-Brain Barrier Disruption, Neuroinflammation, Amyloidogenic Gene Expression, and Cognitive Decline in Mice, Mimicking the Aging Phenotype. J Gerontol A Biol Sci Med Sci 2018; 73:853-863. [PMID: 29905772 PMCID: PMC6001893 DOI: 10.1093/gerona/glx177] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Hertelendy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City
- Peggy & Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Hungary
| | - Michael H Elliott
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City
| | - Ferenc Deak
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Hungary
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City
- Peggy & Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Hungary
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City
- Peggy & Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
42
|
Tian Z, Ren N, Wang J, Zhang D, Zhou Y. Ginsenoside Ameliorates Cognitive Dysfunction in Type 2 Diabetic Goto-Kakizaki Rats. Med Sci Monit 2018; 24:3922-3928. [PMID: 29886506 PMCID: PMC6027254 DOI: 10.12659/msm.907417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Ginsenoside is the major bioactive component of ginseng, which has been proven to be a neuroprotective drug. The aim of this study was to evaluate the therapeutic effect of ginsenoside in a diabetic Goto-Kakizaki (GK) rat model. Material/Methods Twenty GK rats were randomly divided into a diabetic model (DM) group (n=10) and a ginsenoside + DM group (n=10); Wistar rats with the same age and body weight were used as the control (CON) group (n=10). Food and water intake, body weight, and blood fasting plasma glucose were measured. The Morris water maze test was used to detect learning and memory functions of the rats. Superoxide dismutase (SOD), malondialdehyde (MDA), and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the hippocampus were analyzed after ginsenoside treatment. Results The blood glucose, body weight, Morris correlation index, SOD, MDA, and other test results were increased in the diabetic rats. Ginsenoside ameliorated diabetic cognitive decline. Conclusions The possible mechanism was related to inhibiting brain oxidative/nitrosative damage and affecting the expression of the cytokines IL-1β, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Zhiyan Tian
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China (mainland)
| | - Ning Ren
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China (mainland)
| | - Jinghua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China (mainland)
| | - Danhong Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China (mainland)
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China (mainland)
| |
Collapse
|
43
|
Association Between Physical Activity and Cognitive Function Among a National Sample of Adults With Diabetes. Cardiopulm Phys Ther J 2018. [DOI: 10.1097/cpt.0000000000000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Wang H, Chen F, Du YF, Long Y, Reed MN, Hu M, Suppiramaniam V, Hong H, Tang SS. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology 2018; 131:143-153. [DOI: 10.1016/j.neuropharm.2017.12.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 01/21/2023]
|
45
|
Zhao RR, O'Sullivan AJ, Fiatarone Singh MA. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: a systematic review. Eur Rev Aging Phys Act 2018; 15:1. [PMID: 29387262 PMCID: PMC5776769 DOI: 10.1186/s11556-018-0190-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Background Diabetes is an important risk factor for cognitive impairment. Although some studies suggest that physical exercise can minimize age-related cognitive declines or improve brain morphology or function, benefits in diabetes or impaired glucose tolerance are unclear. Therefore, our aim was to evaluate the efficacy of exercise or physical activity on cognition in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance. Methods An electronic search for studies published from the earliest record until February 2017 was conducted using Medline, EMBASE, SPORTDiscus, CINAHL, and PsycINFO. Any experimental or observational study designs were included, as long as they were conducted in individuals of any age with type 2 diabetes, insulin resistance or impaired glucose tolerance, and they directly examined exercise/physical activity effects on cognitive outcomes or the relationship between changes in cognition and changes in either insulin resistance and glucose homeostasis. Study quality was assessed using the PEDro scale; data on participant and intervention characteristics and outcomes were extracted. Results Six studies enrolling 2289 participants met the eligibility criteria. Quality was modest and effect sizes variable and mostly small or negligible. Overall, four of the six studies (67%) reported significant benefits of greater exercise/physical activity participation for some aspects of cognition, but only 26% of cognitive outcomes were significant across all trials. Clinical improvements in insulin resistance/glucose homeostasis were related to improvements in cognitive function in three studies. Overall results were inconsistent, with benefits varying across exercise types and cognitive domains. Conclusions Literature does not provide evidence that physical activity or exercise interventions contribute to a better cognitive function in patients with type 2 diabetes or impaired glucose tolerance. Large-scale, long-term, robust randomized controlled trials are required to determine if exercise improves cognition in this high-risk cohort, and to investigate putative mechanistic links between cognition, body composition, metabolism, and inflammation in diabetes and related metabolic syndromes.
Collapse
Affiliation(s)
- Ren Ru Zhao
- 1Exercise, Health, and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, NSW 2141 Australia.,4Clinical Rehabilitation Centre, University of Longyan, Longyan, Fujian Province 364012 China
| | | | - Maria A Fiatarone Singh
- 1Exercise, Health, and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, NSW 2141 Australia.,2Hebrew SeniorLife and Jean Mayer USDA Human Nutrition Center on Aging at Tufts University, Boston, MA USA
| |
Collapse
|
46
|
Ganguli M, Albanese E, Seshadri S, Bennett DA, Lyketsos C, Kukull WA, Skoog I, Hendrie HC. Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health. Alzheimer Dis Assoc Disord 2018; 32:1-9. [PMID: 29319603 PMCID: PMC5821530 DOI: 10.1097/wad.0000000000000237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over recent decades, epidemiology has made significant contributions to our understanding of dementia, translating scientific discoveries into population health. Here, we propose reframing dementia epidemiology as "population neuroscience," blending techniques and models from contemporary neuroscience with those of epidemiology and biostatistics. On the basis of emerging evidence and newer paradigms and methods, population neuroscience will minimize the bias typical of traditional clinical research, identify the relatively homogenous subgroups that comprise the general population, and investigate broader and denser phenotypes of dementia and cognitive impairment. Long-term follow-up of sufficiently large study cohorts will allow the identification of cohort effects and critical windows of exposure. Molecular epidemiology and omics will allow us to unravel the key distinctions within and among subgroups and better understand individuals' risk profiles. Interventional epidemiology will allow us to identify the different subgroups that respond to different treatment/prevention strategies. These strategies will inform precision medicine. In addition, insights into interactions between disease biology, personal and environmental factors, and social determinants of health will allow us to measure and track disease in communities and improve population health. By placing neuroscience within a real-world context, population neuroscience can fulfill its potential to serve both precision medicine and population health.
Collapse
Affiliation(s)
- Mary Ganguli
- Departments of Psychiatry and Neurology, School of Medicine and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Constantine Lyketsos
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Hugh C Hendrie
- Regenstrief Institute Inc., Indiana University Center for Aging Research, Indianapolis, IN
| |
Collapse
|
47
|
Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 2018; 53:1149-1160. [PMID: 30182156 PMCID: PMC6208946 DOI: 10.1007/s00127-018-1581-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to quantify the relative risk of progression from mild cognitive impairment (MCI) to dementia in people with and without diabetes, and with and without the MetS (MetS); and to identify potential modifiers of the risk of progression from MCI to dementia in people with diabetes or MetS. METHODS We searched Medline, Embase, PsycINFO, PsycArticles and Web of Science from inception through to 20th March 2018. Where possible, the results from three or more studies were pooled in a meta-analysis, while other findings have been described narratively. RESULTS We included 15 articles reporting 12 studies (6865 participants). The overall unadjusted pooled odds ratio for the progression of MCI to dementia in people with diabetes/MetS was 1.67 (95% CI 1.27-2.19); the pooled odds ratio for progression in diabetes + MCI was 1.53 (95% CI 1.20-1.97) and in people with MetS + MCI was 2.95 (95% CI 1.23-7.05). There was moderate heterogeneity in the included studies (I2 < 60%). In diabetes, a longer duration of diabetes and the presence of retinopathy were associated with an increased risk of progression, while the use of statins and oral hypoglycaemic agents reduced the risk. Having multiple cardiovascular risk factors was a significant risk factor for progression from MCI to dementia in people with MetS. CONCLUSIONS Diabetes and MetS were both associated with an increased incidence of dementia when co-existing with MCI. Intensive cardiovascular risk reduction and lifestyle changes for patients presenting with MCI and diabetes, prediabetes or MetS may be important in reducing incidence of dementia in this high risk population.
Collapse
|
48
|
Role of Cerebrovascular Disease in Cognition. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
49
|
Polis B, Samson AO. Arginase as a Potential Target in the Treatment of Alzheimer’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aad.2018.74009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Acevedo-Negrete AP, Porchia LM, Gonzalez-Mejia ME, Torres-Rasgado E, Solis-Cano DG, Ruiz-Vivanco G, Pérez-Fuentes R. The impact of parental history of type 2 diabetes on hyperinsulinemia and insulin resistance in subjects from central Mexico. Diabetes Metab Syndr 2017; 11 Suppl 2:S895-S900. [PMID: 28697997 DOI: 10.1016/j.dsx.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/01/2017] [Indexed: 01/16/2023]
Abstract
AIMS Hyperinsulinemia and insulin resistance are both associated with the development of Type 2 Diabetes and other pathologies; however, the influence of parental history of Type 2 diabetes (PH-T2D) has yet to be investigated. Therefore, this study was conducted to determine the effect of PH-T2D has on the risk of developing hyperinsulinemia and IR. MATERIALS AND METHODS 1092 subjects (703 non-pregnant females and 389 males) were enrolled for a cross-sectional study. Clinical and biochemical parameters were collected. Subjects were allocated according to their PH-T2D: no parents, one parent, or both parents. Insulin resistance was calculated using the HOMA1 equation (HOMA1-IR). Logistic regression was used to determine the association (odds ratio) between PH-T2D and hyperinsulinemia or insulin resistance. RESULTS Increasing degrees of PH-T2D were associated with significant increases in fasting plasma glucose, insulin, and HOMA1-IR (p <0.05). Subjects having one or both parents were associated with an increase risk of developing hyperinsulinemia (odds ratio=1.53, 95%CI: 1.12-2.09, and odds ratio=1.92, 95%CI: 1.21-3.06, respectively) and insulin resistance (odds ratio=1.47, 95%CI: 1.08-2.00 and odds ratio=1.77, 95%CI: 1.09-2.87, respectively), when adjusting for age, sex, BMI, fasting plasma glucose, and triglycerides. CONCLUSION The presences of PH-T2D significantly increased the risk of developing hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Ana Paula Acevedo-Negrete
- Laboratorio de Investigación en Fisiopatología de Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, IMSS, Carretera Federal Atlixco-Metepec Km 4.5, C.P. 42730 Atlixco, Pue, Mexico
| | - Leonardo M Porchia
- Laboratorio de Investigación en Fisiopatología de Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, IMSS, Carretera Federal Atlixco-Metepec Km 4.5, C.P. 42730 Atlixco, Pue, Mexico
| | - M Elba Gonzalez-Mejia
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2901 Colonia Volcanes, C.P. 72000, Puebla, Pue, Mexico
| | - Enrique Torres-Rasgado
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2901 Colonia Volcanes, C.P. 72000, Puebla, Pue, Mexico
| | - Dania G Solis-Cano
- Laboratorio de Investigación en Fisiopatología de Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, IMSS, Carretera Federal Atlixco-Metepec Km 4.5, C.P. 42730 Atlixco, Pue, Mexico
| | - Guadalupe Ruiz-Vivanco
- Laboratorio de Investigación en Fisiopatología de Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, IMSS, Carretera Federal Atlixco-Metepec Km 4.5, C.P. 42730 Atlixco, Pue, Mexico; Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2901 Colonia Volcanes, C.P. 72000, Puebla, Pue, Mexico
| | - Ricardo Pérez-Fuentes
- Laboratorio de Investigación en Fisiopatología de Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, IMSS, Carretera Federal Atlixco-Metepec Km 4.5, C.P. 42730 Atlixco, Pue, Mexico; Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2901 Colonia Volcanes, C.P. 72000, Puebla, Pue, Mexico.
| |
Collapse
|