1
|
Jin Z, Zhou F, Wang Z, Li H. First-Line Treatment of Icaritin and Thalidomide in a Patient With Hepatocellular Carcinoma With PR: A Case Report. Cancer Rep (Hoboken) 2025; 8:e70136. [PMID: 40035422 PMCID: PMC11877328 DOI: 10.1002/cnr2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/30/2024] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a significant global health burden, with unmet clinical needs despite the availability of multiple therapeutic options. CASE We present the case of an 85-year-old male diagnosed with HCC and bilateral lung metastases following hepatectomy. The patient responded favorably to treatment with icaritin and thalidomide, which resulted in a reduction in alpha-fetoprotein (AFP) levels and tumor size. This treatment achieved partial remission, with a progression-free survival (PFS) of 24 months and an overall survival (OS) of 33 months. Unfortunately, the patient ultimately passed away due to a cerebral infarction unrelated to cancer progression. CONCLUSION This case underscores the potential of icaritin as a therapeutic option for HCC patients with compromised health status. The combination of icaritin and thalidomide demonstrated promising efficacy in this real-world scenario. Multidisciplinary combination treatment strategies incorporating icaritin merit further exploration, given its immunomodulatory effects and favorable safety profile.
Collapse
Affiliation(s)
- Zaiyong Jin
- Department of Hepatological SurgeryJilin City Central HospitalJilinChina
| | - Fei Zhou
- Medical Image Central, Jilin City Central HospitalJilinChina
| | - Zhuo Wang
- Department of Abdominal Imaging DiagnosticJilin City Central HospitalJilinChina
| | - Hongji Li
- Department of Traditional and Western OncologyJilin City Central HospitalJilinChina
| |
Collapse
|
2
|
Mamidi MK, Sinha S, Mendez MT, Sanyal T, Mahmud H, Kay NE, Gupta M, Xu C, Vesely SK, Mukherjee P, Chakrabarty JH, Ghosh AK. Aberrantly Expressed Mitochondrial Lipid Kinase, AGK, Activates JAK2-Histone H3 Axis and BCR Signal: A Mechanistic Study with Implication in CLL Therapy. Clin Cancer Res 2025; 31:588-602. [PMID: 39636206 PMCID: PMC11790368 DOI: 10.1158/1078-0432.ccr-24-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Although the B-cell receptor (BCR) signal plays a critical role in chronic lymphocytic leukemia (CLL) cell survival and a target of current therapies (ibrutinib targets Bruton's tyrosine kinase; idelalisib targets PI3Kδ), contribution of the cytokine-driven JAK2 pathway to the "CLL cell-survival signaling network" is largely undefined. EXPERIMENTAL DESIGN Patients with CLL were enrolled to investigate expression/activation of JAK2 and acylglycerol kinase (AGK), and their functional implication in primary CLL cell survival. A series of biochemical and molecular biology assays were employed to uncover the underlying mechanism. RESULTS We detected that compared with normal B cells, CLL cells aberrantly express constitutively active JAK2. Mechanistically, HSP90 forms a chaperoning complex with JAK2, resulting in its aberrant accumulation in CLL cells. We also discovered aberrant upregulation of a novel mitochondrial lipid kinase, AGK, which remains complexed with HSP90 in CLL cells activating JAK2. Although AGK is typically mitochondrial, we detected its nuclear localization in association with JAK2 in some CLL cells. Functionally, JAK2 phosphorylates its noncanonical substrate, histone H3(Y41), but not STAT3, activating transcription of diverse sets of genes in a patient-specific manner. Additionally, JAK2 activates the BCR signal in CLL cells via LYN/Bruton's tyrosine kinase axis. Targeted inhibition of JAK2 as monotherapy, or in combination with the BCR inhibitors or venetoclax (a BCL2 inhibitor), induced apoptosis synergistically in CLL cells. CONCLUSIONS These findings suggest that aberrantly expressed AGK activates JAK2, independent of cytokine, leading to activation of diverse sets of gene transcription in CLL cells. Combined targeting of JAK2 and BCR signals or BCL2 may be effective in some patients with CLL.
