1
|
Jiang H, Li G, Yang X, Feng X, Li P, Yang H, Cai D, Jiang Q, Shu G. Malic enzyme 3 mediated the effects of malic acid on intestinal redox status and feed efficiency in broilers. J Anim Sci Biotechnol 2025; 16:28. [PMID: 39994814 PMCID: PMC11849324 DOI: 10.1186/s40104-025-01163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Intestinal oxidative stress serves as an endogenous host defense against the gut microbiota by increasing energy expenditure and therefore decreasing feed efficiency (FE). Several systems coordinately regulate redox balance, including the mitochondrial respiratory chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and different antioxidants. However, it remains unclear which redox balance compartments in the intestine are crucial for determining FE. RESULTS In this study, we first screened the key targets of different metabolites and redox balance-related gene expression in broiler ceca. We then constructed a mouse colitis model to explore malic acid (MA) ability to alleviate intestinal inflammation. We further used controlled release technology to coat MA and investigated its effects on the intestinal redox status and FE in vivo. Finally, we examined the underlying mechanism by which MA modulated redox status using a porcine intestinal epithelial cell jejunum 2 (IPEC-J2) cell model in vitro. Our results demonstrated that the MA/malic enzyme 3 (ME3) pathway may play an important role in reducing oxidative stress in the broiler cecum. In addition, colon infusion of MA attenuated inflammatory phenotypes in the dextran sulfate sodium salt (DSS) induced mouse colitis model. Then, dietary supplementation with controlled-release MA pellet (MAP) reduced the feed to gain (F/G) ratio and promoted chicken growth, with reduced oxidative stress and increased bacterial diversity. Finally, the in vitro IPEC-J2 cell model revealed that ME3 mediated the effect of MA on cellular oxidative stress. CONCLUSION In summary, our study firstly revealed the important role of the MA/ME3 system in the hindgut of broiler chickens for improving intestinal health and FE, which may also be crucial for the implications of colon inflammation associated diseases.
Collapse
Affiliation(s)
- Hongfeng Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Genghui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaohua Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Penglin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Huisi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qingyan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Gang Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- United Bio-Tech Co., Ltd., Guangzhou, China.
| |
Collapse
|
2
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
3
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
4
|
Kasai S, Karmacharya A, Sato S. Melinjo ( Gnetum gnemon L) Extract Attenuates Colonic Inflammation in a Mouse Colitis Model by Regulating the AMPK/NFκB/Sirt1 Pathway. J Med Food 2024; 27:931-939. [PMID: 39058737 DOI: 10.1089/jmf.2024.k.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease affecting the colon with idiopathic origin. Melinjo endosperm extract (MeE) contains polyphenolic compounds that have antioxidative and anticancer properties. We examined the effect of MeE on inflammation and mucin expression in the colons of UC of mice treated with dextran sulfate sodium (DSS). C57BL/6J male mice were assigned into four categories: control, DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE. The control group was provided distilled water and a standard chow diet for 4 weeks. In DSS + 0% MeE, DSS + 0.1% MeE, and DSS + 0.5% MeE groups, the mice were treated with MeE for 3 weeks followed by MeE diets and drinking water containing 3% DSS for a week. Macrophage count, the mucus area stained by Alcian blue (AB), the levels of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor-κB (NFκB) p65, and silent information regulator (Sirt) 1 protein expression, as well as proinflammatory mediators and Mucin 2 mRNA expression were assessed. In the DSS + 0% MeE group, the AB-stained areas and Mucin 2 mRNA expression levels were observed to be lower than those of controls. However, the levels in the +0.5% MeE group were significantly increased. Compared with the control group, the macrophage number, the expression of IL-1β mRNA, and NFκB p65 protein in the DSS + 0% MeE group showed a significant increase. Conversely, these levels were significantly decreased in the +0.5% MeE group. The phosphorylated AMPK and Sirt1 protein levels were upregulated in the +0.5% MeE group. In conclusion, MeE may alleviate UC injury by reducing macrophage infiltration and regulating the AMPK/NFκB/Sirt1 pathway.
Collapse
Affiliation(s)
- Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
5
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
6
|
Madiyar F, Suskavcevic L, Daugherty K, Weldon A, Ghate S, O’Brien T, Melendez I, Morgan K, Boetcher S, Namilae L. Optimizing Production, Characterization, and In Vitro Behavior of Silymarin-Eudragit Electrosprayed Fiber for Anti-Inflammatory Effects: A Chemical Study. Bioengineering (Basel) 2024; 11:864. [PMID: 39329606 PMCID: PMC11428713 DOI: 10.3390/bioengineering11090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. Silymarin is a naturally occurring polyphenolic flavonoid antioxidant that has shown promising results as a pharmacological agent due to its antioxidant and hepatoprotective characteristics. This study aims to produce a drug-polymer complex named the SILS100-Electrofiber complex, using an electrospray system. The vertical set-up of the electrospray system was optimized at a 1:10 of silymarin and Eudragit® S100 polymer to enhance surface area and microfiber encapsulation. The SILS100-Electrofiber complex was evaluated using drug release kinetics via UV Spectrophotometry, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC). Drug loading, apparent solubility, and antioxidant activity were also evaluated. The study was successful in creating fiber-like encapsulation of the silymarin drug with strand diameters ranging from 5-7 μm, with results showing greater silymarin release in Simulated Intestinal Fluid (SIF) compared to Simulated Gastric Fluid (SGF). Moving forward, this study aims to provide future insight into the formulation of drug-polymer complexes for IBD treatment and targeted drug release using electrospray and microencapsulation.
Collapse
Affiliation(s)
- Foram Madiyar
- Department of Physical Science, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Liam Suskavcevic
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Kaitlyn Daugherty
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Alexis Weldon
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Sahil Ghate
- Department of Electrical Engineering, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Takara O’Brien
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Isabel Melendez
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Karl Morgan
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Sandra Boetcher
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Lasya Namilae
- Seminole High School, 2701 Ridgewood Ave, Sanford, FL 32773, USA
| |
Collapse
|
7
|
Patil R, Telang G, Aswar U, Vyas N. Comparative analyses of anti-inflammatory effects of Resveratrol, Pterostilbene and Curcumin: in-silico and in-vitro evidences. In Silico Pharmacol 2024; 12:38. [PMID: 38706886 PMCID: PMC11065812 DOI: 10.1007/s40203-024-00211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is an adaptive response that involves activation, and recruitment of cells of innate and adaptive immune cells for restoring homeostasis. To safeguard the host from the threat of inflammatory agents, microbial invasion, or damage, the immune system activates the transcription factor NF-κB and produces cytokines such as TNF-α, IL- 6, IL-1β, and α. Sirtuin 1 (SIRT1) controls the increased amounts of proinflammatory cytokines, which in turn controls inflammation. Three phytoconstituents resveratrol (RES), pterostilbene (PTE), and curcumin (CUR) which are SIRT1- activators and that have marked anti-inflammatory effects (in-vivo), were chosen for the current study. These compounds were compared for their anti-inflammatory potential by in-silico docking studies for IL-6, TNF-α, NF-κB, and SIRT1 and in-vitro THP-1 cell line studies for IL-6, TNF-α. PTE was found to be more effective than RES and CUR in lowering the concentrations of IL-6 and TNF-α in THP-1 cell line studies, and it also showed a favorable docking profile with cytokines and SIRT1. Thus, PTE appears to be a better choice for further research and development as a drug or functional food supplement with the ability to reduce inflammation in metabolic disorders. Graphical abstract Schematic representation of in-silico and in-vitro analysis of Resveratrol, Pterostilbene, and Curcumin.
