1
|
Ji Y, Song H, Li L. Traditional Chinese medicine for sepsis: advancing from evidence to innovative drug discovery. Crit Care 2025; 29:193. [PMID: 40375087 PMCID: PMC12080179 DOI: 10.1186/s13054-025-05441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/03/2025] [Indexed: 05/18/2025] Open
Abstract
The global health burden of sepsis is immense, characterized by significant loss of life and high healthcare costs. Traditional Chinese medicine (TCM), with its over two millennia of clinical practice in China, has gained attention as a potential adjunctive approach for sepsis. Here, we evaluated TCM applications in sepsis management, highlighting both potential benefits and methodological limitations of existing clinical evidence. Although various TCM preparations have been evaluated for sepsis treatment, the vast majority lack robust clinical evidence. Xuebijing Injection represents a rare example that has demonstrated efficacy in a large-scale, multicenter, randomized, double-blind, placebo-controlled trial. In contrast, the evidence supporting other preparations such as Shenfu and Shenmai Injections comes primarily from smaller, single-center studies with significant methodological limitations. There is a clear need for more high-quality, multicenter randomized controlled trials to rigorously evaluate these potentially beneficial but currently insufficiently validated TCM preparations. The pharmacological effects and underlying mechanisms of some bioactive compounds derived from TCM medications have been elucidated, shedding light on the potential of TCM-based anti-sepsis drug discovery. We underscore the importance of continued research to better integrate TCM with modern sepsis management, paving the way for the development of evidence-based TCM treatments for this challenging condition.
Collapse
Affiliation(s)
- Yun Ji
- Department of Surgical Intensive Care Unit, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Hongyun Song
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Libin Li
- Department of Surgical Intensive Care Unit, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Naderi R, Seyhani A, Shirpoor A, Jafari A, Eyvani K. Effects of curcumin on cyclosporine A-induced oxidative stress, autophagy, and apoptosis in rat heart. Mol Biol Rep 2025; 52:310. [PMID: 40085292 DOI: 10.1007/s11033-025-10334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Cyclosporine A (CsA) is a powerful immunosuppressant commonly used as a prophylaxis on transplant. However, it is associated with serious effects, including cardiotoxicity. Curcumin is a bioactive compound known for its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. So, the present study investigated the possible protective effect of curcumin on CsA-induced heart injury in rats, focusing on oxidative stress, autophagy, and apoptosis. METHODS A total of 32 male Wistar rats were divided into control, sham (drug solvent), CsA (30 mg/kg BW), and curcumin + CsA (40 mg/kg BW, 30 mg/kg BW, respectively) groups. After 4 weeks of treatment, the heart was isolated for molecular assays. Immunoblot detected oxidative and autophagic proteins NOX4, hsp-70, beclin-1, and LC3II. The amount of 8-OHdG was measured by ELISA and heart apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining (TUNEL). RESULTS At the molecular levels, CSA increased the expression of NOX-4, beclin-1, LC3b, and oHdG in heart tissue. In addition, the amount of apoptosis increased in the heart tissue. However, curcumin treatment improved heart injury by significantly downregulating NOX4, LC3b, and decreasing 8-OHdG. Also, curcumin significantly reduced the rate of myocardial apoptosis. CONCLUSION To sum up, curcumin appears to protect against CsA-induced cardiotoxicity in rats by reducing oxidative activity, apoptosis, and regulating autophagy.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Kimia Eyvani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
4
|
Parasitological and Biochemical Efficacy of the Active Ingredients of Allium sativum and Curcuma longa in Schistosoma mansoni Infected Mice. Molecules 2021; 26:molecules26154542. [PMID: 34361695 PMCID: PMC8347393 DOI: 10.3390/molecules26154542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/11/2021] [Accepted: 07/24/2021] [Indexed: 01/15/2023] Open
Abstract
The active ingredients allicin and curcumin have a wide range of actions against fungi, bacteria, and helminths. Therefore, the study was aimed to evaluate the efficacy of allicin (AL) and curcumin (CU) as antischistosomal drugs and their biochemical effects in normal and Schistosoma mansoni-infected mice. Praziquantel (PZQ) was administrated for two successive days while AL or CU was given for two weeks from the week 7th postinfection (PI). The possible effect of different regimens on Schistosoma worms was evaluated by measuring the percentage of the recovered worms, tissue egg load, and oogram pattern. Serum alanine transaminase activity and levels of triglycerides, cholesterol, and uric acid were measured. Liver tissue malondialdehyde and reduced glutathione levels besides, the activities of glutathione-S-transferase, superoxide dismutase and catalase were assessed for the oxidative/antioxidant condition. DNA electrophoresis of liver tissue was used to indicate the degree of fragmentation. There was a significant reduction in the recovered worms and egg load, with a marked change of oogram pattern in all treated groups with PZQ, AL, and CU in comparison with infected-untreated mice. PZQ, AL, and CU prevented most of the hematological and biochemical disorders, as well as significantly improved the antioxidant capacity and enhanced DNA fragmentation in the liver tissue of schistosomiasis mice compared to the infected-untreated group. These promising results suggest that AL and CU are efficient as antischistosomal drugs, and it would be beneficial to test their combination to understand the mechanism of action and the proper period of treatment leading to the best result.
Collapse
|
5
|
Prasertsri P, Boonla O. Upper and lower limb resistance training program versus high-intensity interval training on oxidative stress markers in university athletes. J Exerc Rehabil 2021; 17:198-206. [PMID: 34285898 PMCID: PMC8257435 DOI: 10.12965/jer.2142184.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
Highly-intensive exercise occurs in reactive oxygen species which leads to cellular damage as a result of increased oxidative stress markers. An appropriate program design incorporating volume, intensity, and types of exercise may produce different effects amid oxidative status in athletes. Therefore, this study aimed to investigate the outcomes of resistance training (RT) and high-intensity interval training (HIIT) on oxidative stress markers, and physical performance in university athlete subjects. The effect of two different protocol types (RT and HIIT) on oxidative stress and antioxidant status were also compared. Seventy-two university athletes, were recruited and divided into control, RT, and HIIT groups (n=22/group). The RT group were undertaken a resistance exercise training program of the upper and lower body. The HIIT group performed their exercise training on a cycle ergometer. The training program was 30 min/day, 3 days/wk, continuously over 8 weeks. We observed that long-term RT and HIIT improved blood glutathione and glutathione disulfide redox ratio in all athletes. The results demonstrated that only RT training significantly decreased plasma malondialdehyde. Another finding was that RT and HIIT resulted in similar elicitation of physical performance in the post-compared with pretraining exercise. This study revealed that RT and HIIT programs improved antioxidants and physical performance in university sports athletes. However, oxidative markers were only improved following the RT program. This study suggests that RT program is superior to HIIT in improving oxidative stress markers in sport athletes.