Collapse
MESH Headings
- Humans
- Janus Kinase 2/metabolism
- Janus Kinase 2/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Signal Transduction/drug effects
- Histones/metabolism
- Histones/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Mitochondria/genetics
- Cell Line, Tumor
Collapse
Affiliation(s)
- Murali K. Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mariana T. Mendez
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Tapojyoti Sanyal
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, George Washington University, Washington DC
| | - Chao Xu
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Asish K. Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
3
|
Qian HQ, Wu DC, Li CY, Liu XR, Han XK, Peng Y, Zhang H, Zhao BY, Zhao Y. A systematic review of traditional uses, phytochemistry, pharmacology and toxicity of Epimedium koreanum Nakai. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116957. [PMID: 37544344 DOI: 10.1016/j.jep.2023.116957] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium koreanum Nakai (E. koreanum), a member of the genus Epimedium in the family Berberidaceae, is a well-known and well-liked traditional herb used as a "kidney tonic". For thousands of years, it has been utilized for renal yang deficiency, impotence, spermatorrhea, impotence, weakness of tendons and bones, rheumatic paralysis and discomfort, numbness, and constriction. AIM OF THE STUDY The paper aims to comprehensively in-depth, and methodically review the most recent research on the traditional uses, phytochemistry, pharmacology, and toxicity of E. koreanum. MATERIALS AND METHODS Scientific databases including Web of Science, PubMed, Google Scholar, Elsevier, Springer, ScienceDirect, Baidu Scholar, and CNKI and medicine books in China were searched for relevant information on E. koreanum. RESULTS In traditional uses, E. koreanum is frequently used to treat various diseases like erectile dysfunction, infertility, rheumatoid arthritis, osteoporosis, asthma, kidney-yang deficiency syndrome, etc. To date, more than 379 compounds have been discovered from various parts of E. koreanum, including flavonoids, lignans, organic acids, terpenoids, hydrocarbons, dihydrophenanthrene derivatives, alkaloids, and others. Research has revealed that the compounds and crude extracts have a wide range of pharmacological effects on the reproductive, cardiovascular, and nervous systems, as well as anti-osteoporosis, anti-tumor, antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and antiviral properties. Besides, the crude extracts show potential hepatotoxicity. CONCLUSION Based on recent domestic and international research investigations, E. koreanum contains a wealth of chemical components with pronounced pharmacological activities. Its traditional uses are numerous, and the majority of these traditional uses have been supported by contemporary pharmacological investigations. Crude extracts, on the other hand, can result in hepatotoxicity. Therefore, additional in vivo and in vitro experimental research on the pharmacology and toxicology of E. koreanum are required in the future to assess its safety and efficacy. This will give a firmer scientific foundation for its safe application and the development of new drugs in the future.
Collapse
Affiliation(s)
- Hui-Qin Qian
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Dou-Can Wu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Chun-Yan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ran Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ke Han
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Peng
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Han Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bing-Yan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
4
|
Ma Y, Zhao C, Hu H, Yin S. Liver protecting effects and molecular mechanisms of icariin and its metabolites. PHYTOCHEMISTRY 2023; 215:113841. [PMID: 37660725 DOI: 10.1016/j.phytochem.2023.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
As a detoxification and metabolism organ, the liver plays a vital role in human health. However, an excessive consumption of drugs and toxins, exposure to pathogenic viruses, and unhealthy living habits can lead to liver damage, which may even develop into liver cirrhosis and liver cancer. Epimedium brevicornum Maxim. is a traditional Chinese medicine and dietary supplement in which the flavonoid icariin is a main functional component. Although the protective mechanisms of icariin and its metabolites against liver injury are not yet comprehensively understood, an increasing number of studies have confirmed their liver-protective and anticancer effects. Indeed, icaritin, one of the metabolites of icariin, is currently utilized as an active component of an anti-cancer drug. This paper presents a review of the molecular mechanisms through which icariin and its metabolites actively protect against the occurrence and development of liver injury, and, thus, provides a comprehensive reference for further research and their application in liver protection.
Collapse
Affiliation(s)
- Yurong Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Zhou Y, Liu T, Wu Q, Wang H, Sun Y. Baohuoside I inhibits resistance to cisplatin in ovarian cancer cells by suppressing autophagy via downregulating HIF-1α/ATG5 axis. Mol Carcinog 2023; 62:1474-1486. [PMID: 37283234 DOI: 10.1002/mc.23590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Since chemotherapy's therapeutic impact is diminished by drug resistance, treating ovarian cancer is notably challenging. Thereafter, it is critical to develop cutting-edge approaches to treating ovarian cancer. Baohuoside I (derived from Herba Epimedii) is reported to have antitumor properties in various malignancies. It is unknown, however, what role Baohuoside I plays in cisplatin (DDP)-resistant ovarian cancer cells. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), colony formation, and flow cytometry assay were used to investigate the impact of Baohuoside I on ovarian cancer A2780 cells and DDP-resistant A2780 (A2780/DDP) cells. The level of microtubule associated protein 1 light chain 3 (LC3) was determined using immunofluorescence staining. Utilizing the mRFP-GFP-LC3B tandem fluorescent probe allowed us to analyse the autophagy flux. Analysis of mRNA and protein level was performed using RT-qPCR and Western blot analysis, respectively. The interaction between hypoxia inducible factor 1 subunit alpha (HIF-1α) and autophagy related 5 (ATG5) promoter was investigated by dual luciferase and ChIP assay. Additionally, evaluation of Baohuoside I's role in ovarian cancer was performed using a nude mouse xenograft model. Baohuoside I decreased the viability and proliferation and triggered the apoptosis of both A2780 and A2780/DDP cells in a concentration-dependent manner. Baohuoside I also increased the sensitivity of A2780/DDP cells to DDP. Concurrently, HIF-1α could promote A2780/DDP cells resistance to DDP. In addition, HIF-1α could induce the autophagy of A2780/DDP cells through transcriptionally activating ATG5, and Baohuoside I imporved the chemosensitivity of A2780/DDP cells to DDP by downregulating HIF-1α. Moreover, Baohuoside I could inhibit the chemoresistance to DDP in ovarian cancer in vivo. Baohuoside I sensitizes ovarian cancer cells to DDP by suppressing autophagy via downregulating the HIF-1α/ATG5 axis. Consequently, Baohuoside I might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of drug treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University and Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Huihui Wang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
6
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Kong Q, Ma M, Zhang L, Liu S, He S, Wu J, Liu B, Dong J. Icariside II potentiates the anti-PD-1 antitumor effect by reducing chemotactic infiltration of myeloid-derived suppressor cells into the tumor microenvironment via ROS-mediated inactivation of the SRC/ERK/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154638. [PMID: 36621167 DOI: 10.1016/j.phymed.2022.154638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune checkpoint blockade agents, such as anti-PD-1 antibodies, show promising antitumor efficacy but only a limited response in patients with non-small cell lung cancer (NSCLC). Icariside II (IS), a metabolite of Herba Epimedii, is a COX-2 and EGFR inhibitor that can enhance the anti-PD-1 effect. This study aimed to evaluate the antitumor effect of IS in combination with anti-PD-1 and explore the underlying mechanism. METHODS Tumor growth was assessed in Lewis Lung Cancer (LLC) tumor-bearing mice in seven groups (control, IS 20 mg/kg, IS 40 mg/kg, anti-PD-1, IS 20 mg/kg+anti-PD-1, IS 40 mg/kg+anti-PD-1, ERK inhibitor+anti-PD-1). Tumor-infiltrating immune cells were measured by flow cytometry. The mechanisms were explored by tumor RNA-seq and validated in LLC cells through molecular biological experiments using qRT‒PCR, ELISA, and western blotting. RESULTS Animal experiments showed that IS in combination with anti-PD-1 further inhibited tumor growth and remarkably reduced the infiltration of myeloid-derived suppressor cells (MDSCs) into the tumor compared with anti-PD-1 monotherapy. RNA-seq and in vitro experiments showed that IS suppressed the chemotactic migration of MDSCs by downregulating the expression of CXC chemokine ligands 2 (CXCL2) and CXCL3. Moreover, IS promoted reactive oxygen species (ROS) generation and inhibited the activation of SRC/ERK/STAT3 in LLC cells, which are upstream signaling pathways of these chemokines. CONCLUSION IS potentiates the anti-PD-1 anti-tumor effect by reducing chemotactic infiltration of the myeloid-derived suppressor cell into the tumor microenvironment, via ROS-mediated inactivation of SRC/ERK/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengyu Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, China
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Akhtar S, Zarif L, Kuttikrishnan S, Prabhu KS, Patil K, Nisar S, Abou-Saleh H, Merhi M, Dermime S, Bhat AA, Uddin S. Guggulsterone Induces Apoptosis in Multiple Myeloma Cells by Targeting High Mobility Group Box 1 via Janus Activated Kinase/Signal Transducer and Activator of Transcription Pathway. Cancers (Basel) 2022; 14:5621. [PMID: 36428714 PMCID: PMC9688888 DOI: 10.3390/cancers14225621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma (MM) is a hematological disorder characterized by the abnormal expansion of plasma cells in the bone marrow. Despite great advances over the past three decades in discovering the efficacious therapies for MM, the disease remains incurable for most patients owing to emergence of drug-resistant cancerous cells. Guggulsterone (GS), a phytosteroid, extracted from the gum resin of guggul plant, has displayed various anticancer activities in vitro and in vivo; however, the molecular mechanisms of its anticancer activity have not been evaluated in MM cells. Therefore, in this study, we investigated the anticancer activity of GS in various MM cell lines (U266, MM.1S, and RPMI 8226) and the mechanisms involved. GS treatment of MM cells caused inhibition of cell proliferation and induction of apoptotic cell death as indicated by increased Bax protein expression, activation of caspases, and cleavage of poly (ADP-ribose) polymerase. This was associated with the downregulation of various proliferative and antiapoptotic gene products, including cyclin D, Bcl-2, Bcl-xL, and X-linked inhibitor of apoptosis protein. GS also suppressed the constitutive and interleukin 6-induced activation of STAT3. Interestingly, the inhibition of Janus activated kinase or STAT3 activity by the specific inhibitors or by siRNA knockdown of STAT3 resulted in the downregulation of HMGB1, suggesting an association between GS, STAT3, and HMGB1. Finally, GS potentiated the anticancer effects of bortezomib (BTZ) in MM cells. Herein, we demonstrated that GS could be a potential therapeutic agent for the treatment of MM, possibly alone or in combination with BTZ.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Nisar
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
10
|
Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Szabó R, Rácz CP, Dulf FV. Bioavailability Improvement Strategies for Icariin and Its Derivates: A Review. Int J Mol Sci 2022; 23:ijms23147519. [PMID: 35886867 PMCID: PMC9318307 DOI: 10.3390/ijms23147519] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer’s disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.
Collapse
Affiliation(s)
- Róbert Szabó
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Csaba Pál Rácz
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János 11, 400028 Cluj-Napoca, Romania;
| | - Francisc Vasile Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
12
|
Chen Y, Zhang L, Zang X, Shen X, Li J, Chen L. Baohuoside I Inhibits Tumor Angiogenesis in Multiple Myeloma via the Peroxisome Proliferator-Activated Receptor γ/Vascular Endothelial Growth Factor Signaling Pathway. Front Pharmacol 2022; 13:822082. [PMID: 35341213 PMCID: PMC8948427 DOI: 10.3389/fphar.2022.822082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis plays an important role in the development of multiple myeloma (MM). Baohuoside I (BI) is a core flavonoid monomer with anticancer property. However, the mechanism of BI on MM-stimulated angiogenesis has not been revealed. In this study, we demonstrated that BI inhibits MM-induced angiogenesis in vitro and angiogenesis in a xenograft mouse model in vivo. We further showed that peroxisome proliferator–activated receptor γ (PPARγ) transcriptional activity was mediated by a direct physical association between BI and PPARγ. Meanwhile, inhibition of PPARγ using lentivirus transfection of shRNA in human myeloma cell lines showed that the facilitation of PPARγ blocked angiogenesis and PPARγ repressed vascular endothelial growth factor (VEGF) transcription. Furthermore, BI treatment decreased VEGF expression, whereas VEGF expression remained unchanged after PPARγ knockdown when exposed to BI. Overall, our study is the first to reveal that BI inhibits MM angiogenesis by the PPARγ–VEGF signaling axis.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lina Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaoyan Zang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
13
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
14
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
16
|
Wang Q, Jiang S, Wang W, Jiang H. Effects of baohuoside-I on epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma. Hum Exp Toxicol 2020; 40:566-576. [PMID: 32945196 DOI: 10.1177/0960327120960765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To investigate the effect of baohuoside-I against nasopharyngeal carcinoma (NPC) and its underlying mechanism, baohuoside-I was employed to treat NPC cell lines CNE1 and CNE2 in vitro, followed by attachment and detachment assays to evalute the epithelial-mesenchymal transition (EMT) phenotype markers. Baohuoside-I was also administered to experimental mice to assess its effect on xenograft tumor growth and NPC cell metastasis. A microRNA (miRNA, miR) microarray was performed to screen for miRNA altered by baohuoside-I in NPC cells. Bioinformatic tools and luciferase activity assay was conducted to identify the downstream molecules mediating the anti-tumor property of baohuoside-I. Baohuoside-I inhibited EMT and metastasis and upregulated miR-370-3p in NPC cells, which was shown to directly recognize and inhibit expression of Hedgehog pathway component Smoothened (SMO). Baohuoside-I suppresses metastasis as well as EMT of NPC cells through targeting the Hedgehog pathway component SMO, and may serve as a potent anti-tumor agent in the clinical management of NPC.
Collapse
Affiliation(s)
- Q Wang
- Department of Otorhinolaryngology Head and Neck, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - S Jiang
- Department of Otorhinolaryngology Head and Neck, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - W Wang
- Department of Ophthalmology and Otolaryngology, Shandong Province Wendeng Orthopic and Traumatic Hospital, Weihai, Shandong, China
| | - H Jiang
- Department of Pathology, Shandong Province Wendeng Orthopic and Traumatic Hospital, Weihai, Shandong, China
| |
Collapse
|
17
|
Ashaq A, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, Qazi JI, Li Y, Ma T. Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytother Res 2020; 35:771-789. [PMID: 32945582 DOI: 10.1002/ptr.6862] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most devastating disease and leading cause of death worldwide. The conventional anticancer drugs are monotarget, toxic, expensive and suffer from drug resistance. Development of multi-targeted drugs from natural products has emerged as a new paradigm to overcome aforementioned conventionally encountered obstacles. Hispidulin (HIS), is a biologically active natural flavone with versatile biological and pharmacological activities. The anticancer, antimutagenic, antioxidative and anti-inflammatory properties of HIS have been reported. The aim of this review is to summarize the findings of several studies over the last few decades on the anticancer activity of HIS published in various databases including PubMed, Google Scholar, and Scopus. HIS has been shown to reduce the growth of cancer cells by inducing apoptosis, arresting cell cycle, inhibiting angiogenesis, invasion and metastasis via modulating multiple signaling pathways implicated in cancer initiation and progression. Multitargeted anticancer activity of HIS remains the strongest point for developing it into potential anticancer drug. We also highlighted the natural sources, anticancer mechanism, cellular targets, and chemo-sensitizing potential of HIS. This review will provide bases for design and conduct of further pre-clinical and clinical trials to develop HIS into a lead structure for future anticancer therapy.
Collapse
Affiliation(s)
- Aisha Ashaq
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Amara Maryam
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hafiz A Shakir
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Javed I Qazi
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Chong PSY, Chng WJ, de Mel S. STAT3: A Promising Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11050731. [PMID: 31130718 PMCID: PMC6562880 DOI: 10.3390/cancers11050731] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy for which novel treatment options are required. Signal Transducer and Activator of Transcription 3 (STAT3) overexpression in MM appears to be mediated by a variety of factors including interleukin-6 signaling and downregulation of Src homology phosphatase-1 (SHP-1). STAT3 overexpression in MM is associated with an adverse prognosis and may play a role in microenvironment-dependent treatment resistance. In addition to its pro-proliferative role, STAT3 upregulates anti-apoptotic proteins and leads to microRNA dysregulation in MM. Phosphatase of regenerating liver 3 (PRL-3) is an oncogenic phosphatase which is upregulated by STAT3. PRL-3 itself promotes STAT-3 phosphorylation resulting in a positive feedback loop. PRL-3 is overexpressed in a subset of MM patients and may cooperate with STAT3 to promote survival of MM cells. Indirectly targeting STAT3 via JAK (janus associated kinase) inhibition has shown promise in early clinical trials. Specific inhibitors of STAT3 showed in vitro efficacy but have failed in clinical trials while several STAT3 inhibitors derived from herbs have been shown to induce apoptosis of MM cells in vitro. Optimising the pharmacokinetic profiles of novel STAT3 inhibitors and identifying how best to combine these agents with existing anti-myeloma therapy are key questions to be addressed in future clinical trials.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore.
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore.
| |
Collapse
|
19
|
Peng YG, Zhang L. Baohuoside-I suppresses cell proliferation and migration by up-regulating miR-144 in melanoma. PHARMACEUTICAL BIOLOGY 2018; 56:43-50. [PMID: 29260980 PMCID: PMC6130571 DOI: 10.1080/13880209.2017.1418391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Baohuoside-I was reported to induce apoptosis in non-small-cell lung cancer and inhibit the growth of multiple myeloma cells. The antitumour potential of baohuoside-I has not been demonstrated in melanoma yet. OBJECTIVE To investigate the potential antitumour activity of baohuoside-I against melanoma and elucidate its underlying molecular mechanism. MATERIALS AND METHODS Cell viability was evaluated by MTT assay. The malignant invasion capacity was measured with trans-well assay. The relative expression change of microRNAs was profiled with microarray. TargetScan was utilized for prediction of target gene of miR-144. Regulatory effect of miR-144 on SMAD1 was determined by dual luciferase reporter assay. Endogenous SMAD1 protein in response to ectopic expression of miR-144 was determined by immunoblotting. Xenograft mice were employed to evaluate antitumour potential of baohuoside-I (25 mg/kg by tail intravenous injection every two days) in vivo. RESULTS Baohuoside-I significantly inhibited proliferation (45 ± 4% reduction in M14 and 35 ± 3% reduction in MV3 at 24 h) and migration (70 ± 4% reduction in M14 and 72 ± 3% reduction in MV3) in melanoma cells. Mechanistically, baohuoside-I up-regulated miR-144 expression levels (3 ± 0.2-fold). Silence of miR-144 reversed the inhibition of baohuoside-I in melanoma. We have identified that SMAD1 was the novel target of miR-144. Moreover, baohuoside-I suppressed melanoma in vivo (52 ± 8% reduction in xenograft tumour size at day 20). CONCLUSIONS Our data suggested significant antitumour potential of baohuoside-I against melanoma both in vitro and in vivo, which warrants further laboratory investigation and clinical trial.
Collapse
Affiliation(s)
- Ya-Guang Peng
- Shandong Provincial Hospital affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Li Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
20
|
Wang Z, Liu F, Yu JJ, Jin JZ. β-Bourbonene attenuates proliferation and induces apoptosis of prostate cancer cells. Oncol Lett 2018; 16:4519-4525. [PMID: 30197674 PMCID: PMC6126340 DOI: 10.3892/ol.2018.9183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sesquiterpenes have antitumor, anti-inflammation, and anti-fungal effects. β-bourbonene is a kind of sesquiterpene, but its pharmacological effect has not been studied. The present study was conducted in order to investigate the potential anticancer effects of β-bourbonene on human prostate cancer PC-3M cells. PC-3M cells were incubated with 0, 25, 50, 100 µg/ml of β-bourbonene. Cell Counting Kit-8 (CCK-8) detection showed that compared with the control group, β-bourbonene inhibited the growth of PC-3M cells in a dose-dependent manner. G0/G1 phase arrest was observed by β-bourbonene by using flow cytometry. TUNEL staining and Annexin V/PI dual-staining method revealed that apoptosis was found in cells with β-bourbonene treatment, and the quantity of apoptotic cells was increased with the elevation in concentration. The mRNA and protein expression levels of Fas and FasL in the drug-treatment group were significantly elevated. Furthermore, the western blot assay also indicated that with an increase in the concentration of β-bourbonene, the protein expression of Bax in the drug-treatment group was significantly elevated, while a decrease was identified in the protein expression of Bcl-2. Taken together, β-bourbonene can inhibit the proliferation and simultaneously, induce apoptosis and G0/G1 arrest of prostate cancer PC-3M cells, which may be realized by upregulation of mRNA expression of Fas and FasL, increase of Bax protein expression and decrease of Bcl-2 protein expression.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Feng Liu
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Jian-Jun Yu
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| | - Ji-Zhong Jin
- Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai 201499, P.R. China
| |
Collapse
|
21
|
Liu W, Mao L, Ji F, Chen F, Wang S, Xie Y. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Oncotarget 2018; 8:2594-2603. [PMID: 27911877 PMCID: PMC5356826 DOI: 10.18632/oncotarget.13732] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Fengli Chen
- Clinical Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yue Xie
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
22
|
Sun D, Yan Q, Xu X, Shen W, Xu C, Tan J, Zhang H, Li L, Cheng H. LC-MS/MS analysis and evaluation of the anti-inflammatory activity of components from BushenHuoxue decoction. PHARMACEUTICAL BIOLOGY 2017; 55:937-945. [PMID: 28164729 PMCID: PMC6130660 DOI: 10.1080/13880209.2017.1285327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT BushenHuoxue decoction (BSHXD) is a Chinese medicine prescription, which is composed of nine Chinese medical materials, used to treat osteoarthritis (OA). OBJECTIVE This study develops sensitive and convenient LC-MS/MS methods to analyze chemical components from BSHXD, and assess the anti-inflammatory activities thereof. MATERIALS AND METHODS The chemical composition from BSHXD water extract was qualitative analyzed by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS). Twelve reference compounds were analyzed by UPLC-ESI-MS/MS. Anti-inflammatory activities of target components were assessed by ELISA at 20 and 100 μg/mL. RESULTS It is the first time that 88 compounds were qualitatively identified from BSHXD, of which 12 with potential in treating OA according to the literature were quantified. Within BSHXD the contents of quercetin, isopsoralen, icarisideII, osthole, and isoimperatorin increased remarkably compared with those in single herb which make up BSHXD, the contents were 0.1999, 0.4634, 0.0928, 0.5364, and 0.1487 mg/g. ELISA data displayed that BSHXD and the five compounds mentioned inhibited the expressions of TNF-α, IL-6 and NO released from LPS-stimulated RAW264.7 cell, with maximum inhibition rates of 104.05% (osthole, 100 μg/mL), 100.03% (osthole, 100 μg/mL), and 93.46% (isopsoralen, 20 μg/mL), respectively. DISCUSSION AND CONCLUSION Content changes of 12 compounds in BSHXD and single herbs which comprise the prescription were measured and analyzed. Contents of five compounds increased may be explained by solubilization between drugs and chemical reaction. ELISA results reported that the increased contents of the five compounds could inhibit expression of the inflammatory factors.
Collapse
Affiliation(s)
- Dongdong Sun
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Qiuying Yan
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Xiaofang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Weixing Shen
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Changliang Xu
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Jiani Tan
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Haibin Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Haibo Cheng
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
23
|
Liu G, Liu Z, Yan Y, Wang H. Effect of fraxetin on proliferation and apoptosis in breast cancer cells. Oncol Lett 2017; 14:7374-7378. [PMID: 29344176 PMCID: PMC5755049 DOI: 10.3892/ol.2017.7143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to examine the effect of fraxetin on proliferation and apoptosis in the MCF-7 breast cancer cell line. Cell proliferation was measused using an MTT assay and 4′,6-diamidino-2-phenylindole (DAPI) staining was used to determine shrinkage and condensation. RT-PCR was used to examine the expression of factor-associated suicide (Fas) and Fas ligand (FasL) mRNA, and western blot analysis was used to examine Bax and Bcl-2 protein. MTT showed that the proliferation of MCF-7 cells was significantly inhibited by fraxetin in a dose-dependent manner. Fraxetin also induced significant morphological changes of MCF-7 cells, suggestive of apoptosis, whereas DAPI staining showed that fraxetin caused cell shrinkage and chromatin condensation. RT-PCR showed that the expression of Fas and FasL mRNA was upregulated by fraxetin and the western blot analysis revealed that Bax was upregulated and Bcl-2 was downregulated. In conclusion, fraxetin can inhibit the proliferation of MCF-7 cells, induce apoptosis, upregulate Fas, FasL and Bax, and downregulate Bcl-2 to induce apoptosis. These results support the potential therapeutic role for fraxetin in breast cancer.
Collapse
Affiliation(s)
- Guodong Liu
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Zhenfang Liu
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Yuexiang Yan
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Haiyan Wang
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
24
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
25
|
Cechella JL, Leite MR, Pinton S, Zeni G, Nogueira CW. Neuroprotective Benefits of Aerobic Exercise and Organoselenium Dietary Supplementation in Hippocampus of Old Rats. Mol Neurobiol 2017; 55:3832-3840. [PMID: 28540659 DOI: 10.1007/s12035-017-0600-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022]
Abstract
The progressive decline of neurological functions, such as learning and memory, is an unavoidable consequence of aging. