1
|
Tao S, Xu L, Yang K, Zhang J, Du Y. Construction of the 2-Amino-1,3-selenazole Skeleton via PhICl 2/KSeCN-Mediated Selenocyanation/Cyclization. Org Lett 2022; 24:4187-4191. [PMID: 35670516 DOI: 10.1021/acs.orglett.2c01468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The construction of 2-amino-1,3-selenazole skeleton was realized via the PhICl2/KSeCN-enabled electrophilic selenocyanation of β-enaminones and β-enamino esters followed by intramolecular cyclization under basic conditions. Compared to the classical Hantzsch strategy that utilizes selenourea or its analogues as starting materials or crucial intermediates, this method might represent an alternative approach for the assembly of 1,3-selenazole framework through a different pathway.
Collapse
Affiliation(s)
- Shanqing Tao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyue Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianing Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Woo‐Jin C, Jalani HB, Jeong J. Synthesis of Selenopyrano[2,3‐b]indol‐4(
9H
)‐ones and Their
C‐H
Arylation. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hitesh B. Jalani
- College of Pharmacy Yonsei Institute of Pharmaceutical Sciences, Yonsei University 85 Songdogwahak‐ro, Yeonsu‐gu Incheon South Korea
- Smart BioPharm, 310‐Pilotplant, Incheon Techno‐Park 12‐Gaetbeol‐ro, Yeonsu‐gu Incheon South Korea
| | - Jin‐Hyun Jeong
- College of Pharmacy Yonsei Institute of Pharmaceutical Sciences, Yonsei University 85 Songdogwahak‐ro, Yeonsu‐gu Incheon South Korea
| |
Collapse
|
3
|
He Z, Li X, Han S, Ren B, Hu X, Li N, Du X, Ni J, Yang X, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) attenuates amyloid-beta-mediated neuroinflammation by inhibiting NF-κB signaling pathway via a PPARγ-dependent mechanism. Metallomics 2021; 13:6298233. [PMID: 34124763 DOI: 10.1093/mtomcs/mfab036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation plays a pivotal role in the pathophysiology of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. During brain neuroinflammation, activated microglial cells resulting from amyloid-beta (Aβ) overload trigger toxic proinflammatory responses. Bis(ethylmaltolato)oxidovanadium (BEOV) (IV), an important vanadium compound, has been reported to have anti-diabetic, anti-cancer, and neuroprotective effects, but its anti-inflammatory property has rarely been investigated. In the present study, the inhibitory effects of BEOV on neuroinflammation were revealed in both Aβ-stimulated BV2 microglial cell line and APPswe/PS1E9 transgenic mouse brain. BEOV administration significantly decreased the levels of tumor necrosis factor-α, interleukin-6, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2 both in the hippocampus of APPswe/PS1E9 mice and in the Aβ-stimulated BV2 microglia. Furthermore, BEOV suppressed the Aβ-induced activation of nuclear factor-κB (NF-κB) signaling and upregulated the protein expression level of peroxisome proliferator-activated receptor gamma (PPARγ) in a dose-dependent manner. PPARγ inhibitor GW9662 could eliminate the effect of BEOV on Aβ-induced NF-κB activation and proinflammatory mediator production. Taken altogether, these findings suggested that BEOV ameliorates Aβ-stimulated neuroinflammation by inhibiting NF-κB signaling pathway through a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuangxue Han
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xia Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaogai Yang
- State Key Laboratories of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
4
|
Gastrodin Attenuates Lipopolysaccharide-Induced Inflammatory Response and Migration via the Notch-1 Signaling Pathway in Activated Microglia. Neuromolecular Med 2021; 24:139-154. [PMID: 34109563 DOI: 10.1007/s12017-021-08671-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Microglia-mediated neuroinflammation is known to play a pivotal role in the pathogenesis of different neurological diseases. Gastrodin, a phenolic glucoside, has been reported to exert anti-inflammatory effects in activated microglia challenged with lipopolysaccharide (LPS); however, the underlying mechanism has remained obscure. The present study aimed to ascertain if Gastrodin would regulate the Notch signaling pathway involved in microglia activation. We show here that LPS increased the expression of various members of the Notch-1 pathway, including intracellular Notch receptor domain (NICD), recombining binding protein suppressor of hairless (RBP-Jκ) and transcription factor hairy and enhancer of split-1 (Hes-1) in microglia in postnatal rat brain and in BV-2 microglia. Remarkably, Gastrodin was found to markedly attenuate the expression of the above various biomarkers both in vivo and in vitro. Moreover, increased phosphorylation level of ERK, JNK and P38 induced by LPS was attenuated with pretreatment of Notch-1 signaling inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alany1-Sphenyglycinet-butylester (DAPT) as well as Gastrodin. Gastrodin mimicked the effects of DAPT by inhibiting the LPS-induced expression of IL-1β, IL-6, IL-23, TNF-α and NO. Moreover, lentivirus transfection mediated NICD overexpression inhibited the anti-inflammatory effects of Gastrodin. Furthermore, the activation of Notch-1 signaling promoted microglia migration and Gastrodin could inhibit the migration of activated BV-2 microglia by regulating the Notch-1 signaling pathway. In light of the above, our results indicate that Notch-1 signaling pathway is involved in the anti-inflammatory effects of Gastrodin against LPS-induced microglia activation. These findings provide a new biological target of Gastrodin for the treatment of neuroinflammatory disorders.