Collapse
Affiliation(s)
- Rashmi Patil
- Department of Pharmacology Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, Maharashtra 411038 India
| | - Gaurang Telang
- Logical Life Science Pvt. Ltd, Vadgaon Khurd, Pune, Maharashtra 411041 India
| | - Urmila Aswar
- Department of Pharmacology Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, Maharashtra 411038 India
| | - Nishant Vyas
- Logical Life Science Pvt. Ltd, Vadgaon Khurd, Pune, Maharashtra 411041 India
| |
Collapse
|
8
|
Lee JY, Kim JH, Choi JM, Noh BW, Kim HY, Cho EJ. Anti-Inflammatory Effects of Artemisia argyi H. Fermented by Lactobacillus plantarum in the LPS-Induced RAW 264.7 Cells and DSS-Induced Colitis Model. Foods 2024; 13:998. [PMID: 38611304 PMCID: PMC11011819 DOI: 10.3390/foods13070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis is a chronic inflammatory disease caused by abnormal immune responses in the intestinal mucosa and gut microorganisms. Unlike other mugworts, Artemisia argyi H. (A. argyi H.) enhances antioxidant, anti-inflammatory, and anticancer effects, but the improvement effects against gut inflammation have not yet been reported. Therefore, this study aimed to confirm the alleviation of the inflammatory state in the gut by A. argyi H. fermented with Lactobacillus plantarum (FAA), using lipopolysaccharide (LPS)-induced RAW 264.7 cells and dextran sulfate sodium (DSS)-induced colitis models. In vitro, FAA (10, 50, 100, and 200 μg/mL) was pretreated into RAW 264.7 cells, followed with LPS (100 ng/mL), which induced the cell damage. Meanwhile, in vivo, FAA (100, 200 mg/kg/day) was orally administered into 6-week-old C57BL/6N mice for 3 weeks. During the last week of FAA administration, 2.5% DSS was used to induce colitis. The results showed that FAA reduced the production of nitric oxide (p < 0.0001), tumor necrosis factor (TNF)-α, interleukin (IL)-6 (p < 0.0001), and IL-1β (p < 0.0001) in the LPS-induced RAW 264.7 cells. Moreover, in the DSS-induced colitis model, FAA alleviated clinical symptoms (p < 0.001), inhibited the inflammatory state by reducing the production of TNF-α (p < 0.0001) and interferon-γ in intestinal immune cells (p < 0.0001), and strengthened the intestinal barrier by increasing the number of goblet cells (p < 0.0001). Furthermore, the anti-inflammatory effects were confirmed by the alleviation of histological damage (p < 0.001) and down-regulation of the expression of inflammatory proteins (TLR4, p < 0.0001; MyD88, p < 0.0001; Cox-2, p < 0.0001). These results suggest the potential of FAA as a dietary ingredient for preventing inflammation in the gut.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji Myung Choi
- Department of Food and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| |
Collapse
|
9
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
10
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
11
|
Yu X, Wang Y, Xu Y, Li X, Zhang J, Su Y, Guo L. Resveratrol attenuates intestinal epithelial barrier dysfunction via Nrf2/HO-1 pathway in dextran sulfate sodium-induced Caco-2 cells. Immun Inflamm Dis 2024; 12:e1193. [PMID: 38372468 PMCID: PMC10875904 DOI: 10.1002/iid3.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION The intestinal tract serves as an innate barrier, safeguarding the internal milieu from microorganisms and toxins. Various intestinal inflammatory diseases have a strong association with intestinal barrier dysfunction. The primary functional cells within the intestinal tract, intestinal epithelial cells (IECs) and their tight junctions (TJs), are crucial in preserving the integrity of this mechanical barrier. Resveratrol (Res), a plant-derived phenolic compound, exhibits a range of health-promoting benefits attributed to its anti-inflammatory properties. This study aims to examine Res's efficacy in bolstering IECs barrier function. METHODS Dextran sulfate sodium (DSS) was employed to induce barrier dysfunction in IECs. Inflammatory cytokines in supernatants (interleukin [IL]-6, IL-1β, tumor necrotic factor [TNF]-α, and IL-10) were quantified via enzyme-linked immunosorbent assay (ELISA). Then we assessed monolayer integrity using transepithelial electrical resistance (TEER). TJ protein expression (zonula occludens [ZO]-1 and Occludin) in IECs was evaluated through immunofluorescence and Western blot analysis. Network pharmacology helped identify the biological processes, signaling pathways, and key targets involved in Res's mitigation of DSS-induced IECs barrier dysfunction. The efficacy of the primary target was further corroborated using Western blot. RESULTS Res was shown to increase cell viability and IL-10 expression while reducing TNF-α, IL-6, and IL-1β levels, thus mitigating the inflammatory response. It enhanced TEER values and upregulated TJ protein expression (ZO-1 and Occludin). Network pharmacology revealed that Res potentially targets the NFE2L2 (nuclear factor erythroid-2-related factor 2, Nrf2), a vital antioxidant factor. Significantly, Res augmented Nrf2 and heme oxygenase 1 (HO-1) protein levels, counteracting oxidative stress in the IECs barrier dysfunction model. CONCLUSION Overall, our findings suggested that Res ameliorated DSS-induced IECs barrier dysfunction by activating Nrf2/HO-1 pathway, showcasing significant therapeutic potential in the early stages of colitis.
Collapse
Affiliation(s)
- Xinya Yu
- Department of Medical Microbiology and Immunology, School of Basic Medical SciencesDali UniversityDaliYunnanPeople's Republic of China
| | - Yazhi Wang
- Department of Medical Microbiology and Immunology, School of Basic Medical SciencesDali UniversityDaliYunnanPeople's Republic of China
| | - Yunchun Xu
- Department of Medical Microbiology and Immunology, School of Basic Medical SciencesDali UniversityDaliYunnanPeople's Republic of China
| | - Xiaoxi Li
- Department of General Surgery, School of Clinical MedicineDali UniversityDaliYunnanPeople's Republic of China
| | - Junhua Zhang
- Department of General Surgery, School of Clinical MedicineDali UniversityDaliYunnanPeople's Republic of China
| | - Yunpeng Su
- Department of Medical Microbiology and Immunology, School of Basic Medical SciencesDali UniversityDaliYunnanPeople's Republic of China
| | - Le Guo
- Department of Medical Microbiology and Immunology, School of Basic Medical SciencesDali UniversityDaliYunnanPeople's Republic of China
| |
Collapse
|
12
|
Wang L, Wei Z, Lv L, Xue C. An efficient co-delivery system based on multilayer structural nanoparticles for programmed sequential release of resveratrol and vitamin D3 to combat dextran sodium sulfate-induced colitis in mice. Int J Biol Macromol 2024; 254:127962. [PMID: 37952331 DOI: 10.1016/j.ijbiomac.2023.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Multilayer structural nanoparticles (MSNPs) fabricated by layer-by-layer self-assembly were used for the co-encapsulation of resveratrol (Res) and vitamin D3 (Vd). Res and Vd co-encapsulated MSNPs (Res-Vd-MSNPs) were evaluated by appearance, morphology, particle size, ζ potential and encapsulation efficiency (EE). The results showed that Res-Vd-MSNPs were spherical in shape with a particle size of 625.4 nm and a surface charge of +26.1 mV. The EE of Res and Vd was as high as 93.6 % and 90.8 %, respectively. Res-Vd-MSNPs exhibited better stability and lower degradation rate in simulated gastric fluid, allowing the programmed sequential release of Vd and Res in simulated intestinal fluid and simulated colonic fluid, which was also confirmed by in vivo fluorescence imaging of mice. In addition, Res-Vd-MSNPs effectively alleviated the clinical symptoms of dextran sulfate sodium salt (DSS)-induced colitis in mice, including weight loss, diarrhea and fecal bleeding, and it especially exerted a preventive effect on DSS-induced colon tissue damage and colon shortening. Furthermore, Res-Vd-MSNPs suppressed the expression of anti-inflammatory cytokines such as TNF-α, IL-1β and IL-6 and ameliorated DSS-induced oxidative damage, decreased colonic myeloperoxidase (MPO) and nitric oxide (NO) activities and elevated glutathione (GSH) level in DSS-treated mice. This study illustrated that MSNPs were potential carriers for developing the co-delivery system for the synergistic prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Ling Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
13
|
Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel) 2023; 12:1954. [PMID: 38001807 PMCID: PMC10669798 DOI: 10.3390/antiox12111954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases whose prevalence has increased worldwide in recent decades. These disorders contribute to patients' decreased quality of life (QoL) and constitute a socioeconomic burden. New therapeutic options for AD and psoriasis based on natural compounds are being investigated. These include resveratrol (3,5,40-trihydroxystilbene) and its derivatives, which are produced by many plant species, including grapevines. Resveratrol has gained interest since the term "French Paradox", which refers to improved cardiovascular outcomes despite a high-fat diet in the French population, was introduced. Resveratrol and its derivatives have demonstrated various health benefits. In addition to anti-cancer, anti-aging, and antibacterial effects, there are also anti-inflammatory and antioxidant effects that can affect the molecular pathways of inflammatory skin disorders. A comprehensive understanding of these mechanisms may help develop new therapies. Numerous in vivo and in vitro studies have been conducted on the therapeutic properties of natural compounds. However, regarding resveratrol and its derivatives in treating AD and psoriasis, there are still many unexplained mechanisms and a need for clinical trials. Considering this, in this review, we discuss and summarize the most critical research on resveratrol and its derivatives in animal and cell models mimicking AD and psoriasis.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Division of Biomedical Science, Medical University of Lodz, 7/9 Zeligowskiego St., 90-752 Lodz, Poland
| |
Collapse
|
14
|
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine innovations in spinal cord injury management: Bridging the gap. ENVIRONMENTAL RESEARCH 2023; 235:116563. [PMID: 37423366 DOI: 10.1016/j.envres.2023.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Spinal cord injury (SCI) has devastating effects on a person's physical, social, and professional well-being. It is a life-altering neurological condition that significantly impacts individuals and their caregivers on a socioeconomic level. Recent advancements in medical therapy have greatly improved the diagnosis, stability, survival rates, and overall well-being of SCI patients. However, there are still limited options available for enhancing neurological outcomes in these patients. The complex pathophysiology of SCI, along with the numerous biochemical and physiological changes that occur in the damaged spinal cord, contribute to this gradual improvement. Currently, there are no therapies that offer the possibility of recovery for SCI, although several therapeutic approaches are being developed. However, these therapies are still in the early stages and have not yet demonstrated effectiveness in repairing the damaged fibers, which hinders cellular regeneration and the full restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering in treating neural tissue injuries, this review focuses on the latest advancements in nanotechnology for SCI therapy and tissue healing. It examines research articles from the PubMed database that specifically address SCI in the field of tissue engineering, with an emphasis on nanotechnology as a therapeutic approach. The review evaluates the biomaterials used for treating this condition and the techniques employed to create nanostructured biomaterials.
Collapse
Affiliation(s)
- Mohsen Rahmanian
- School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Amirali Ghahremani
- Department of Neurology, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
16
|
Yu T, Wu L, Zhang T, Hao H, Dong J, Xu Y, Yang H, Liu H, Xie L, Wang G, Liang Y. Insights into Q-markers and molecular mechanism of Sanguisorba saponins in treating ulcerative colitis based on lipid metabolism regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154870. [PMID: 37207387 DOI: 10.1016/j.phymed.2023.154870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sanguisorba saponin extract (SSE) is the main active part of Sanguisorba officinalis with various pharmacological activities such as anti-inflammatory, anti-bacterial and anti-oxidant. However, its therapeutic role and underlying mechanisms for ulcerative colitis (UC) still need to be elucidated. PURPOSE This study aims to explore the therapeutic effect, effectiveness-material basis-quality markers (Q-markers) and prospective mechanism of function of SSE on UC. METHODS Fresh 2.5% dextran sulfate sodium salt (DSS) solution was placed in drinking bottles for 7 days to induce a mouse model of UC. SSE and sulfasalazine (SASP) were supplemented to mice by gavage for consecutive 7 days to investigate the therapeutic role of SSE on UC. Mouse monocyte macrophages (RAW264.7) and human normal colonic epithelial (NCM460) cells were treated with LPS to induce inflammatory responses, followed by pharmacodynamic examination with different concentrations of SSE. Hematoxylin-eosin (HE) and Alcian blue staining were conducted to evaluate the pathological damage of mice colon. Lipidomic technology was conducted to explore the differential lipids closely related to the disease process of UC. Quantitative PCR analysis, immunohistochemistry and ELISA kit were used to measure the expression levels of the corresponding proteins and pro-inflammatory factors. RESULTS SSE treatment could effectively reduce the elevated expressions of pro-inflammatory factors in RAW264.7 and NCM460 cells due to LPS stimulation. Intragastric administration of SSE was found to significantly alleviate the symptoms of DSS-induced colon injury and low-polar saponins in SSE. Low polarity saponins, especially ZYS-II, were proved to be the main active substances of SSE in treating UC. In addition, SSE could significantly ameliorate the aberrant lipid metabolism in UC mice. The role of phosphatidylcholine (PC)34:1 in the UC pathogenesis has been fully verified in our previous studies. Herein, SSE-dosing effectively reversed the metabolic disorder of PCs in UC mice, and increased the PC34:1 level to normal via up-regulating the expression of phosphocholine cytidylyltransferase (PCYT1α). CONCLUSION Our data innovatively revealed that SSE could significantly alleviate the symptoms of UC by reversing the disorder of PC metabolism induced by DSS modeling. SSE was proved for the first time to be a promising and effective candidate for UC treatment.
Collapse
Affiliation(s)
- Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Linlin Wu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Tingting Zhang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Hongyuan Hao
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Jing Dong
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huizhu Yang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huafang Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| |
Collapse
|
17
|
Huo R, Huang X, Yang Y, Yang Y, Lin J. Potential of resveratrol in the treatment of interstitial lung disease. Front Pharmacol 2023; 14:1139460. [PMID: 37089962 PMCID: PMC10117935 DOI: 10.3389/fphar.2023.1139460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Interstitial lung disease (ILD) is a heterogeneous group of diseases characterized by lung injury caused by lung fibroblast proliferation, interstitial inflammation, and fibrosis. Different cell signal transduction pathways are activated in response to various proinflammatory or fibrotic cytokines, such as IL-6, and these cytokines are increased in different ILDs. The overexpressed cytokines and growth factors in ILD can activate TGF-β/Smad2/3/4, NF-κB, and JAK/STAT signal transduction pathways, promote the activation of immune cells, increase the release of pro-inflammatory and pro-fibrotic factors, differentiate fibroblasts into myofibroblasts, and promote the occurrence and development of ILD. This finding suggests the importance of signal transduction pathways in patients with ILD. Recent evidence suggests that resveratrol (RSV) attenuates excessive inflammation and pulmonary fibrosis by inhibiting the TGF-β/Smad2/3/4, NF-κB, and JAK/STAT signal transduction pathways and overactivation of immune cells. In this review, advances in lung protection and the underlying mechanisms of RSV are summarized, and the potential efficacy of RSV as a promising treatment option for ILD is highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
18
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
19
|
Raka RN, Xiao J, Wu H, Lv W, Ding Z, Cao Y, Li X, Sun J, Luan K. Pingyin Rose Essential Oil Restores Intestinal Barrier Integrity in DSS-induced Mice Colitis Model. Food Res Int 2023; 164:112362. [PMID: 36737950 DOI: 10.1016/j.foodres.2022.112362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Rosa rugosa cv. Plena is a 'drug homologous food' in China with a long history. Pingyin rose essential oil (PREO) is a mixture of compounds extracted from blooming R. rugosa cv. Plena. With its elegant smell and excellent effects on oxidative stress and inflammation alleviation, PREO is wildly used in the food industry as a popular additive. We aimed to decipher if the PREO could alleviate and restore dextran sodium sulfate (DSS)-induced barrier integrity damages. The results showed that a 7-day PREO (15 μL/kg) treatment alleviated the colitis symptoms by improving disease activity index (DAI) scores through weight loss, occult blood, and colon shortening. The expression of tight junction proteins and the enzyme activities of superoxide dismutases (SOD), and catalase (CAT) increased while nitric oxide (NO), malondialdehyde (MDA), and myeloperoxidase (MPO) production decreased in PREO-treated C57BL6 female mice. PREO treatment inhibited the expression of pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin (IL)-1β, and IL-6. Further, PREO modulated the composition of the gut microbiota and Spearman's correlation analysis revealed a positive effect. The transcriptome analysis and western blot results indicated that PREO might ameliorate intestinal barrier dysfunction in this study via the TLR4-NF-kB signaling pathway. We hypothesized that PREO has preventive potential against gut disorders and could serve as a functional food additive.
Collapse
Affiliation(s)
- Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| | - Hua Wu
- Beijing Technology and Business University, Beijing 100048, China.
| | - Wenwen Lv
- Beijing Technology and Business University, Beijing 100048, China
| | - Zhiqian Ding
- Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Yangping Cao
- Beijing Technology and Business University, Beijing 100048, China
| | - Xukai Li
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu 030031, Shanxi, China
| | - Jinglong Sun
- Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing 100853, China
| | - Kou Luan
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, Shandong, China
| |
Collapse
|
20
|
Chi ZC. Progress in research of low-grade inflammation in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:1051-1065. [DOI: 10.11569/wcjd.v30.i24.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common intestinal disease with a prevalence of 10%-15%. However, its pathophysiology is still not completely clear, and it has long been considered as a functional disease. In recent years, it has been found that low-grade inflammation plays a pathogenic role in IBS. Studies have confirmed that there is persistent mucosal inflammation at the microscopic and molecular levels. This review discusses the evidence, role, and clinical relevance of mucosal inflammation in IBS. In addition to mucosal inflammation, neuroinflammation may lead to changes in neuroendocrine pathways and glucocorticoid receptor genes through the "gut-brain" axis, and thus cause IBS through proinflammatory phenotype and hypothalamic pituitary adrenal axis and 5-hydroxytryptamine dysfunction. The observation that IBS patients can benefit from anti-inflammatory therapy also confirms that IBS is associated with inflammation.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
21
|
Zhang B, Zhang Y, Liu X, Yin J, Li X, Zhang X, Xing X, Wang J, Wang S. Differential Protective Effect of Resveratrol and Its Microbial Metabolites on Intestinal Barrier Dysfunction is Mediated by the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11301-11313. [PMID: 36066018 DOI: 10.1021/acs.jafc.2c04101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effectiveness of resveratrol (RES) on intestinal barrier dysfunction and colitis has been extensively studied. However, the specific effects of its microbial metabolites on gut barrier function remain unclear. Hence, we compared the protective effects of RES and its microbial metabolites dihydroresveratrol (DHR) and 3-(4-hydroxyphenyl)-propionic acid (4HPP) against intestinal barrier injury and colitis. Only 4HPP and RES significantly reduced paracellular permeability and the secretion of proinflammatory cytokines in lipopolysaccharides (LPS)-treated intestinal Caco-2 cells, which was consistent with the upregulation in tight junction (TJ) proteins. Furthermore, RES and 4HPP ameliorated intestinal barrier dysfunction and colonic inflammation in colitis mice, while DHR did not. In particular, the expressions of intestinal TJ proteins and Muc2 were restored by RES and 4HPP. The molecular mechanism involved the adenosine monophosphate-activated protein kinase (AMPK)-mediated activation of CDX2 and the regulation of the SIRT1/NF-κB pathway. These findings provide new insights into understanding the protective effects of RES against intestinal barrier damage and colitis.
Collapse
Affiliation(s)
- Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaolong Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
23
|
Sapuleni J, Szymanska M, Meidan R. Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reprod Biol Endocrinol 2022; 20:104. [PMID: 35840944 PMCID: PMC9284863 DOI: 10.1186/s12958-022-00970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.
| |
Collapse
|
24
|
Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109:109101. [PMID: 35777588 DOI: 10.1016/j.jnutbio.2022.109101] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder associated with the inflammation in the digestive tract. The exact cause of IBD is unknown; nevertheless, in IBD, the homeostasis of key regulatory factors involved in intestinal immunity has been documented to be disrupted. Despite the lack of a viable treatment for IBD, synthetic drugs and monoclonal antibodies are currently used to treat it. However, these treatments have side effects, and the high relapse rate limits their usage. Dietary polyphenols constitute a great variety of compounds and have shown an array of biological properties. Resveratrol is a natural polyphenol found in grapevines and berries. The therapeutic ability of resveratrol against IBD is amply demonstrated in many in vivo studies. Resveratrol can interact with several molecular targets (Nf-kB, SIRT1, mTOR, HIF-1α, miRNAs, and TNF-α) and effectively prevent/ alleviate IBD symptoms with promising results. Although resveratrol has profound anti-inflammatory properties against IBD, its therapeutic employment is limited due to its low water solubility, less chemical stability, less bioavailability, and rapid metabolism in vivo. Hence, resveratrol encapsulation using different carries and its controlled release has become a promising strategy to overcome limitations. Herein, we meticulously review, talk-over the anti-inflammatory effect and mechanisms of resveratrol in IBD. We further provide the latest information on resveratrol formulations and nano-delivery systems used in oral delivery of resveratrol for the treatment of IBD and offer our view on future research on resveratrol in IBD treatment.
Collapse
|
25
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
26
|
Faal M, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Assessment of resveratrol on diabetes of zebrafish ( Danio rerio). J Diabetes Metab Disord 2022; 21:823-833. [PMID: 35673499 PMCID: PMC9167402 DOI: 10.1007/s40200-021-00964-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/23/2021] [Indexed: 01/29/2023]
Abstract
Purpose Zebrafish (Danio rerio) is an established model for studying various metabolic diseases. The aim of this study was to evaluate the effect of resveratrol as a natural polyphenol on reducing inflammation caused by hyperglycemia (diabetes) and its effect on digestive tissue as well as TNF-α, IFN-γ, and INL1β genes in zebrafish. Methods Within a 20-day period, the research was performed on 120 adult zebrafish, which were randomly classified into eight groups: two experimental treatments (induced glucose = +G) and (without glucose = -G), where each main group was as follows: CTRL = control and RSV resveratrol with doses 10, 20, and 30 μmol/L. At the end of the period, the blood glucose level was measured using glucose test strip, staining of intestinal tissue was done by hematoxylin and eosin (H&E), and expression of INF-γ, IL1-β, and TNF-α genes extracted from the intestinal was measured via internal method RT-PCR. Data analysis in this study was performed using SPSS software version 21. One-way ANOVA and mean comparison of treatments by Duncan test were used for data analysis. All statistical analyses were performed at a significant level (P < 0.5) where the mean data were presented with standard deviation. Results According to the results, the lowest blood sugar level at the end of the experiment belonged to the group (G-RSV20) where no significant difference was observed between treatments (P > 0.05). The highest expression of IL1-β gene belonged to the (G + CTRL) group (P < 0.05), while the (G + RSV20) group showed the lowest expression of the INF-γ gene and had a significant difference with other groups (P < 0.05). In (G + RSV10) treatment, the lowest expression of TNF-α gene was observed and there was no significant difference with other treatments (P > 0.05). Resveratrol would improve the absorption of nutrients in the intestinal tissue by increasing the number of goblet cells as well as the width and height of the villi. Conclusion Collectively, this study indicated that treatment with resveratrol could improve metabolic-mediated performances by reducing blood glucose, increasing food absorption in the intestine tissue, and reducing the expression of inflammatory genes in type 2 diabetic zebrafish model.
Collapse
Affiliation(s)
- Mina Faal
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Bootorabi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology Metabolism Molecular-Cellular Sciences Institute, Zebra fish core Facility (ZFIN ID: ZDB-LAB-1901172), Endocrinology and Metabolism research Institute, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
28
|
Yan X, Yang C, Yang M, Ma Y, Zhang Y, Zhang Y, Liu C, Xu Q, Tu K, Zhang M. All-in-one theranostic nano-platform based on polymer nanoparticles for BRET/FRET-initiated bioluminescence imaging and synergistically anti-inflammatory therapy for ulcerative colitis. J Nanobiotechnology 2022; 20:99. [PMID: 35236359 PMCID: PMC8889649 DOI: 10.1186/s12951-022-01299-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), has evolved into a global burden given its high incidence. There is a clinical need to create better diagnostic and therapeutic approaches to UC. RESULTS We fabricated P-selectin binding peptide-decorated poly lactic-co-glycolic acid (PBP-PLGA-NP) doped with two lipophilic dyes, DiL and DiD. Meanwhile, two low-toxic anti-inflammatory natural products (betulinic acid [BA] and resveratrol [Res]) were co-loaded in the PBP-PLGA-NP system. The BA/Res-loaded NPs had an average size of around 164.18 nm with a negative zeta potential (- 25.46 mV). Entrapment efficiencies of BA and Res were 74.54% and 52.33%, respectively, and presented a sustained drug release profile. Further, the resulting PBP-PLGA-NP could be internalized by RAW 264.7 cells and Colon-26 cells efficiently in vitro and preferentially localized to the inflamed colon. When intravenously injected with luminol, MPO-dependent bioluminescence imaging to visualize tissue inflammation was activated by the bioluminescence and fluorescence resonance energy transfer (BRET-FRET) effect. Importantly, injected NPs could remarkably alleviate UC symptoms yet maintain intestinal microbiota homeostasis without inducing organ injuries in the mice models of colitis. CONCLUSIONS This theranostic nano-platform not only serves as a therapeutic system for UC but also as a non-invasive and highly-sensitive approach for accurately visualizing inflammation.
Collapse
Affiliation(s)
- Xiangji Yan
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, 30302, GA, USA
| | - Mei Yang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
30
|
Li M, Li P, Tang R, Lu H. Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021; 11:antiox11010049. [PMID: 35052553 PMCID: PMC8773162 DOI: 10.3390/antiox11010049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation results in extensive damage to biological systems. The massive amount of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation, fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of tumors or normal cells to different doses of ionizing radiation could lead to the generation of free radical species, which can release signal mediators and lead to harmful effects. Although previous FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This review examined the prospective roles played by some phytochemicals in altering signal pathways associated with radiation response.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Rutumbara Dash
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Ashok Sharma
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, Campus de Excelencia Internacional de Ámbito Regional (CEIR)-Campus Mare Nostrum (CMN), Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| |
Collapse
|
32
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
33
|
Liu Y, Zhou M, Yang M, Jin C, Song Y, Chen J, Gao M, Ai Z, Su D. Pulsatilla chinensis Saponins Ameliorate Inflammation and DSS-Induced Ulcerative Colitis in Rats by Regulating the Composition and Diversity of Intestinal Flora. Front Cell Infect Microbiol 2021; 11:728929. [PMID: 34804990 PMCID: PMC8602866 DOI: 10.3389/fcimb.2021.728929] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulsatilla chinensis (Bunge) Regel is a commonly used Chinese medicine for clearing away heat and detoxification, cooling blood, stopping dysentery, and anti-inflammatory effects. Pulsatilla chinensis saponins (PRS) have been identified to be responsible for producing these pharmacological activities. Studies have shown that Pulsatilla decoction has a good therapeutic effect on ulcerative colitis (UC), however, the therapeutic effect of PRS on UC has not been reported. Therefore, the purpose of this study was to investigate the possible anti-UC activity of PRS using a dextran sulfate sodium (DSS)-induced rat model, and further study the mechanism of PRS in the treatment of UC. The fecal and colon samples were collected from rats to monitor the changes in the composition and diversity of the intestinal flora, and pathological colon sections were also made to examine the mesenteric hemorheological characteristics. The results showed that PRS significantly reduced the mesenteric blood flow in UC rats and significantly alleviated the inflammatory response, which indicates that saponins are involved in the anti-UC effects of PRS. At the same time, it is also suggested that the regulation of intestinal flora by Pulsatilla chinensis saponins is an important pathway for its anti-UC activity, which may be ascribed to the increase in beneficial bacteria like norank_F_Muribaculaceae and norank_F_norank_O_Clostridia_UCG-014, and decrease in the harmful Bacteroides.
Collapse
Affiliation(s)
- Yali Liu
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Nanchang Medical College, Nanchang, China
| | - Mingyue Zhou
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Jin
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingbin Chen
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Meng Gao
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifu Ai
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Su
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
34
|
Effects of Wine Components in Inflammatory Bowel Diseases. Molecules 2021; 26:molecules26195891. [PMID: 34641434 PMCID: PMC8512001 DOI: 10.3390/molecules26195891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of Inflammatory bowel disease (IBD) worldwide, and the rising cost of treatment with novel biological drugs, there is an increasing interest in various diets and natural foods as a potential way to control/modulate IBD. As recent data indicates that diet can modify the metabolic responses essential for the resolution of inflammation, and as wine compounds have been shown to provide substantial anti-inflammatory effect, in this review we aimed to discuss the current evidence concerning the impact of biological compounds present in wine on IBD. A number of preclinical studies brought forth strong evidence on the mechanisms by which molecules in wine, such as resveratrol or piceatannol, provide their anti-inflammatory, anti-oxidative, anti-tumor, and microbiota-modulation effects. However, concerning the effects of alcohol, it is still unclear how the amount of ethanol ingested within the framework of moderate wine consumption (1–2 glasses a day) affects patients with IBD, as human studies regarding the effects of wine on patients with IBD are scarce. Nevertheless, available evidence justifies the conductance of large-scale RCT trials on human subjects that will finally elucidate whether wine can offer real benefits to the IBD population.
Collapse
|
35
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
36
|
Kumar R, Harilal S, Carradori S, Mathew B. A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Curr Med Chem 2021; 28:2657-2696. [PMID: 33106132 DOI: 10.2174/0929867327666201026143757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/09/2022]
Abstract
A few decades ago, the incidence of colorectal cancer (CRC) was low and is now the fourth in the list of deadly cancers producing nearly a million deaths annually. A population that is aging along with risk factors such as smoking, obesity, sedentary lifestyle with little or no physical activity, and non-healthy food habits of developed countries can increase the risk of colorectal cancer. The balance in gut microbiota and the metabolites produced during bacterial fermentation within the host plays a significant role in regulating intestinal diseases as well as colorectal cancer development. Recent progress in the understanding of illness resulted in multiple treatment options such as surgery, radiation, and chemotherapy, including targeted therapy and multitherapies. The treatment plan for CRC depends on the location, stage and grade of cancer as well as genomic biomarker tests. Despite all the advancements made in the genetic and molecular aspects of the disease, the knowledge seems inadequate as the drug action as well as the wide variation in drug response did not appear strongly correlated with the individual molecular and genetic characteristics, which suggests the requirement of comprehensive molecular understanding of this complex heterogeneous disease. Furthermore, multitherapies or a broad spectrum approach, which is an amalgamation of the various promising as well as effective therapeutic strategies that can tackle heterogeneity and act on several targets of the disease, need to be validated in clinical studies. The latest treatment options have significantly increased the survival of up to three years in the case of advanced disease. The fact that colorectal cancer is developed from a polypoid precursor, as well as the symptoms of the disease that occur at an advanced stage, underlines how screening programs can help early detection and decrease mortality as well as morbidity from CRC.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
37
|
Boutemine IM, Amri M, Dorgham K, Amir ZC, Benazzouz S, Ameur F, Layaida K, Yssel H, Touil-Boukoffa C. Beneficial role of Pistacia lentiscus aqueous extract in experimental colitis: anti-inflammatory and potential therapeutic effects. Inflammopharmacology 2021; 29:1225-1239. [PMID: 34115225 DOI: 10.1007/s10787-021-00831-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pistacia lentiscus L. (PL) is a flowering plant traditionally used in the treatment of gastrointestinal disorders. The extracts of this plant are endowed with strong pharmacological activities. The aim of our current study was to investigate the anti-inflammatory and potential therapeutic effects of PL leaves aqueous extract (PLAE) against Dextran Sulfate Sodium (DSS)-induced acute colitis. MATERIALS AND METHODS The therapeutic effect of PLAE was evaluated after orally administration of 3% DSS alone or concomitantly with PLAE (50, 100 or 200 mg/Kg). Mucosal lesions were assessed by macroscopic and histopathological examination. In this context, hemorrhage, diarrhea, weight loss, and disease activity index (DAI) were determined daily throughout the experiment. In the same way, hematoxylin-eosin and Alcian blue staining of colonic mucosal were used to evaluate, respectively, mucosal damages and mucus production. Furthermore, the levels of nitric oxide (NO), and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] were measured in plasma, as well as in colonic explants and peritoneal macrophages cultures supernatants. RESULTS Administration of DSS + PLAE indicated a significant reduction in clinical score of acute colitis DAI compared to DSS alone administration. Interestingly, histological analysis of the mucosa showed that DSS + PLAE-treated groups exhibited almost normal histology evidenced by an intact epithelium structure and less inflammatory cell infiltration in the mucosa. Alcian bleu staining revealed that DSS + PLAE-treated groups displayed almost normal mucus production. Importantly, a significant decrease in pro-inflammatory mediators (NO, IL-6 and TNF-α) levels in dose-dependent manner was reported in plasma, and culture supernatants of colonic explants and peritoneal macrophages from DSS + PLAE-treated mice compared to the DSS group. CONCLUSION Our results showed that the systemic and local anti-inflammatory activities of aqueous leaves extract of PL improve the clinical signs of acute colitis. Our data suggest that PLAE has beneficial effects and could constitute a promising approach against acute ulcerative colitis by targeting the deregulated immune response.
Collapse
Affiliation(s)
- Insaf-Meriem Boutemine
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Manel Amri
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Karim Dorgham
- Center of Immunology and Infectious Diseases, Inserm U1135 C.E.R.V.I. La Pitié-Salpétrière Hospital, Paris, France
| | - Zine-Charaf Amir
- Pathology Departement, Mustapha Pacha Hospital, Algiers, Algeria
| | - Sara Benazzouz
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Fahima Ameur
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Karim Layaida
- Gastroenterology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - Hans Yssel
- Center of Immunology and Infectious Diseases, Inserm U1135 C.E.R.V.I. La Pitié-Salpétrière Hospital, Paris, France
| | - Chafia Touil-Boukoffa
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria.
| |
Collapse
|
38
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
39
|
Hossen I, Hua W, Mehmood A, Raka RN, Jingyi S, Jian-Ming J, Min X, Shakoor A, Yanping C, Wang C, Junsong X. Glochidion ellipticum Wight extracts ameliorate dextran sulfate sodium-induced colitis in mice by modulating nuclear factor kappa-light-chain-enhancer of activated B cells signalling pathway. J Pharm Pharmacol 2021; 73:410-423. [PMID: 33793884 DOI: 10.1093/jpp/rgaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Glochidion ellipticum Wight is a medicinal plant, rich in polyphenols, frequently used by the indigenous communities of Bangladesh and possess with multiple health benefits. It exerts anti-inflammatory and antidiarrheal properties, but the detailed chemical constituents are yet to be elucidated. METHODS Glochidion ellipticum extracts were analyzed using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and then tested by both lipopolysaccharide (LPS) induced inflammation of Raw 264.7 macrophage cells and dextran sulfate sodium (DSS) induced acute colitis model. Blood serum was taken for fluorescein isothiocyanate-dextran (FITC-dextran) measurement and tissue samples were used to perform histology, RT-PCR and Western blotting. KEY FINDINGS The extracts could lower the levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines significantly in LPS induced macrophage cells. The extracts could also reduce disease activity index (DAI) score, restore antioxidants and pro-oxidants and improve macroscopic and microscopic features of colonic tissues in DSS induced mice. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in protein level was markedly diminished (up to 51.21% and 71.11%, respectively) in the treatment groups compared to the model group of colitic mice. CONCLUSIONS Our findings suggested that G. ellipticum extracts ameliorate DSS colitis via blocking nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, which make them to be potential candidates for further research against inflammation and colitis.
Collapse
Affiliation(s)
- Imam Hossen
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Wu Hua
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Arshad Mehmood
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Song Jingyi
- Beijing Technology and Business University, Beijing, China
| | - Jin Jian-Ming
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Min
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Ashbala Shakoor
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Cao Yanping
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Chengtao Wang
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Xiao Junsong
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
40
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Szymanska M, Manthe S, Shrestha K, Girsh E, Harlev A, Kisliouk T, Meidan R. Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modifications†. Biol Reprod 2020; 104:387-398. [PMID: 33112382 DOI: 10.1093/biolre/ioaa199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sarah Manthe
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eliezer Girsh
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel.,Faculty of Health Sciences, Department of Obstetrics and Gynecology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
42
|
Sabzevary-Ghahfarokhi M, Soltani A, Luzza F, Larussa T, Rahimian G, Shirzad H, Bagheri N. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein. Mol Biol Rep 2020; 47:6941-6947. [PMID: 32888128 DOI: 10.1007/s11033-020-05753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with increasing incidence and prevalence in developed countries. The presence of inflammatory cytokines is considered the main detrimental factor in severe types of IBD. The Nrf2 transcription factor plays an important role in reducing the expression of inflammatory agents such as interleukin (IL)-1β and increasing reparative factors such as IL-11. Resveratrol, a plant-derived phenolic compound, reduces the damage in chronic experimentally induced colitis. Twenty patients with UC and also 20 healthy controls were recruited in this study. The proteins expression of Nrf2 and IL-1β was assessed in colonic biopsies by Western blotting. Caco-2 cells were challenged with TNF-α (in vitro simulation of UC), in the presence or not of 190 nM (24 h) and 75 nM (48 h) Resveratrol. Then, Nrf2 and IL-1β in gene and protein expression were measured by real time-PCR and Western blotting in different treatments. Finally, IL-11 proteins expression was measured in culture supernatant by ELISA. A significant increase of IL-1β protein was detected in inflamed colonic tissues from UC patients compared with the control individuals. In Caco-2 cells challenged with TNF-α, protein expression of IL-1β and p-Nrf2 showed an increase, while gene expression of Nrf2 did not show a significant difference. After treatment with Resveratrol, both IL-1β mRNA and protein levels were reduced, while IL-11 protein levels showed any increase. The p-Nrf2 is a dominant form which is prevalent in inflamed tissues from UC patients. Resveratrol can reverse the inflammatory effects of TNF-α by reducing IL-1β and increasing IL-11 production.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
43
|
Effects of resveratrol on mitochondrial biogenesis and physiological diseases. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
The cAMP pathway promotes sirtuin-1 expression in human granulosa-lutein cells. Reprod Biol 2020; 20:273-281. [PMID: 32741720 DOI: 10.1016/j.repbio.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023]
Abstract
Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, is present in the ovarian granulosa cells (GCs) of various species. This study examined the regulation of SIRT1 expression in human granulosa-lutein cells (hGLCs). Two different, structurally unrelated SIRT1 activators, SRT2104 and resveratrol, dose- and time-dependently enhanced SIRT1 (∼2- and 1.5-fold increase at 50 μmol/L for mRNA and protein levels, respectively), whereas EX-527, an inhibitor of SIRT1 deacetylase activity, significantly suppressed SIRT1 protein induced by these activators. Transfecting cells with SIRT1 siRNA molecules efficiently silenced SIRT1 (∼70 % decrease in 48 h post-transfection). Furthermore, the stimulatory effects of SRT2104 on SIRT1 expression observed in non-transfected or in scrambled siRNA-transfected cells were diminished with SIRT1 silencing. The findings described above imply that SIRT1 autoregulates its own expression. Interestingly, SRT2104 elevated cAMP accumulation (1.4-fold) in the culture media of hGLCs which was further augmented in the presence of hCG (2.2-fold); these effects were evident after 12 h of incubation. This additive effect of hCG and SRT2104 on cAMP accumulation may explain the incremental outcome observed on SIRT1 expression (∼3-fold increase from basal level and ∼1.6-fold stimulation for each compound alone) with these two compounds. SIRT1 knockdown diminished SIRT1 induced by forskolin, providing additional evidence that cAMP promotes SIRT1. These findings imply that by activating adenylyl cyclase (hCG or forskolin) and inhibiting phosphodiesterases (SIRT1 activators), these two signals converge to produce an incremental, positive feedback loop on SIRT1 expression. Such a mechanism highlights the importance of maintaining high SIRT1 levels in human luteinized GCs.
Collapse
|
45
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
46
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Pujara N, Wong KY, Qu Z, Wang R, Moniruzzaman M, Rewatkar P, Kumeria T, Ross BP, McGuckin M, Popat A. Oral Delivery of β-Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Mol Pharm 2020; 18:627-640. [PMID: 32437160 DOI: 10.1021/acs.molpharmaceut.0c00048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RES) is a nutraceutical with promising anti-inflammatory properties for the treatment of inflammatory bowel diseases (IBD). However, the clinical effectiveness of resveratrol as an oral anti-inflammatory agent is hindered by its extremely poor solubility and poor stability. In this study, we encapsulated resveratrol in β-lactoglobulin (BLG) nanospheres and systematically analyzed their formulation parameters in vitro followed by a thorough in vivo anti-inflammatory testing in a highly specialized spontaneous murine UC model (Winnie mice model). Complexation of resveratrol with BLG increased the aqueous solubility of resveratrol by ≈1.7 times with 10% w/w loading. Additionally, the in vitro dissolution of resveratrol from the particles was found to be higher compared to resveratrol alone, resulting in >90% resveratrol dissolution in ∼8 h. The anti-inflammatory activity of resveratrol was examined for the first time in Winnie mice, a mouse model that closely represents the clinical signs of IBD. At a 50 mg/kg oral dose for 2 weeks, BLG-RES significantly improved both % body weight and disease activity index (DAI), compared to free resveratrol in Winnie mice. Importantly, histological evaluations revealed a similar trend with striking improvement in the pathology of the colon via an increase in goblet cell numbers and recovery of colonic epithelium. BLG-RES significantly increased the expression level of cytokine interleukin-10 (Il10), which confirms the reduction in inflammation potentially because of the increased dissolution and stability of resveratrol by complexation with BLG. This comprehensive study demonstrates the effectiveness of biocompatible nanomaterials such as BLG in oral delivery of poorly soluble anti-inflammatory molecules such as resveratrol in the treatment of IBD.
Collapse
Affiliation(s)
- Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kuan Yau Wong
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Zhi Qu
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Ran Wang
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Md Moniruzzaman
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael McGuckin
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia.,Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
48
|
Abstract
Polyphenols are naturally occurring compounds in plants and they are the most abundant antioxidants in the human diet. Due to their considerable structural diversity, this largely influences their bioavailability. Since a large proportion of polyphenols remains unabsorbed along the gastrointestinal tract, they may accumulate in the large intestine, where most of them are extensively metabolized by the intestinal microbiota. The formation of bioactive polyphenol-derived metabolites may also benefit the health status of the subjects, although the mechanisms have not been delineated. This review aims to highlight the impact of polyphenols on gut health and the modes of action could be through modulation of intestinal barrier function, innate and adaptive immune response, signaling pathways, as well as the ability to modify gut microbiota composition. The review will conclude by presenting future perspective and challenges of polyphenols application in food products to be used for preventing or treating diseases.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
49
|
Li F, Han Y, Cai X, Gu M, Sun J, Qi C, Goulette T, Song M, Li Z, Xiao H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food Funct 2020; 11:1063-1073. [PMID: 31825043 PMCID: PMC7122795 DOI: 10.1039/c9fo01519a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accumulating evidence suggests that the gut microbiota plays an important role in the pathogenesis of colitis and that its composition could be modulated by exposure to dietary components. Thus, it may be possible to ameliorate the severity of colitis through administration of dietary components. Herein, we determined the effects of orally administered resveratrol on the gut microbiota composition and the resulting inflammatory status of a dextran sodium sulfate (DSS)-induced colitis mouse model. Our results supported our hypothesis that dietary resveratrol altered the microbial composition and restored microbial community diversity in DSS-treated mice. Specifically, resveratrol effectively decreased the abundance of the genera Akkermansia, Dorea, Sutterella and Bilophila, and increased the proportion of Bifidobacterium in colitic mice. Resveratrol was also able to prevent mouse body weight loss, reduce the disease activity index, attenuate tissue damage, and down-regulate the expression of pro-inflammatory cytokines such as IL-2, IFN-γ, GM-CSF, IL-1β, IL-6, KC/GRO, and TNF-α in the colon of DSS-treated mice. Pearson's correlation analysis indicated significant correlations between the relative levels of these pro-inflammatory cytokines and alterations of the gut microbiota. Our results demonstrated that dietary resveratrol attenuated the inflammatory status and alleviated gut microbiota dysbiosis in a colitis mouse model.
Collapse
Affiliation(s)
- Fang Li
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gianchecchi E, Fierabracci A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants (Basel) 2020; 9:91. [PMID: 31978952 PMCID: PMC7070243 DOI: 10.3390/antiox9020091] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the interest in natural compounds exerting immunoregulatory effects has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant, immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative, pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important consequences for the health of the patients affected. The aim of the present review is to focus on the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| |
Collapse
|