Collapse
Affiliation(s)
- Piyapong Prasertsri
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| | - Orachorn Boonla
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| |
Collapse
|
6
|
A Review of Malaysian Herbal Plants and Their Active Constituents with Potential Therapeutic Applications in Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8257817. [PMID: 33193799 PMCID: PMC7641701 DOI: 10.1155/2020/8257817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.
Collapse
|
7
|
Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System. Nutrients 2019; 11:nu11112761. [PMID: 31739443 PMCID: PMC6893458 DOI: 10.3390/nu11112761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The renin-angiotensin system (RAS) in the brain plays a crucial role in maintaining blood pressure as well as neuroprotection. This study compared the effects of curcumin, quercetin, and saponin on blood pressure, the brain RAS, and cholinergic system using perindopril, an angiotensin converting enzyme inhibitor (ACEI), as a positive control. Methods: Five-week-old male mice were stabilized and randomly assigned into a control group (n = 8), three phytochemical-treated groups (curcumin (n = 8), quercetin (n = 8), and saponin (n = 8)), and a positive control group (n = 8). The groups treated with the phytochemical were orally administered daily at a dose of 50 mg/kg body weight of phytochemicals. During the experiments, the weight and dietary intakes were measured regularly. After experiments, the brain tissue was homogenized and centrifuged for an additional assay. The concentrations of ACE, angiotensin II (AngII), and aldosterone levels were measured, and the mRNA expressions of renin and ACE were measured. As biomarkers of neuroprotection, the concentrations of acetylcholine (ACh) as well as the concentration and activity of acetylcholine esterase (AChE) were measured. Results: After 4 weeks of treatment, the perindopril group showed the lowest blood pressure. Among the groups treated with the phytochemicals, treatment with curcumin and saponin significantly reduced blood pressure, although such effect was not as high as that of perindopril. Among phytochemicals, curcumin treatment significantly inhibited the concentration and activity of ACE, concentration of AngII, and mRNA expression of ACE. All phytochemical treatments significantly increased the concentration of ACh. The levels of AChE activity in groups exposed to curcumin or saponin (not quercetin) were significantly inhibited, Conclusion: Curcumin administration in rats reduced blood pressure by blocking the brain RAS components and protected the cholinergic system in brain by inhibiting the activity of AChE.
Collapse
|
8
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO. Natural Dietary Supplementation of Curcumin Protects Mice Brains against Ethanol-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment via Nrf2/TLR4/RAGE Signaling. Nutrients 2019; 11:E1082. [PMID: 31096703 PMCID: PMC6566393 DOI: 10.3390/nu11051082] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of the current study was to explore the underlying neuroprotective mechanisms of curcumin (50 mg/kg, for six weeks) against ethanol (5 mg/kg i.p., for six weeks) induced oxidative stress and inflammation-mediated cognitive dysfunction in mice. According to our findings, ethanol triggered reactive oxygen species (ROS), apoptosis, neuroinflammation, and memory impairment, which were significantly inhibited with the administration of curcumin, as assessed by ROS, lipid peroxidation (LPO), and Nrf2/HO-1 (nuclear factor erythroid 2-related factor 2/Heme-oxygenase-1) expression in the experimental mice brains. Moreover, curcumin regulated the expression of the glial cell markers in ethanol-treated mice brains, as analyzed by the relative expression TLR4 (Toll like Receptor 4), RAGE (Receptor for Advanced Glycations End products), GFAP (Glial fibrillary acidic protein), and Iba-1 (Ionized calcium binding adaptor molecule 1), through Western blot and confocal microscopic analysis. Moreover, our results showed that curcumin downregulated the expression of p-JNK (Phospo c-Jun N-Terminal Kinase), p-NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), and its downstream targets, as assessed by Western blot and confocal microscopic analysis. Finally, the expression of synaptic proteins and the behavioral results also supported the hypothesis that curcumin may inhibit memory dysfunction and behavioral alterations associated with ethanol intoxication. Altogether, to the best of our knowledge, we believe that curcumin may serve as a potential, promising, and cheaply available neuroprotective compound against ethanol-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Amjad Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Tahir Muhammad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Min Gi Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
10
|
Long L, Li Y, Yu S, Li X, Hu Y, Long T, Wang L, Li W, Ye X, Ke Z, Xiao H. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J Diabetes Res 2019; 2019:4875421. [PMID: 31976335 PMCID: PMC6949683 DOI: 10.1155/2019/4875421] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. This study demonstrates the antiangiogenic effects of scutellarin (SCU) on high glucose- and hypoxia-stimulated human retinal endothelial cells (HRECs) and on a diabetic rat model by oral administration. The antiangiogenic mechanisms of SCU in vitro and in vivo were investigated. METHOD HRECs were cultured in high glucose- (30 mM D-glucose) and hypoxia (cobalt chloride-treated)-stimulated diabetic condition to evaluate the antiangiogenic effects of SCU by CCK-8 test, cell migration experiment (wound healing and transwell), and tube formation experiment. A streptozotocin-induced type II diabetic rat model was established to measure the effects of oral administration of SCU on protecting retinal microvascular dysfunction by Doppler waveforms and HE staining. We further used western blot, luciferase reporter assay, and immunofluorescence staining to study the antiangiogenic mechanism of SCU. The protein levels of phospho-ERK, phospho-FAK, phospho-Src, VEGF, and PEDF were examined in HRECs and retina of diabetic rats. RESULT Our results indicated that SCU attenuated diabetes-induced HREC proliferation, migration, and tube formation and decreased neovascularization and resistive index in the retina of diabetic rats by oral administration. SCU suppressed the crosstalk of phospho-ERK, phospho-FAK, phospho-Src, and VEGF in vivo and in vitro. CONCLUSIONS These results suggested that SCU can be an oral drug to alleviate microvascular dysfunction of DR and exerts its antiangiogenic effects by inhibiting the expression of the crosstalk of VEGF, p-ERK, p-FAK, and p-Src.
Collapse
Affiliation(s)
- Lingli Long
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Li
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, NSW, Australia
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
11
|
de Gomes MG, Donato F, Souza LC, Goes AR, Filho CB, Del Fabbro L, Bianchini MC, Hassan W, Boeira SP, Puntel RL, Jesse CR. γ-Oryzanol supplementation modifies the inflammatory and oxidative response in fulminant hepatic failure in mice. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol (1985) 2017; 124:330-340. [PMID: 28935827 DOI: 10.1152/japplphysiol.00515.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol 124: 330-340, 2018. First published September 21, 2017; doi: 10.1152/japplphysiol.00515.2017 .-This work investigated the effect of 3 days of 500 mg/day dietary curcumin supplementation on gastrointestinal barrier damage and systems-physiology responses to exertional heat stress in non-heat-acclimated humans. Eight participants ran (65% V̇o2max) for 60 min in a Darwin chamber (37°C/25% relative humidity) two times (Curcumin/Placebo). Intestinal fatty acid-binding protein (I-FABP) and associated proinflammatory [monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), interleukin-6] and anti-inflammatory [interleukin-1 receptor antagonist (IL-1RA), interleukin-10 (IL-10)] cytokines were assayed from plasma collected before (Pre), after (Post) and 1 (1-Post) and 4 (4-Post) h after exercise. Core temperature and HR were measured throughout exercise; the physiological strain index (PSI) was calculated from these variables. Condition differences were determined with 2-way (condition × time) repeated-measures ANOVAs. The interaction of condition × time was significant ( P = 0.05) for I-FABP and IL-1RA. Post hoc analysis indicated I-FABP increased more from Pre to Post (87%) and 1-Post (33%) in Placebo than in Curcumin (58 and 18%, respectively). IL-1RA increased more from Pre to 1-Post in Placebo (153%) than in Curcumin (77%). TNF-α increased ( P = 0.01) from Pre to Post (19%) and 1-Post (24%) in Placebo but not in Curcumin ( P > 0.05). IL-10 increased ( P < 0.01) from Pre to Post (61%) and 1-Post (42%) in Placebo not in Curcumin ( P > 0.05). The PSI, which indicates exertional heatstroke risk, was also lower ( P < 0.01) in Curcumin than Placebo from 40 to 60 min of exercise. These data suggest 3 days curcumin supplementation may improve gastrointestinal function, associated cytokines, and systems-level physiology responses during exertional heat stress. This could help reduce exertional heatstroke risk in non-heat-acclimated individuals. NEW & NOTEWORTHY Exercise-heat stress increases gastrointestinal barrier damage and risk of exertional heatstroke. Over the past decade at least eight different dietary supplements have been tested for potential improvements in gastrointestinal barrier function and systems-level physiology responses during exercise-heat stress. None have been shown to protect against both insults simultaneously. In this report 3 days of 500 mg/day dietary curcumin supplementation are shown to improve gastrointestinal barrier function, associated cytokine responses, and systems-level physiology parameters. Further research is warranted.
Collapse
Affiliation(s)
- Mandy C Szymanski
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University , Riverside, California
| | - Lacey M Gould
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - David S Morin
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University , High Point, North Carolina
| |
Collapse
|
13
|
Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 2017; 119:373-383. [PMID: 28274852 DOI: 10.1016/j.phrs.2017.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Hu
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
14
|
Kumari A, Dash D, Singh R. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-α and TGF-β1) in murine model. Inflammopharmacology 2017; 25:329-341. [PMID: 28289922 DOI: 10.1007/s10787-017-0334-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/23/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Curcumin (diferuloylmethane), a major component of turmeric is well known for its anti-inflammatory potential. Present study investigates sequential release of inflammatory mediators post LPS challenge (10 mg/kg,i.p.) causing lung inflammation and its modulation by curcumin through different routes (20 mg/kg, i.p and 10 mg/kg, i.n.) in murine model. Dexamethasone (1 mg/kg, i.p) was used as standard drug. METHODS Lung Inflammation was evaluated by histopathological analysis, myeloperoxidase (MPO) activity followed by inflammatory cell count and total protein content measurements in bronchoalveolar fluid (BALF). Reactive oxygen species (ROS), nitrite and TNF-α levels were measured as markers of endotoxin shock at different time points (1-72 h). The mRNA expression of transforming growth factors-β1 (TGF-β1), iNOS and Toll-like receptor-4 (TLR-4) were measured followed by Masson's trichrome staining and hydroxyproline levels as collagen deposition marker leading to fibrotic changes in lungs. RESULTS We found that LPS-induced lung inflammation and injury was maximum 24-h post LPS challenge shown by MPO and histological analysis which was further supported by elevated nitrite and ROS levels whereas TNF-α level was highest after 1 h. Endotoxin-induced mortality was significantly reduced in curcumin (i.p) pretreatment groups up to 72-h post LPS challenge. Significant inhibition in mRNA expression of iNOS, TGF-β1 and TNF-α level was noted after curcumin treatment along with lowered MPO activity, inflammatory cell count, ROS, nitrite levels and collagen deposition in lungs. CONCLUSION Our results suggest that higher endotoxin dose causes inflammatory mediator release in chronological order which tend to increase with time and reached maximum after 24-h post-endotoxin (LPS) exposure. Intraperitoneal route of curcumin administration was better in modulating inflammatory mediator release in early phase as compared to intranasal route of administration. It can be used as supplementary therapeutic intervention at early stage of endotoxemia, having fewer side effects.
Collapse
Affiliation(s)
- Asha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. TOHOKU J EXP MED 2016; 239:25-38. [PMID: 27151191 DOI: 10.1620/tjem.239.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity potential. Humans are exposed to Cd present in diet, polluted air, and cigarette smoke. Cd exposure has been associated with increased risk of chronic diseases, including hypertension, atherosclerosis, diabetes, and nephropathy, all of which could be attributable to dysfunctional endothelial and smooth muscle cells. Cd toxicity is correlated with increased reactive oxygen formation and depletion of antioxidants, resulting in an oxidative stress. Chelation of Cd has proved useful in the removal of the Cd burden. However, several chelating agents cause side effects in clinical usage. Recent studies have shown that the antioxidant compounds curcumin and tetrahydrocurcumin can alleviate vascular dysfunction and high blood pressure caused by Cd toxicity. In chronic Cd exposure, these antioxidants protect vascular endothelium by increasing nitric oxide (NO•) bioavailability and improving vascular function. Antioxidant activity against Cd intoxication results directly and/or indirectly through free radical scavenging, metal chelation, enhanced expression of the antioxidant defense system, regulation of inflammatory enzymes, increase in NO• bioavailability, and reduction of gastrointestinal absorption and tissue Cd accumulation. This review summarizes current knowledge of Cd-induced oxidative stress and cardiovascular dysfunction and a possible protective effect conferred by the antioxidants curcumin and tetrahydrocurcumin.
Collapse
|
16
|
Karahan MA, Yalcin S, Aydogan H, Büyükfirat E, Kücük A, Kocarslan S, Yüce HH, Taskın A, Aksoy N. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model. Ren Fail 2016; 38:693-8. [PMID: 26983591 DOI: 10.3109/0886022x.2016.1157746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p < 0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.
Collapse
Affiliation(s)
- M A Karahan
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - S Yalcin
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - H Aydogan
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - E Büyükfirat
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - A Kücük
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - S Kocarslan
- b Department of Pathology, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - H H Yüce
- a Department of Anesthesiology and Reanimation, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - A Taskın
- c Department of Clinical Biochemistry, Medical Faculty , Harran University , Şanliurfa , Turkey
| | - N Aksoy
- c Department of Clinical Biochemistry, Medical Faculty , Harran University , Şanliurfa , Turkey
| |
Collapse
|
17
|
Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 2015; 53:475-83. [DOI: 10.1016/j.biomaterials.2015.02.116] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
|
18
|
Shukla P, Verma AK, Dewangan J, Rath SK, Mishra PR. Chitosan coated curcumin nanocrystals augment pharmacotherapy via improved pharmacokinetics and interplay of NFκB, Keap1 and Nrf2 expression in Gram negative sepsis. RSC Adv 2015. [DOI: 10.1039/c5ra06786c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chi-CUR-NC provides a viable approach for reducing mortality in cIAI associated Gram negative sepsis.
Collapse
Affiliation(s)
- Prashant Shukla
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Ajeet K. Verma
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Jayant Dewangan
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Srikanta K. Rath
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Prabhat R. Mishra
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
19
|
Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, Greenwald SE. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 2014; 42:44-53. [PMID: 25194767 DOI: 10.1016/j.niox.2014.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/27/2014] [Accepted: 09/02/2014] [Indexed: 01/12/2023]
Abstract
Oxidative stress plays a role in maintaining high arterial blood pressure and contributes to the vascular changes that lead to hypertension. Consumption of polyphenol-rich foods has demonstrated their beneficial role in the prevention and treatment of hypertension. Curcumin (CUR), a phenolic compound present in the rhizomes of turmeric, possesses cardiovascular protective, anti-inflammatory and antioxidant properties. The present study was designed to investigate the protective effect of CUR on 2kidney-1clip (2K-1C)-induced hypertension, endothelial dysfunction, vascular remodeling and oxidative stress in male Sprague-Dawley rats. Sham operated or 2K-1C rats were treated with CUR at a dose of 50 or 100 mg/kg/day (or vehicle). After 6 weeks of treatment, CUR ameliorated hemodynamic performance in 2K-1C hypertensive rats (P< 0.05), by reducing blood pressure, increasing hindlimb blood flow and decreasing hindlimb vascular resistance. Hemodynamic restoration was associated with a reduction in plasma angiotensin converting enzyme level. Endothelium-dependent vasorelaxation, in response to acetylcholine, of aortic rings isolated from 2K-1C hypertensive rats-treated with CUR was significantly increased (P< 0.05). CUR also attenuated hypertension-induced oxidative stress and vascular structural modifications. These effects were associated with elevated plasma nitrate/nitrite, upregulated eNOS expression, downregulated p47phox NADPH oxidase and decreased superoxide production in the vascular tissues. The overall findings of this study suggest the mechanisms responsible for the antihypertensive action of CUR in 2K-1C hypertension-induced endothelial dysfunction and vascular remodeling involve the improvement NO bioavailability and a reduction in oxidative stress.
Collapse
Affiliation(s)
- Orachorn Boonla
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002,Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002,Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002,Thailand
| | | | | | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002,Thailand
| | - Stephen E Greenwald
- Pathology Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, UK
| |
Collapse
|
20
|
Shukla P, Dwivedi P, Gupta PK, Mishra PR. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin Drug Deliv 2014; 11:1697-712. [PMID: 25046368 DOI: 10.1517/17425247.2014.932769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The objective of this study is to develop a nanostructured parenteral delivery system, laden with curcumin (CUR), for the therapeutic intervention of sepsis and associated pathologies. METHODS Nanoemulsions were fabricated using sonication and speed homogenization. Size and zeta potential were evaluated by dynamic light scattering and transmission electron microscopy analysis. Pharmacodynamic and pharmacokinetic studies were performed on a rat model of lipopolysaccharide (LPS)-induced sepsis. RESULTS The drug content of optimized nanoemulsion (F5) formulation (particle size 246 ± 08 nm, polydispersity index (PDI) of 0.120, zeta potential of -41.1 ± 1.2 mV) was found to be 1.25 mg/ml. In vitro release studies demonstrated that F5 was able to sustain the release of CUR for up to 24 h. Minimal hemolysis and cellular toxicity demonstrated its suitability for intravenous administration. Significant reduction of inflammatory mediator levels was mediated through enhanced uptake by in RAW 264.7 and THP-1 in absence/presence of LPS. Nanoemulsion resulted in an improvement of plasma concentration (AUCF5/AUC CUR = 8.80) and tissue distribution of CUR in rats leading to a reduction in LPS-induced lung and liver injury due to less neutrophil migration, reduced TNF-α levels and oxidative stress (demonstrated by levels of lipid peroxides as well as carbonylated proteins) as confirmed by histopathological studies. CONCLUSION The findings suggest that the therapeutic performance (i.e., reduction in oxidative damage in tissues) of CUR can be enhanced by employing tocol acetate nanoemulsions (via improving pharmacokinetics and tissue distribution) as a platform for drug delivery in sepsis-induced organ injury.
Collapse
Affiliation(s)
- Prashant Shukla
- CSIR-Central Drug Research Institute, Pharmaceutics Division, Preclinical south PCS 002/011 , Jankipuram Extension, Sitapur Road, Lucknow, 226031 , India +91 9415753171 ;
| | | | | | | |
Collapse
|
21
|
Prophylactic antioxidant potential of gallic Acid in murine model of sepsis. Int J Inflam 2014; 2014:580320. [PMID: 25018890 PMCID: PMC4074961 DOI: 10.1155/2014/580320] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 01/24/2023] Open
Abstract
Present study is to investigate the effect of Gallic acid pretreatment on survival of
septic animals and oxidative stress in different organs like lungs, liver, kidney, spleen, and
vascular dysfunction of mice. Sepsis was induced by cecal ligation and puncture (CLP) in
healthy adult male albino mice (25–30 g) and was divided into 3 groups each consisting of 6 animals, that is, sham-operated (SO group (Group I), SO + sepsis (Group II), and Gallic acid + sepsis (Group III)). Group III animals were pretreated with Gallic acid at the dose rate of 20 mg/kg body weight for 2 days before induction of sepsis. Animals were sacrificed on 8th day and the tissue samples were obtained for further investigation on lipid peroxidation (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH). Gallic acid pretreatment significant (P < 0.05) reduces kidney, spleen, liver, and lungs' malondialdehyde level in septic mice. However, it fails to improve reduced glutathione level in all given organs, while, Gallic acid pretreated mice showed significant improvement in SOD activity of kidney and spleen when compared to septic mice. Finally, the beneficial effects of Gallic acid pretreatment in sepsis are evident from the observations that Gallic acid partially restored SOD and catalase activity and completely reversed lipid peroxidation. Further studies are required to find out the possible mechanisms underlying the beneficial effects of Gallic acid on large population.
Collapse
|
22
|
Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 2014; 6:1194-1208. [PMID: 24662163 PMCID: PMC3967187 DOI: 10.3390/nu6031194] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022] Open
Abstract
Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd)-induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L) in drinking water for eight weeks. Curcumin (50 or 100 mg/kg) was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Praphassorn Surawattanawan
- Research and Development Institute, Government Pharmaceutical Organization, Rama 6 Road, Rajatevee, Bangkok 10400, Thailand.
| |
Collapse
|
23
|
Meitern R, Sild E, Lind MA, Männiste M, Sepp T, Karu U, Hõrak P. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches. PLoS One 2013; 8:e67545. [PMID: 23805316 PMCID: PMC3689720 DOI: 10.1371/journal.pone.0067545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022] Open
Abstract
Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris). Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator) in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection – erythrocyte glutathione, and plasma oxygen radical absorbance (OXY). These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
24
|
Kishida T, Onozato T, Kanazawa T, Tanaka S, Kuroda J. Increase in covalent binding of 5-hydroxydiclofenac to hepatic tissues in rats co-treated with lipopolysaccharide and diclofenac: involvement in the onset of diclofenac-induced idiosyncratic hepatotoxicity. J Toxicol Sci 2013. [PMID: 23208430 DOI: 10.2131/jts.37.1143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is well known to induce idiosyncratic hepatotoxicity. Although there remains much to be elucidated about its onset mechanism, it is widely accepted as a hypothesis that idiosyncratic hepatotoxicity arises from a specific immune response to a hapten formed by covalent binding of drugs or their reactive metabolites to hepatic tissues. In this study, we investigated the effects of covalent binding of DCF reactive metabolites to hepatic tissues using a rat model of liver injury induced by co-treatment with lipopolysaccharide (LPS) at a non-hepatotoxic dose. In studies done in vitro using hepatic microsomes prepared from rats treated with LPS alone, 4'- and 5-hydroxylation activities on DCF metabolism and adducts of reactive metabolites to dansyl glutathione (dGSH) were markedly decreased associated with a decrease in total P450 content. However, in studies done in vivo, the LPS/DCF co-treatment significantly increased adducts of 5-hydroxydiclofenac (5-OH-DCF) to rat hepatic tissues and delayed the elimination of 5-OH-DCF from plasma. Furthermore, we investigated the effects of co-treatment on hepatic GSH level in rats. A decrease of hepatic GSH was observed with the LPS/DCF co-treatment but not with LPS or DCF alone. The results suggest that covalent binding of reactive metabolites via 5-OH-DCF to hepatic tissues may play an important role in the onset of DCF-induced idiosyncratic hepatotoxicity, especially under decreased GSH conditions.
Collapse
Affiliation(s)
- Tomoyuki Kishida
- Safety Research Laboratory, R&D, Kissei Pharmaceutical Co., Ltd, Nagano, Japan.
| | | | | | | | | |
Collapse
|
25
|
Panighini A, Duranti E, Santini F, Maffei M, Pizzorusso T, Funel N, Taddei S, Bernardini N, Ippolito C, Virdis A, Costa M. Vascular dysfunction in a mouse model of Rett syndrome and effects of curcumin treatment. PLoS One 2013; 8:e64863. [PMID: 23705018 PMCID: PMC3660336 DOI: 10.1371/journal.pone.0064863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG-binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2(+/-) mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment.
Collapse
MESH Headings
- Animals
- Blood Vessels/drug effects
- Blood Vessels/physiopathology
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Immunohistochemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rett Syndrome/complications
- Rett Syndrome/drug therapy
- Rett Syndrome/physiopathology
- Superoxides/metabolism
- Time Factors
- Vascular Diseases/complications
- Vascular Diseases/drug therapy
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Anna Panighini
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
| | - Margherita Maffei
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
- Dulbecco Telethon Institute, Rome, Italy
- Institute of Food Science, CNR, Avellino, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Institute of Psychology, University of Florence, Florence, Italy
| | - Niccola Funel
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
26
|
Role of curcuminoids in ameliorating oxidative modification in β-thalassemia/Hb E plasma proteome. J Nutr Biochem 2013; 24:578-85. [DOI: 10.1016/j.jnutbio.2012.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
|
27
|
Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M, Seals DR. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol 2012; 48:269-76. [PMID: 23142245 DOI: 10.1016/j.exger.2012.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023]
Abstract
We tested the hypothesis that curcumin supplementation would reverse arterial dysfunction and vascular oxidative stress with aging. Young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6/N mice were given normal or curcumin supplemented (0.2%) chow for 4 weeks (n=5-10/group/measure). Large elastic artery stiffness, assessed by aortic pulse wave velocity (aPWV), was greater in O (448±15 vs. 349±15 cm/s) and associated with greater collagen I and advanced glycation end-products and less elastin (all P<0.05). In O, curcumin restored aPWV (386±15 cm/s), collagen I and AGEs (AGEs) to levels not different vs. Y. Ex vivo carotid artery acetylcholine (ACh)-induced endothelial-dependent dilation (EDD, 79±3 vs. 94±2%), nitric oxide (NO) bioavailability and protein expression of endothelial NO synthase (eNOS) were lower in O (all P<0.05). In O, curcumin restored NO-mediated EDD (92±2%) to levels of Y. Acute ex vivo administration of the superoxide dismutase (SOD) mimetic TEMPOL normalized EDD in O control mice (93±3%), but had no effect in Y control or O curcumin treated animals. O had greater arterial nitrotyrosine abundance, superoxide production and NADPH oxidase p67 subunit expression, and lower manganese SOD (all P<0.05), all of which were reversed with curcumin. Curcumin had no effects on Y. Curcumin supplementation ameliorates age-associated large elastic artery stiffening, NO-mediated vascular endothelial dysfunction, oxidative stress and increases in collagen and AGEs in mice. Curcumin may be a novel therapy for treating arterial aging in humans.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Donpunha W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol 2012; 90:1345-1353. [PMID: 22873715 DOI: 10.1139/y2012-101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Quercetin, a dietary antioxidant flavonoid, possesses strong anti-inflammatory and cytoprotective activities. The effects were investigated in an animal model of lipopolysaccharide (LPS)-induced endotoxaemia and vascular dysfunction in vivo. Male ICR mice were injected with LPS (10 mg/kg; i.p.). Quercetin (50 or 100 mg/kg) was intragastrically administered either before or after LPS administration. Fifteen hours after LPS injection, mice were found in endotoxaemic condition, as manifested by hypotension, tachycardia, and blunted vascular responses to vasodilators and vasoconstrictor. The symptoms were accompanied by increased aortic iNOS protein expression, decreased aortic eNOS protein expression, marked suppression of cellular glutathione (GSH) redox status, enhanced aortic superoxide production, increased plasma malodialdehyde and protein carbonyl, and elevated urinary nitrate/nitrite. Treatment with quercetin either before or after LPS preserved the vascular function, as blood pressure, heart rate, vascular responsiveness were restored to near normal values, particularly when quercetin was given as a preventive regimen. The vascular protective effects were associated with upregulation of eNOS expression, reduction of oxidative stress, and maintained blood GSH redox ratio. Overall findings suggest the beneficial effect of quercetin on the prevention and restoration of a failing eNOS system and alleviation of oxidative stress and vascular dysfunction against endotoxin-induced shock in mice.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/administration & dosage
- Antioxidants/therapeutic use
- Dietary Supplements
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endotoxemia/diet therapy
- Endotoxemia/metabolism
- Endotoxemia/physiopathology
- Endotoxemia/prevention & control
- Glutathione/blood
- Lipopolysaccharides
- Male
- Mice
- Mice, Inbred ICR
- Nitric Oxide Synthase Type III/metabolism
- Oxidation-Reduction
- Oxidative Stress
- Quercetin/administration & dosage
- Quercetin/therapeutic use
- Random Allocation
- Shock, Septic/diet therapy
- Shock, Septic/metabolism
- Shock, Septic/physiopathology
- Shock, Septic/prevention & control
- Up-Regulation
- Vasculitis/etiology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | |
Collapse
|
29
|
Curcumin Protects against Ovariectomy-Induced Bone Changes in Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:174916. [PMID: 23049604 PMCID: PMC3463175 DOI: 10.1155/2012/174916] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/30/2012] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a metabolic disease affecting both men and women especially in postmenopausal women. Curcumin possesses many medicinal properties. In this study, thirty two female Sprague-Dawley rats were used to determine the potential effect of curcumin in prevention of bone loss following ovariectomy. The animals were divided into Sham group, ovariectomised control, ovariectomised treated with curcumin 110 mg/kg and ovariectomised treated with Premarin 100 μg/kg. The treatments were given via daily oral gavages for 60 days. The structural parameters such as bone volume, trabecular number, trabecular thickness and trabecular separation were found to be deteriorated in ovariectomised rats compared to Sham group. Moreover, the reduced osteoblast count, the increased osteoclast count and increased eroded surface were found in ovariectomised groups. Treatment with curcumin was able to reverse all these ovariectomy-induced deteriorations. Curcumin treatment was as effective as Premarin in most parameters except the bone volume and eroded surface, which were better than Premarin. The high dose of curcumin treatment was not only able to reduce the osteoclast number but also increase the osteoblast count. Therefore, the potential effect of curcumin can be applied as an alternative to oestrogen for prevention of postmenopausal osteoporosis.
Collapse
|
30
|
Pistelli L, Bertoli A, Gelli F, Bedini L, Ruffoni B, Pistelli L. Production of Curcuminoids in Different in vitro Organs of Curcuma longa. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcuma longa L. (turmeric) is one of the most important spice and safe food additives. Its main constituents, curcuminoids, showed anti-inflammatory, antitumor and antioxidant effects. In the present work, an in vitro propagation method was developed to achieve selected plant organs with quantified curcuminoid content. I n vitro plants were obtained from sprouting buds as primary explants. The major curcuminoid constituents, such as curcumin (CUR), demethoxycurcumin (DEM), and bis-demethoxycurcumin (bis-DEM) were examined in different organs by LC-DAD-ESI-MS. A significant production of curcumin (more than 260 μg g−1 fresh weight) was obtained from in vitro microrhizomes, especially grown in a Murashige and Skoog medium (MS) supplemented with kinetin (0.1 mg L−1), α-naphthaleneacetic acid (NAA, 1 mg L−1), sucrose (6%), agar (5%) and activated charcoal (0.1%). The analyzed microrhizomes showed reduced amounts of DEM and bis-DEM in comparison with CUR levels. In addition a shoot culture line was suitable to biosynthesize curcuminoids, in a ratio very similar to that identified in the fresh rhizomes of parent plants. This study represents the first direct quantification of curcuminoids in turmeric in vitro shoots and microrhizomes to be used in dietary supplements.
Collapse
Affiliation(s)
- Laura Pistelli
- Dipartimento di Biologia, Università di Pisa, via Mariscoglio 34, 56124 Pisa, Italy
| | - Alessandra Bertoli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 33, I-56126 Pisa, Italy
| | - Federica Gelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 33, I-56126 Pisa, Italy
| | - Laura Bedini
- Dipartimento di Biologia, Università di Pisa, via Mariscoglio 34, 56124 Pisa, Italy
| | - Barbara Ruffoni
- CRA- FSO Unità di ricerca per la Floricoltura e le specie Ornamentali, Corso degli Inglesi 508, I-18038 Sanremo (IM), Italy
| | - Luisa Pistelli
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 33, I-56126 Pisa, Italy
| |
Collapse
|
31
|
Nakmareong S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Kongyingyoes B, Donpunha W, Prachaney P, Phisalaphong C. Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency. Hypertens Res 2012; 35:418-425. [PMID: 22072109 DOI: 10.1038/hr.2011.180] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetrahydrocurcumin (THC), a major metabolite of curcumin, possesses strong antioxidant and cardioprotective properties. However, the activities of THC in hypertension and its associated complications remain unknown. The aim of this study was to investigate the effect of THC on hemodynamic status, aortic elasticity and oxidative stress in rats with N-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Hypertension was induced in male Sprague-Dawley rats by administration of L-NAME (50 mg kg(-1) body weight) in drinking water for 5 weeks. THC at a dose of 50 or 100 mg kg(-1) per day was administered daily during the fourth and fifth weeks when the hypertensive state had been established. The effects of THC on hemodynamics, aortic elasticity, endothelial nitric oxide synthase (eNOS) protein expression and oxidative stress markers were assessed. Marked increases in blood pressure, peripheral vascular resistance, aortic stiffness and oxidative stress were found in rats after L-NAME administration. THC significantly reversed these deleterious effects by reducing aortic wall thickness and stiffness. These effects were associated with increased aortic eNOS expression, elevated plasma nitrate/nitrite, decreased oxidative stress with reduced superoxide production and enhanced blood glutathione. Our results provide the first evidence that THC attenuates the detrimental effect of L-NAME by improving the hemodynamic status and aortic elasticity concomitant with reduction of oxidative stress. The present study suggests that THC might be used as a dietary supplement to protect against cardiovascular alterations under nitric oxide-deficient conditions.
Collapse
Affiliation(s)
- Saowanee Nakmareong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Avci G, Kadioglu H, Sehirli AO, Bozkurt S, Guclu O, Arslan E, Muratli SK. Curcumin Protects Against Ischemia/Reperfusion Injury in Rat Skeletal Muscle. J Surg Res 2012; 172:e39-46. [DOI: 10.1016/j.jss.2011.08.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/28/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
33
|
Leitman IM. Curcumin for the prevention of acute lung injury in sepsis: is it more than the flavor of the month? J Surg Res 2011; 176:e5-7. [PMID: 22316673 DOI: 10.1016/j.jss.2011.11.1034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023]
Affiliation(s)
- I Michael Leitman
- Department of Surgery, Beth Israel Medical Center, Philips Ambulatory Care Center, 10 Union Square East, Suite 2M, New York, NY 10003, USA.
| |
Collapse
|
34
|
Nakmareong S, Kukongviriyapan U, Pakdeechote P, Donpunha W, Kukongviriyapan V, Kongyingyoes B, Sompamit K, Phisalaphong C. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:519-529. [PMID: 21448566 DOI: 10.1007/s00210-011-0624-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/13/2011] [Indexed: 12/16/2022]
Abstract
Inhibition of nitric oxide synthesis with N ( ω )-nitro-L-arginine methyl ester (L-NAME) induces marked hypertension and oxidative stress. Curcumin (CUR) has been shown strong antioxidant property. Tetrahydrocurcumin (THU), a major metabolite of CUR, possesses several pharmacological effects similar to CUR; however, it is less studied than CUR. We investigated whether CUR and THU could prevent vascular dysfunction and inhibit development of hypertension in L-NAME-treated rats. Male Sprague-Dawley rats were administered with L-NAME (50 mg/kg/day) in drinking water for 3 weeks. CUR or THU (50 and 100 mg/kg/day) was fed to animals simultaneously with L-NAME. L-NAME administration induced increased arterial blood pressure and elevated peripheral vascular resistance accompanied with impaired vascular responses to angiotensin II and acetylcholine. CUR and THU significantly suppressed the blood pressure elevation, decreased vascular resistance, and restored vascular responsiveness. The improvement of vascular dysfunction was associated with reinstating the marked suppression of eNOS protein expression in the aortic tissue and plasma nitrate/nitrite. Moreover, CUR and THU reduced vascular superoxide production, decreased oxidative stress, and increased the previously depressed blood glutathione (GSH) and the redox ratios of GSH in L-NAME hypertensive rats. The antihypertensive and some antioxidant effects of THU are apparently more potent than those of CUR. This study suggests that CUR and THU prevented the development of vascular dysfunction induced by L-NAME and that the effects are associated with alleviation of oxidative stress.
Collapse
Affiliation(s)
- Saowanee Nakmareong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mohamadin AM, Elberry AA, Elkablawy MA, Gawad HSA, Al-Abbasi FA. Montelukast, a leukotriene receptor antagonist abrogates lipopolysaccharide-induced toxicity and oxidative stress in rat liver. ACTA ACUST UNITED AC 2011; 18:235-42. [PMID: 21419608 DOI: 10.1016/j.pathophys.2011.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/21/2010] [Accepted: 02/14/2011] [Indexed: 12/11/2022]
Abstract
Endotoxemia-induced hepatotoxicity is characterized by disturbed intracellular redox balance, excessive reactive oxygen species (ROS) generation inducing DNA, proteins and membrane lipid damages. In the present study, the protective effects of montelukast (MNT) against Escherichia coli lipopolysaccharides (LPS)-induced oxidative stress were investigated in rat liver. LPS (10mg/kg, i.p.) was injected and the animals were sacrificed 6h after LPS challenge. MNT (10mg/kg) was administered orally for seven successive days before endotoxemia induction. Blood samples were withdrawn for assessing the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and levels of serum total bilirubin, total protein, tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β). Livers were dissected out and used for histological examination or stored for the determination of malondialdehyde (MDA), protein carbonyl content (PCC), reduced glutathione (GSH) levels, enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and myeloperoxidase (MPO). Sepsis significantly increased ALT, AST, ALP, LDH, total bilirubin, TNF-α and IL-1β, MPO, MDA and PCC levels and decreased total protein, GSH and enzymatic antioxidants (CAT, SOD and GSH-Px). MNT decreased the markers of liver injury (AST, ALT, ALP, LDH, and total bilirubin), inflammatory biomarkers (TNF-alpha, IL-1β), MDA, PCC and MPO after LPS challenge. In conclusion, MNT abrogates LPS-induced markers of liver injury and suppresses the release of inflammatory and oxidative stress markers via its antioxidant properties and enhancement enzymatic antioxidant activities.
Collapse
Affiliation(s)
- Ahmed M Mohamadin
- Department of Clinical Biochemistry, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, P.O. Box 344, Saudi Arabia
| | | | | | | | | |
Collapse
|
36
|
Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 2011; 24:105-115. [PMID: 20872046 DOI: 10.1007/s10534-010-9379-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/15/2010] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) is one of the most important environmental pollutants that cause a number of adverse health effects in humans and animals. Recent studies have shown that Cd-induced oxidative damage within the vascular tissues results in vascular dysfunction. The current study was aimed to investigate whether ascorbic acid could protect against Cd-induced vascular dysfunction in mice. Male ICR mice were received CdCl(2) (100 mg/l) via drinking water for 8 weeks alone or received ascorbic acid supplementation at doses of 50 and 100 mg/kg/day for every other day. Results showed that Cd administration increased arterial blood pressure and blunted the vascular responses to vasoactive agents. These alterations were related to increased superoxide production in thoracic aorta, increased urinary nitrate/nitrite, increased plasma protein carbonyl, elevated malondialdehyde (MDA) concentrations in plasma and tissues, decreased blood glutathione (GSH), and increased Cd contents in blood and tissues. Ascorbic acid dose-dependently normalized the blood pressure, improved vascular reactivities to acetylcholine (ACh), phenylephrine (Phe) and sodium nitroprusside (SNP). These improvements were associated with significant suppression of oxidant formation, prevention of GSH depletion, and partial reduction of Cd contents in blood and tissues. The findings in this study provide the first evidence in pharmacological effects of ascorbic acid on alleviation of oxidative damage and improvement of vascular function in a mouse model of Cd-induced hypertension and vascular dysfunction. Moreover, our study suggests that dietary supplementation of ascorbic acid may provide beneficial effects by reversing the oxidative stress and vascular dysfunction in Cd-induced toxicity.
Collapse
Affiliation(s)
- Wanida Donpunha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
37
|
Sompamit K, Kukongviriyapan U, Donpunha W, Nakmareong S, Kukongviriyapan V. Reversal of cadmium-induced vascular dysfunction and oxidative stress by meso-2,3-dimercaptosuccinic acid in mice. Toxicol Lett 2010; 198:77-82. [PMID: 20399841 DOI: 10.1016/j.toxlet.2010.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022]
Abstract
Cadmium (Cd) is a heavy metal which causes concern as an environmental toxicant. Therapy with chelating agents is considered to be the rational treatment against metal poisoning. This study was designed to evaluate whether meso-2,3-dimercaptosuccinic acid (DMSA) could alleviate oxidative stress and vascular dysfunction in mice with subchronic exposure to Cd. Male ICR mice received CdCl2 (100 mg/L) via drinking water for 8 weeks. After Cd exposure, DMSA at a dose of 25 mg/kg or 50 mg/kg was intragastrically administered once daily for 5 consecutive days at the end of Cd treatment. It was found that Cd-induced hypertension and markedly blunted vascular responses to vasoactive agents, including acetylcholine, phenylephrine and sodium nitroprusside. Treatment with DMSA significantly restored blood pressure and improved vascular responsiveness when compared with Cd-treated controls. Moreover, DMSA protected against Cd-induced severe oxidative stress by normalization of the redox ratios of glutathione to glutathione disulfide and suppression of plasma malondialdehyde, plasma protein carbonyl, urinary nitrate/nitrite, and superoxide production from thoracic aorta. DMSA partially reduced Cd contents in the blood, heart, liver and kidneys. In conclusion, our present study provides the first evidence of the therapeutic efficacy of DMSA against oxidative stress and vascular dysfunction in Cd-intoxicated mice.
Collapse
Affiliation(s)
- Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | | | | | | | | |
Collapse
|
38
|
Suphim B, Prawan A, Kukongviriyapan U, Kongpetch S, Buranrat B, Kukongviriyapan V. Redox modulation and human bile duct cancer inhibition by curcumin. Food Chem Toxicol 2010; 48:2265-2272. [PMID: 20510329 DOI: 10.1016/j.fct.2010.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/23/2010] [Accepted: 05/19/2010] [Indexed: 12/31/2022]
Abstract
Curcumin, a major component from tumeric and well-known dietary spice, possesses various pharmacological effects. The cancer chemoprevention effect is suggested to act through its pro-oxidant property. The study was to clarify effects of curcumin on cholangiocarcinoma cells, a cancer of the bile duct that refractory to chemotherapeutic drugs. We examined time-course of oxidant formation in relation to antitumor and the adaptive antioxidant response of the cells. Curcumin induced antiproliferation and apoptosis in KKU-M214 CCA cells with concentration- and time- dependent manners. The antiproliferative effect of curcumin was observed at concentrations as low as 3 microM and was not necessarily associated with oxidative stress, while induction of apoptosis required significant production of superoxide anion, suppression of cellular redox and collapse of mitochondrial transmembrane potential. Western blot analysis showed a temporal relationship between the suppression of nuclear NF-kappaB with Bcl-XL protein levels. Up-regulation of p53 and Bax was associated with marked oxidative stress and apoptosis. Curcumin also induced Nrf2 protein expression with up-regulation of gamma-glutamylcysteine ligase mRNA and increased cellular antioxidant, glutathione. The study suggests that curcumin could be developed into an effective chemoprevention against CCA.
Collapse
Affiliation(s)
- Bunliang Suphim
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
39
|
Yadav UCS, Kalariya NM, Srivastava SK, Ramana KV. Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages. Free Radic Biol Med 2010; 48:1423-34. [PMID: 20219672 PMCID: PMC2856750 DOI: 10.1016/j.freeradbiomed.2010.02.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/12/2010] [Accepted: 02/21/2010] [Indexed: 02/06/2023]
Abstract
This study was designed to investigate the molecular mechanisms by which benfotiamine, a lipid-soluble analogue of vitamin B1, affects lipopolysaccharide (LPS)-induced inflammatory signals leading to cytotoxicity in the mouse macrophage cell line RAW264.7. Benfotiamine prevented LPS-induced apoptosis, expression of the Bcl-2 family of proapoptotic proteins, caspase-3 activation, and PARP cleavage and altered mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor and phosphorylation and subsequent activation of p38-MAPK, stress-activated kinases (SAPK/JNK), protein kinase C, and cytoplasmic phospholipase A2 in RAW cells. Further, phosphorylation and degradation of inhibitory kappaB and consequent activation and nuclear translocation of the redox-sensitive transcription factor NF-kappaB were significantly prevented by benfotiamine. The LPS-induced increased expression of cytokines and chemokines and the inflammatory marker proteins iNOS and COX-2 and their metabolic products NO and PGE(2) was also blocked significantly. Thus, our results elucidate the molecular mechanism of the anti-inflammatory action of benfotiamine in LPS-induced inflammation in murine macrophages. Benfotiamine suppresses oxidative stress-induced NF-kappaB activation and prevents bacterial endotoxin-induced inflammation, indicating that vitamin B1 supplementation could be beneficial in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|