Collapse
|
5
|
Yakubov E, Eibl T, Hammer A, Holtmannspötter M, Savaskan N, Steiner HH. Therapeutic Potential of Selenium in Glioblastoma. Front Neurosci 2021; 15:666679. [PMID: 34121995 PMCID: PMC8194316 DOI: 10.3389/fnins.2021.666679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
Little progress has been made in the long-term management of malignant brain tumors, leaving patients with glioblastoma, unfortunately, with a fatal prognosis. Glioblastoma remains the most aggressive primary brain cancer in adults. Similar to other cancers, glioblastoma undergoes a cellular metabolic reprogramming to form an oxidative tumor microenvironment, thereby fostering proliferation, angiogenesis and tumor cell survival. Latest investigations revealed that micronutrients, such as selenium, may have positive effects in glioblastoma treatment, providing promising chances regarding the current limitations in surgical treatment and radiochemotherapy outcomes. Selenium is an essential micronutrient with anti-oxidative and anti-cancer properties. There is additional evidence of Se deficiency in patients suffering from brain malignancies, which increases its importance as a therapeutic option for glioblastoma therapy. It is well known that selenium, through selenoproteins, modulates metabolic pathways and regulates redox homeostasis. Therefore, selenium impacts on the interaction in the tumor microenvironment between tumor cells, tumor-associated cells and immune cells. In this review we take a closer look at the current knowledge about the potential of selenium on glioblastoma, by focusing on brain edema, glioma-related angiogenesis, and cells in tumor microenvironment such as glioma-associated microglia/macrophages.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,BiMECON Ent., Berlin, Germany
| | | |
Collapse
|
6
|
Sheikhi-Mohammareh S, Shiri A, Mague J. Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture. Mol Divers 2021; 26:923-937. [PMID: 33721152 DOI: 10.1007/s11030-021-10203-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 01/16/2023]
Abstract
As a part of our ongoing endeavor towards developing novel heterocyclic architectures, a number of novel Se-containing tricyclic heterocycles of the type [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine have been synthesized through heteroannulation of a newly produced hydrazino derivative of selenazolo[4,5-d]pyrimidine with either orthoesters or carbon disulfide in pyridine followed by S-alkylation. Moreover, the multistep protocol employed in this investigation provides a new insight into the Dimroth rearrangement in both acidic and basic media as a means for the cyclocondensation of triazole on the selenazolopyrimidine framework leading to selenazolotriazolopyrimidines. The synthesis of new derivatives of novel selenazolotriazolopyrimidines via Dimroth rearrangement in both acidic and basic media is presented.
Collapse
Affiliation(s)
| | - Ali Shiri
- Department of Chemistryp, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Joel Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
7
|
Akyuva Y, Nazıroğlu M, Yıldızhan K. Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis 2021; 36:285-298. [PMID: 33044639 DOI: 10.1007/s11011-020-00624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Microglia as the primary immune cells of brain act protective effects against injuries and infections in the central nervous system. Inflammation via excessive Ca2+ influx and oxygen radical species (ROS) generation is a known factor in many neurodegenerative disorders. Importantly, the Ca2+ permeable TRPM2 channel is activated by oxidative stress. Thus, TRPM2 could provide the excessive Ca2+ influx in the microglia. Although TRPM2 expression level is high in inflammatory cells, the interplay between mouse microglia and TRPM2 channel during inflammation is not fully identified. Thus, it is important to understand the mechanisms and factors involved in order to enhance neuronal regeneration and repair. The data presented here indicate that TRPM2 channels were activated in microglia cells by interferon-gamma (IFNγ). The IFNγ treatment further increased apoptosis (early and late) and cytokine productions (TNF-α, IL-1β, and IL-6) which were due to increased lipid peroxidation and ROS generations as well as increased activations of caspase -3 (Casp-3) and - 9 (Casp-9). However, selenium treatment diminished activations of TRPM2, cytokine, Casp-3, and Casp-9, and levels of lipid peroxidation and mitochondrial ROS production in the microglia that were treated with IFNγ. Moreover, addition of either PARP1 inhibitors (PJ34 or DPQ) or TRPM2 blockers (2-APB or ACA) potentiated the modulator effects of selenium. These results clearly suggest that IFNγ leads to TRPM2 activation in microglia cells; whereas, selenium prevents IFNγ-mediated TRPM2 activation and cytokine generation. Together the interplay between IFNγ released from microglia cells is importance in brain inflammation and may affect oxidative cytotoxicity in the microglia. Graphical abstract Summary of pathways involved in IFNγ-induced TRPM2 activation and microglia death through excessive reactive oxygen species (ROS): Modulator role of selenium (Se). The IFNγ causes the microglia activation. Nudix box domain of TRPM2 is sensitive to ROS. The ROS induces DNA damage and ADPR-ribose (ADPR) production in the nucleus via PARP1 enzyme activation. ADPR and ROS-induced TRPM2 activation stimulates excessive Ca2+ influx. ROS are produced in the mitochondria through the increase of free cytosolic Ca2+ (via TRPM2 activation) by the IFNγ treatment, although they are diminished by the TRPM2 channel blocker (ACA and 2-APB) and PARP1 inhibitor treatments. The main mechanism in the cell death and inflammatory effects of IFNγ is mediated by stimulation of ROS-mediated caspase (caspase -3 and - 9) activations and cytokine production (TNF-α, IL-1β, and IL-6) via TRPM2 activation, respectively. The apoptotic, inflammatory, and oxidant actions of IFNγ are modulated through TRPM2 inhibition by the Se treatment.
Collapse
Affiliation(s)
- Yener Akyuva
- Departmant of Neurosurgery, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey.
- Neuroscience Research Center (NÖROBAM), Suleyman Demirel University, TR-32260, Isparta, Turkey.
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
E. Ali T, A. Assiri M, R. Aboelwafa H. Synthesis and Cytotoxicity Properties of Some Novel Functionalized 2-{2-[(4-Oxo-4H-chromen-3-yl)methylene]hydrazinyl}-1,3-selenazoles. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
de Toledo JHDS, Fraga-Silva TFDC, Borim PA, de Oliveira LRC, Oliveira EDS, Périco LL, Hiruma-Lima CA, de Souza AAL, de Oliveira CAF, Padilha PDM, Pinatto-Botelho MF, dos Santos AA, Sartori A, Zorzella-Pezavento SFG. Organic Selenium Reaches the Central Nervous System and Downmodulates Local Inflammation: A Complementary Therapy for Multiple Sclerosis? Front Immunol 2020; 11:571844. [PMID: 33193354 PMCID: PMC7664308 DOI: 10.3389/fimmu.2020.571844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). The persistent inflammation is being mainly attributed to local oxidative stress and inflammasome activation implicated in the ensuing demyelination and axonal damage. Since new control measures remain necessary, we evaluated the preventive and therapeutic potential of a beta-selenium-lactic acid derivative (LAD-βSe), which is a source of organic selenium under development, to control experimental autoimmune encephalomyelitis (EAE) that is an animal model for MS. Two EAE murine models: C57BL/6 and SJL/J immunized with myelin oligodendrocyte glycoprotein and proteolipid protein, respectively, and a model of neurodegeneration induced by LPS in male C57BL/6 mice were used. The preventive potential of LAD-βSe was initially tested in C57BL/6 mice, the chronic MS model, by three different protocols that were started 14 days before or 1 or 7 days after EAE induction and were extended until the acute disease phase. These three procedures were denominated preventive therapy -14 days, 1 day, and 7 days, respectively. LAD-βSe administration significantly controlled clinical EAE development without triggering overt hepatic and renal dysfunction. In addition of a tolerogenic profile in dendritic cells from the mesenteric lymph nodes, LAD-βSe also downregulated cell amount, activation status of macrophages and microglia, NLRP3 (NOD-like receptors) inflammasome activation and other pro-inflammatory parameters in the CNS. The high Se levels found in the CNS suggested that the product crossed the blood-brain barrier having a possible local effect. The hypothesis that LAD-βSe was acting locally was then confirmed by using the LPS-induced neurodegeneration model that also displayed Se accumulation and downmodulation of pro-inflammatory parameters in the CNS. Remarkably, therapy with LAD-βSe soon after the first remitting episode in SJL/J mice, also significantly downmodulated local inflammation and clinical disease severity. This study indicates that LAD-βSe, and possibly other derivatives containing Se, are able to reach the CNS and have the potential to be used as preventive and therapeutic measures in distinct clinical forms of MS.
Collapse
Affiliation(s)
| | | | - Patrícia Aparecida Borim
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Evelyn da Silva Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Larissa Lucena Périco
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Clélia Akiko Hiruma-Lima
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Adriana Aparecida Lopes de Souza
- Veterinary Clinical Laboratory, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Pedro de Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Marcos Felipe Pinatto-Botelho
- LabSSeTe Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - Alcindo Aparecido dos Santos
- LabSSeTe Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | |
Collapse
|
10
|
Kanda N, Hoashi T, Saeki H. Nutrition and Psoriasis. Int J Mol Sci 2020; 21:ijms21155405. [PMID: 32751360 PMCID: PMC7432353 DOI: 10.3390/ijms21155405] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin-23/interleukin-17 axis, hyperproliferation and abnormal differentiation of epidermal keratinocytes. Psoriasis patients are frequently associated with obesity, diabetes, dyslipidemia, cardiovascular diseases, or inflammatory bowel diseases. Psoriasis patients often show unbalanced dietary habits such as higher intake of fat and lower intake of fish or dietary fibers, compared to controls. Such dietary habits might be related to the incidence and severity of psoriasis. Nutrition influences the development and progress of psoriasis and its comorbidities. Saturated fatty acids, simple sugars, red meat, or alcohol exacerbate psoriasis via the activation of nucleotide-binding domain, leucine-rich repeats containing family, pyrin domain-containing-3 inflammasome, tumor necrosis factor-α/interleukin-23/interleukin-17 pathway, reactive oxygen species, prostanoids/leukotrienes, gut dysbiosis or suppression of regulatory T cells, while n-3 polyunsaturated fatty acids, vitamin D, vitamin B12, short chain fatty acids, selenium, genistein, dietary fibers or probiotics ameliorate psoriasis via the suppression of inflammatory pathways above or induction of regulatory T cells. Psoriasis patients are associated with dysbiosis of gut microbiota and the deficiency of vitamin D or selenium. We herein present the update information regarding the stimulatory or regulatory effects of nutrients or food on psoriasis and the possible alleviation of psoriasis by nutritional strategies.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Nippon Medical School, Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
- Correspondence: ; Tel.: +81-476-991-111; Fax: +81-476-991-909
| | - Toshihiko Hoashi
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8602, Japan; (T.H.); (H.S.)
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8602, Japan; (T.H.); (H.S.)
| |
Collapse
|
11
|
Fouda AM, Assiri MA, Ali TE. Facile synthesis of some new functionalized 2-selenoxopyrimidines. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1694023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ahmed M. Fouda
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Tarik E. Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Bi D, Lai Q, Li X, Cai N, Li T, Fang W, Han Q, Yu B, Li L, Liu Q, Xu H, Hu Z, Xu X. Neuroimmunoregulatory potential of seleno-polymannuronate derived from alginate in lipopolysaccharide-stimulated BV2 microglia. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Malinauskienė V, Kveselytė A, Dzedulionytė K, Bieliauskas A, Burinskas S, Sløk FA, Šačkus A. L-Proline and related chiral heterocyclic amino acids as scaffolds for the synthesis of functionalized 2-amino-1,3-selenazole-5-carboxylates. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Shangpliang OR, Kshiar B, Wanniang K, Marpna ID, Lipon TM, Laloo BM, Myrboh B. Selenium Dioxide As an Alternative Reagent for the Direct α-Selenoamidation of Aryl Methyl Ketones. J Org Chem 2018; 83:5829-5835. [DOI: 10.1021/acs.joc.8b00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- O. Risuklang Shangpliang
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Baskhemlang Kshiar
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Kmendashisha Wanniang
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ibakyntiew D. Marpna
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tyrchain Mitre Lipon
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Badaker M. Laloo
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bekington Myrboh
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
15
|
Banerjee B, Koketsu M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Hou Y, Li N, Xie G, Wang J, Yuan Q, Jia C, Liu X, Li G, Tang Y, Wang B. Pterostilbene exerts anti-neuroinflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhang L, Mao L, Liao H. The Nogo/Nogo Receptor (NgR) Signal Is Involved in Neuroinflammation through the Regulation of Microglial Inflammatory Activation. J Biol Chem 2015; 290:28901-14. [PMID: 26472924 DOI: 10.1074/jbc.m115.678326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/19/2023] Open
Abstract
Microglia have been proposed to play a pivotal role in the inflammation response of the CNS by expressing a range of proinflammatory enzymes and cytokines under pathological stimulus. Our previous study has confirmed that Nogo receptor (NgR), an axon outgrowth inhibition receptor, is also expressed on microglia and regulates cell adhesion and migration behavior in vitro. In the present study, we further investigated the proinflammatory effects and possible mechanisms of Nogo on microglia in vitro. In this study, Nogo peptide, Nogo-P4, a 25-amino acid core inhibitory peptide sequence of Nogo-66, was used. We found that Nogo-P4 was able to induce the expression of inducible nitric-oxide synthase and cyclooxygenase-2 and the release of proinflammatory cytokines, including IL-1β, TNF-α, NO, and prostaglandin E2 in microglia, which could be reversed by NEP1-40 (Nogo-66(1-40) antagonist peptide), phosphatidylinositol-specificphospholipase C, or NgR siRNA treatment. After Nogo-P4 stimulated microglia, the phosphorylation levels of NF-κB and STAT3 were increased obviously, which further mediated microglia expressing proinflammatory factors induced by Nogo-P4. Taken together, we concluded that Nogo peptide could directly take part in CNS inflammatory process by influencing the expression of proinflammatory factors in microglia, which were related to the NF-κB and STAT3 signal pathways. Besides neurite outgrowth restriction, the Nogo/NgR signal might be involved in multiple processes in various inflammation-associated CNS diseases.
Collapse
Affiliation(s)
- Yinquan Fang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Jun Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Chenhui Li
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Xiao Zhou
- the Department of Biophysics, Saarland University, Homburg 66421, Germany, and
| | - Lemeng Yao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Tao Pang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Ming Yan
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Luyong Zhang
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China
| | - Lei Mao
- the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Hong Liao
- From the Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing 210009, China,
| |
Collapse
|
18
|
Wang F, Cui N, Yang L, Shi L, Li Q, Zhang G, Wu J, Zheng J, Jiao B. Resveratrol Rescues the Impairments of Hippocampal Neurons Stimulated by Microglial Over-Activation In Vitro. Cell Mol Neurobiol 2015; 35:1003-15. [PMID: 25898934 PMCID: PMC11486292 DOI: 10.1007/s10571-015-0195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 01/04/2023]
Abstract
Resveratrol is a naturally occurring phytoalexin found in red grapes, and believed to have neuroprotective, anti-oxidant, and anti-inflammatory effects. But little is known about its effect on the neural impairments induced by microglial over-activation, which leads to neuroinflammation and multiple pathophysiological damages. In this study, we aimed to investigate the protective effects of resveratrol on the impairments of neural development by microglial over-activation insult. The results indicated that resveratrol inhibited the lipopolysaccharide (LPS)-dependent release of cytokines from activated microglia and LPS-dependent changes in NF-κB signaling pathway. Conditioned medium (CM) from activated microglia treated by resveratrol directly protected primary cultured hippocampal neurons against LPS-CM-induced neuronal death, and restored the inhibitory effects of LPS-CM on dendrite sprouting and outgrowth. Finally, neurons cultured in CM from LPS-stimulated microglia treated by resveratrol exhibited increased spine density compared to those without resveratrol treatment. Our findings support that resveratrol inhibits microglial over-activation and alleviates neuronal injuries induced by microglial activation. Our study suggests the use of resveratrol as an alternative intervention approach that could prevent further neuronal insults.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Lin Shi
- Department of Neurosurgery, The Second Hospital of Baoding City, Baoding, 071051, China
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050000, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jun Zheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
19
|
Serkov IV, Serova TM, Proshin AN, Bachurin SO. Synthesis of selenoureas and heterocycles based thereon. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ranjan A, Yerande R, Jadhav M, Yerande SG, Dethe DH. One-Pot Synthesis of 2-Amino-1,3-selenazole via an Intermediary Amidinoselenourea. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
One-pot synthesis of orthogonally protected dipeptide selenazoles employing Nα-amino selenocarboxamides and α-bromomethyl ketones. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G, Yang J, Wu C. Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:92-102. [PMID: 24709550 DOI: 10.1016/j.pnpbp.2014.03.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/16/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The present study aims to evaluate the effects of pterostilbene on lipopolysaccharide (LPS)-induced learning and memory impairment as well as the possible changes of microglia and neurons. Firstly, learning and memory function was investigated by behavioral tests. Pterostilbene attenuated LPS-induced learning and memory impairment tested by Y-maze and Morris water maze. Secondly, immunohistochemical method was used to study the changes of microglia and neurons. The results showed that pterostilbene produced a significant decrease in the number of Iba-1 and Doublecortin (DCX) positive cells and a significant increase in neuronal nuclear antigen (NeuN)-stained area of neurons in mouse hippocampal compared to the LPS group. Finally, an in vitro study was performed to further confirm the inhibitory effect on microglia activation and protective effect on neurons exerted by pterostilbene. The results demonstrated that pterostilbene significantly inhibited microglia activation, showing the obvious decrease of LPS-induced production of NO, TNF-α and IL-6 in N9 microglial cells. In addition, the viability of SH-SY5Y cells decreased by conditioned media of LPS-activated N9 microglial cells was remarkably recovered by pterostilbene. In summary, the present study demonstrated for the first time that pterostilbene attenuated LPS-induced learning and memory impairment, which may be associated with its inhibitory effect on microglia activation and protective effect on neuronal injury.
Collapse
Affiliation(s)
- Yue Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China; College of Life and Health Sciences, Northeastern University, 110819 Shenyang, PR China
| | - Guanbo Xie
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fengrong Miao
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Lingling Ding
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Guangyue Su
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Guoliang Chen
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| |
Collapse
|
23
|
Ohnuma A, Nagata T, Komura K, Ando H, Ishihara H, Koketsu M. Preparation of 2H-5,6-Dihydroselenines Using α-Alkoxy Carbonylselenoacetamide. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akira Ohnuma
- Department of Chemistry, Faculty of Engineering; Gifu University; Gifu 501-1193 Japan
- Institute for the Advancement of Higher Education; Hokkaido University; Sapporo Hokkaido 060-0817 Japan
| | - Tomohiro Nagata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering; Gifu University; Gifu 501-1193 Japan
| | - Kenichi Komura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering; Gifu University; Gifu 501-1193 Japan
| | - Hiromune Ando
- Department of Applied Life Science, Faculty of Applied Biological Sciences; Gifu University; Gifu 501-1193 Japan
| | - Hideharu Ishihara
- Department of Chemistry, Faculty of Engineering; Gifu University; Gifu 501-1193 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering; Gifu University; Gifu 501-1193 Japan
| |
Collapse
|
24
|
BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-κB activation. Mediators Inflamm 2014; 2014:983401. [PMID: 24803746 PMCID: PMC3997897 DOI: 10.1155/2014/983401] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022] Open
Abstract
β-Hydroxybutyric acid (BHBA) has neuroprotective effects, but the underlying molecular mechanisms are unclear. Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The current study investigates the potential mechanisms whereby BHBA affects the expression of potentially proinflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). The results showed that BHBA significantly reduced LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6. Blocking of GPR109A by PTX resulted in a loss of this anti-inflammatory effect in BV-2 cells. Western blot analysis showed that BHBA reduced LPS-induced degradation of IκB-α and translocation of NF-κB, while no effect was observed on MAPKs phosphorylation. All results imply that BHBA significantly reduces levels of proinflammatory enzymes and proinflammatory cytokines by inhibition of the NF-κB signaling pathway but not MAPKs pathways, and GPR109A is essential to this function. Overall, these data suggest that BHBA has a potential as neuroprotective drug candidate in neurodegenerative diseases.
Collapse
|
25
|
Mattmiller SA, Carlson BA, Gandy JC, Sordillo LM. Reduced macrophage selenoprotein expression alters oxidized lipid metabolite biosynthesis from arachidonic and linoleic acid. J Nutr Biochem 2014; 25:647-54. [PMID: 24746836 DOI: 10.1016/j.jnutbio.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Uncontrolled inflammation is an underlying etiology for multiple diseases and macrophages orchestrate inflammation largely through the production of oxidized fatty acids known as oxylipids. Previous studies showed that selenium (Se) status altered the expression of oxylipids and magnitude of inflammatory responses. Although selenoproteins are thought to mediate many of the biological effects of Se, the direct effect of selenoproteins on the production of oxylipids is unknown. Therefore, the role of decreased selenoprotein activity in modulating the production of biologically active oxylipids from macrophages was investigated. Thioglycollate-elicited peritoneal macrophages were collected from wild-type and myeloid-cell-specific selenoprotein knockout mice to analyze oxylipid production by liquid chromatography/mass spectrometry as well as oxylipid biosynthetic enzyme and inflammatory marker gene expression by quantitative real-time polymerase chain reaction. Decreased selenoprotein activity resulted in the accumulation of reactive oxygen species, enhanced cyclooxygenase and lipoxygenase expression and decreased oxylipids with known anti-inflammatory properties such as arachidonic acid-derived lipoxin A₄ (LXA₄) and linoleic acid-derived 9-oxo-octadecadienoic acid (9-oxoODE). Treating RAW 264.7 macrophages with LXA₄ or 9-oxoODE diminished oxidant-induced macrophage inflammatory response as indicated by decreased production of TNFα. The results show for the first time that selenoproteins are important for the balanced biosynthesis of pro- and anti-inflammatory oxylipids during inflammation. A better understanding of the Se-dependent control mechanisms governing oxylipid biosynthesis may uncover nutritional intervention strategies to counteract the harmful effects of uncontrolled inflammation due to oxylipids.
Collapse
Affiliation(s)
- Sarah A Mattmiller
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff C Gandy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Pizzo C, Mahler SG. Synthesis of selenazoles by in situ cycloisomerization of propargyl selenoamides using oxygen-selenium exchange reaction. J Org Chem 2014; 79:1856-60. [PMID: 24490782 DOI: 10.1021/jo402661b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we describe an approach toward selenazole preparation based on the cycloisomerization of propargyl selenoamides. The selenoamides were synthesized in situ using the Ishihara reagent with spontaneous cyclization to form the 2,5-disubstituted selenazoles. Heterocylcles 9a-j were prepared using readily available starting materials, and yields ranged from moderate to good (20-80%). Methylselenazole 9a could be transformed into a bromomethyl derivative 13 using NBS. The intermediate 13 would provide a more versatile building block for further derivatizations, e.g., the cyanide 14.
Collapse
Affiliation(s)
- Chiara Pizzo
- Departamento de Química Orgánica, Cátedra de Química Farmacéutica, Universidad de la República (UdelaR) , Avda. General Flores 2124, CC1157 Montevideo, Uruguay
| | | |
Collapse
|
27
|
Jayasooriya RGPT, Lee KT, Lee HJ, Choi YH, Jeong JW, Kim GY. Anti-inflammatory effects of β-hydroxyisovalerylshikonin in BV2 microglia are mediated through suppression of the PI3K/Akt/NF-kB pathway and activation of the Nrf2/HO-1 pathway. Food Chem Toxicol 2013; 65:82-9. [PMID: 24365262 DOI: 10.1016/j.fct.2013.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 01/19/2023]
Abstract
In the present study, we investigated whether β-hydroxyisovalerylshikonin (β-HIVS) affects the production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. Our data showed that β-HIVS inhibited secretion of NO and PGE2 and downregulated expression of their main regulatory genes, inducible NO synthesis (iNOS) and cyclooxygenase-2 (COX-2). β-HIVS also reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) by suppressing nuclear translocation of the NF-κB subunits and inhibiting the degradation and phosphorylation of IκBα. Furthermore, an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), attenuated LPS-stimulated iNOS and COX-2 expression, suggesting that NF-κB inhibition is a main effector in the expression of iNOS and COX-2. We also found that LPS-induced NF-κB activation is regulated through inhibition of PI3K/Akt phosphorylation in response to β-HIVS. Additionally, β-HIVS caused the induction of heme oxygenase-1 (HO-1) via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2), both of which are involved in the secretion of proinflammatory mediators such as NO and PGE2. Taken together, our data indicate that β-HIVS diminishes the proinflammatory mediators NO and PGE2 and the expression of their regulatory genes, iNOS and COX-2, in LPS-stimulated BV2 microglial cells by inhibiting PI3K/Akt-dependent NF-κB activation and inducing Nrf2-mediated HO-1 expression.
Collapse
Affiliation(s)
| | - Kyoung-Tae Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Hak-Ju Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Jin-Woo Jeong
- Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea.
| |
Collapse
|
28
|
Hu H, Li Z, Zhu X, Lin R, Peng J, Tao J, Chen L. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway. Int J Mol Med 2013; 32:1281-6. [PMID: 24127065 DOI: 10.3892/ijmm.2013.1522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/13/2013] [Indexed: 11/05/2022] Open
Abstract
Microglial activation plays an important role in neroinflammation following ischemic stroke. Activated microglial cells can then migrate to the site of injury to proliferate and release substances which induce secondary brain damage. It has been shown that microglial migration is associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathways. The Chinese formula, GuaLou GuiZhi decoction (GLGZD), has long been administered in clinical practice for the treatment of post-stroke disabilities, such as muscular spasticity. In a previous study, we demonstrated that the anti-inflammtory effects of GLGZD were mediated by the TLR4/NF-κB pathway in lipopolysaccharide (LPS)-stimulated microglial cells. Therefore, in this study, we evaluated the role of GLGZD in microglial migration by performing scratch wound assays and migration assays. We wished to elucidate the cellular and molecular mechanisms elicited by this TCM formula in microglial-induced inflammation by evaluating the release and expression of chemotactic cytokines [monocyte chemo-attractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and interleukin (IL)-8] by ELISA and quantitative PCR. Our results revealed that the migration of microglial cells was enhanced in the presence of LPS (100 ng/ml); however, GLGZD (100 µg/ml) significantly inhibited cell motility and the production of chemokines through the inhibition of the activation of the p38 and c-Jun N-terminal protein kinase (JNK) signaling pathway. We demonstrate the potential of GLGZD in the modulation of microglial motility by investigating the effects of GLGZD on microglial migration induced by LPS. Taken together, our data suggest that GLGZD per se cannot trigger microglial motility, whereas GLGZD impedes LPS-induced microglial migration through the activation of the MAPK signaling pathway. These results provide further evidence of the anti-inflammatory effects of GLGZD and its potential for use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Haixia Hu
- Key Laboratory of TCM Rehabilitation of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Mattmiller SA, Carlson BA, Sordillo LM. Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2013; 2:e28. [PMID: 25191577 PMCID: PMC4153324 DOI: 10.1017/jns.2013.17] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/07/2022] Open
Abstract
Uncontrolled inflammation is a contributing factor to many leading causes of human morbidity and mortality including atherosclerosis, cancer and diabetes. Se is an essential nutrient in the mammalian diet that has some anti-inflammatory properties and, at sufficient amounts in the diet, has been shown to be protective in various inflammatory-based disease models. More recently, Se has been shown to alter the expression of eicosanoids that orchestrate the initiation, magnitude and resolution of inflammation. Many of the health benefits of Se are thought to be due to antioxidant and redox-regulating properties of certain selenoproteins. The present review will discuss the existing evidence that supports the concept that optimal Se intake can mitigate dysfunctional inflammatory responses, in part, through the regulation of eicosanoid metabolism. The ability of selenoproteins to alter the biosynthesis of eicosanoids by reducing oxidative stress and/or by modifying redox-regulated signalling pathways also will be discussed. Based on the current literature, however, it is clear that more research is necessary to uncover the specific beneficial mechanisms behind the anti-inflammatory properties of selenoproteins and other Se metabolites, especially as related to eicosanoid biosynthesis. A better understanding of the mechanisms involved in Se-mediated regulation of host inflammatory responses may lead to the development of dietary intervention strategies that take optimal advantage of its biological potency.
Collapse
Key Words
- 15-HETE, 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
- 15-HPETE, 15-hydroperoxyeicosatetraenoic acid
- 15d-PGJ2, 15-deoxy-Δ12,14PGJ2
- AA, arachidonic acid
- ASK-1, apoptosis signal-regulating kinase 1
- COX, cyclo-oxygenase
- Eicosanoid biosynthesis
- FAHP, fatty acid hydroperoxide
- GPx, glutathione peroxidase
- GPx4, glutathione peroxidase-4
- H-PGDS, haematopoietic PGD2 synthase
- HO-1, haeme oxygenase-1
- HPETE, hydroperoxyeicosatetraenoic acid
- HPODE, hydroperoxyoctadecadienoic acid
- Inflammation
- LA, linoleic acid
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LT, leukotriene
- LTA4H, leukotriene A4 hydrolase
- MAPK, itogen-activated protein kinase
- ROS, reactive oxygen species
- Selenium
- Selenoproteins
- Sepp1, selenoprotein P plasma 1
- TX, thromboxane
- TXB2, thromboxane B2
- Trx, thioredoxin
- TrxR, thioredoxin reductase
- ppm, parts per million
Collapse
Affiliation(s)
- S. A. Mattmiller
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| | - Bradley A. Carlson
- Section on the Molecular Biology of Selenium,
Laboratory of Cancer Prevention, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892,
USA
| | - L. M. Sordillo
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| |
Collapse
|
30
|
Synthesis and SAR studies of praziquantel derivatives with activity against Schistosoma japonicum. Molecules 2013; 18:9163-78. [PMID: 23912271 PMCID: PMC6269691 DOI: 10.3390/molecules18089163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022] Open
Abstract
The synthesis and structure-activity relationship (SAR) studies of praziquantel derivatives with activity against adult Schistosoma japonicum are described. Several of them showed better worm killing activity than praziquantel and could serve as leads for further optimization.
Collapse
|
31
|
Microwave-assisted synthesis of new selenazole derivatives with antiproliferative activity. Molecules 2013; 18:4679-88. [PMID: 23603950 PMCID: PMC6269919 DOI: 10.3390/molecules18044679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 11/17/2022] Open
Abstract
New aryl-hydrazinyl-1,3-selenazole and aroyl-hydrazonyl-1,3-selenazoles were synthesized via Hantzsch type condensation reactions of selenosemicarbazides with α-halogenocarbonyl derivatives, under classical versus microwave heating conditions. Excellent yields and shorter reaction times were obtained under irradiation conditions. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR, 1H-NMR), MS and elemental analysis. Selenazole derivatives were screened for their anti-proliferative effects against two leukemia cell lines (CCRF-CEM and HL60) and three carcinoma cell lines (MDA-MB231, HCT116 and U87MG).
Collapse
|
32
|
Zaharia V, Ignat A, Ngameni B, Kuete V, Moungang ML, Fokunang CN, Vasilescu M, Palibroda N, Cristea C, Silaghi-Dumitrescu L, Ngadjui BT. Heterocycles 23: Synthesis, characterization and anticancer activity of new hydrazinoselenazole derivatives. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0558-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kang CH, Jayasooriya RGPT, Dilshara MG, Choi YH, Jeong YK, Kim ND, Kim GY. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol 2012; 50:4270-6. [DOI: 10.1016/j.fct.2012.08.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 12/26/2022]
|
34
|
Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 2012; 7:e32195. [PMID: 22363816 PMCID: PMC3283735 DOI: 10.1371/journal.pone.0032195] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. METHODOLOGY/PRINCIPAL FINDINGS BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). CONCLUSION AND IMPLICATIONS This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol.
Collapse
Affiliation(s)
- Lian-Mei Zhong
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Zhi Guo
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying He
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Rui Song
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen-Min Wang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chun-Jie Xiao
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| |
Collapse
|
35
|
Ninomiya M, Garud DR, Koketsu M. Biologically significant selenium-containing heterocycles. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Tanahashi N, Koketsu M. Synthesis of 5-amino-2-selenoxo-1,3-imidazole-4-carboselenoamides by the reaction of isoselenocyanates with aminoacetonitriles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.06.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Kim HJ, Shin AH, Thayer SA. Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol Pharmacol 2011; 80:357-66. [PMID: 21670103 PMCID: PMC3164336 DOI: 10.1124/mol.111.071647] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022] Open
Abstract
HIV-1 infection of the central nervous system is associated with dendritic and synaptic damage that correlates with cognitive decline in patients with HIV-1-associated dementia (HAD). HAD is due in part to the release of viral proteins from infected cells. Because cannabinoids modulate neurotoxic and inflammatory processes, we investigated their effects on changes in synaptic connections induced by the HIV-1 envelope glycoprotein gp120. Morphology and synapses between cultured hippocampal neurons were visualized by confocal imaging of neurons expressing DsRed2 and postsynaptic density protein 95 fused to green fluorescent protein (PSD95-GFP). Twenty-four-hour treatment with gp120 IIIB decreased the number of PSD95-GFP puncta by 37 ± 4%. The decrease was concentration-dependent (EC₅₀ = 153 ± 50 pM). Synapse loss preceded cell death as defined by retention of DsRed2 fluorescence gp120 activated CXCR4 on microglia to evoke interleukin-1β (IL-1β) release. Pharmacological studies determined that sequential activation of CXCR4, the IL-1β receptor, and the N-methyl-d-aspartate receptor was required. Expression of alternative reading frame polypeptide, which inhibits the ubiquitin ligase murine double minute 2, protected synapses, implicating the ubiquitin-proteasome pathway. Cannabimimetic drugs are of particular relevance to HAD because of their clinical and illicit use in patients with AIDS. The cannabinoid receptor full agonist [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt] (Win55,212-2) inhibited gp120-induced IL-1β production and synapse in a manner reversed by a cannabinoid type 2 receptor antagonist. In contrast, Win55,212-2 did not inhibit synapse loss elicited by exposure to the HIV-1 protein Tat. These results indicate that cannabinoids prevent the impairment of network function produced by gp120 and, thus, might have therapeutic potential in HAD.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
38
|
Jayasooriya RGPT, Kang CH, Seo MJ, Choi YH, Jeong YK, Kim GY. Exopolysaccharide of Laetiporus sulphureus var. miniatus downregulates LPS-induced production of NO, PGE₂, and TNF-α in BV2 microglia cells via suppression of the NF-κB pathway. Food Chem Toxicol 2011; 49:2758-64. [PMID: 21843581 DOI: 10.1016/j.fct.2011.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
Abstract
Our previous study showed that the exopolysaccharide (EPS) of Laetiporus sulphureus var. miniatus was well characterized and prevented cell damage in streptozotocin-induced apoptosis. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Therefore, we attempted in this study to determine whether EPS induces a significant inhibition of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia cells. Our results showed that EPS significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-α (TNF-α), without any significant cytotoxicity. EPS also downregulated mRNA and protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-induced BV2 microglia cells. Our data also revealed that EPS treatment significantly reduced translocation of nuclear factor-κB (NF-κB) subunit p65 and its DNA-binding activity in LPS-stimulated BV2 microglia cells. Furthermore, we confirmed by using proteasome inhibitor N-acetyl-l-cysteine (NAC), that the inhibition of NF-κB activity influenced the expression of pro-inflammatory genes in LPS-induced BV2 microglia cells. As expected, NAC suppressed the expression of iNOS, COX-2, and TNF-α by blocking proteasome-mediated degradation. Taken together, our data indicate that EPS inhibits the expression of pro-inflammatory mediators by suppressing NF-κB activity.
Collapse
Affiliation(s)
- R G P T Jayasooriya
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J, Lu D. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 2011; 6:e21891. [PMID: 21765922 PMCID: PMC3134470 DOI: 10.1371/journal.pone.0021891] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/08/2011] [Indexed: 01/10/2023] Open
Abstract
Background Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). Methodology/Principal Findings BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM) for 1 h and then stimulated with LPS (1 µg/ml) for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs) cascades and their downstream transcription factors, nuclear factor-κB (NF-κB) and cyclic AMP-responsive element (CRE)-binding protein (CREB). Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min)-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM). In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α) (and hence the activation of NF-κB) and of CREB, respectively. Conclusion and Implications This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of the NF-κB signaling pathway and phosphorylation of MAPKs in LPS-stimulated microglial cells. Arising from the above, we suggest that gastrodin has a potential as an anti-inflammatory drug candidate in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Nan Dai
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Lian-Mei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yue-Min Li
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li-Gong Bian
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Qing-Long Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Dan Liu
- Kunming Pharmaceutical Corporation, Kunming, Yunnan, China
| | - Jun Sun
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (JS); (DL)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (JS); (DL)
| |
Collapse
|
40
|
Garud DR, Makimura M, Koketsu M. Synthetic approaches to selenacephams and selenacephems via a cleavage of diselenide and selenium anion. NEW J CHEM 2011. [DOI: 10.1039/c0nj00782j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Koketsu M, R. Garud D, Ninomiya M. Selenium-Containing Heterocycles Using Selenoamides, Selenoureas, Selenazadienes, and Isoselenocyanates. HETEROCYCLES 2010. [DOI: 10.3987/rev-10-677] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 2009; 58:561-8. [PMID: 19951717 DOI: 10.1016/j.neuropharm.2009.11.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 10/30/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Accumulating evidence indicates that p38 mitogen-activated protein kinase (MAPK) could play more than one role in Alzheimer's disease (AD) pathophysiology and that patients suffering from AD dementia could benefit from p38 MAPK inhibitors. The p38 MAPK signalling has been widely accepted as a cascade contributing to neuroinflammation. However, deepening insight into the underlying biology of Alzheimer's disease reveals that p38 MAPK operates in other events related to AD, such as excitotoxicity, synaptic plasticity and tau phosphorylation. Although quantification of behavioural improvements upon p38 MAPK inhibition and in vivo evaluation of p38 MAPK significance to various aspects of AD pathology is still missing, the p38 MAPK is emerging as a new Alzheimer's disease treatment strategy. Thus, we present here an update on the role of p38 MAPK in neurodegeneration, with a focus on Alzheimer's disease, by summarizing recent literature and several key papers from earlier years.
Collapse
Affiliation(s)
- Lenka Munoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
43
|
Yang X, Du L, Tang X, Jung SY, Zheng B, Soh BY, Kim SY, Gu Q, Park H. Brevicompanine E reduces lipopolysaccharide-induced production of proinflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factor-kappaB. J Neuroimmunol 2009; 216:32-8. [PMID: 19815299 DOI: 10.1016/j.jneuroim.2009.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/18/2009] [Accepted: 09/04/2009] [Indexed: 12/19/2022]
Abstract
Excessive release of proinflammatory cytokines by activated microglia can cause neurotoxicity in neurodegenerative diseases. We found that Brevicompanine E (BE), isolated from a deep ocean sediment derived fungus Penicillium sp., inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) production in microglia. Moreover, electrophoretic mobility shift assay (EMSA) demonstrated that BE attenuated nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) DNA binding activity in LPS-induced microglia. Consistent with this finding, BE inhibited LPS-induced IkappaBalpha degradation, NF-kappaB nuclear translocation, and also Akt, c-Jun NH2-terminal kinase (JNK) phosphorylation. Thus, BE may be potentially useful for modulating neuroinflammation.
Collapse
Affiliation(s)
- Xinying Yang
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, Chonbuk, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Metallic gold reduces TNFα expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury. Brain Res 2009; 1271:103-13. [DOI: 10.1016/j.brainres.2009.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/21/2022]
|
45
|
Koketsu M, R. Garud D. One-Pot Synthesis of 2-Imino-1,3-oxaselenolanes by Reaction of Isoselenocyanates with 2-Bromoethanol. HETEROCYCLES 2009. [DOI: 10.3987/com-08-11525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|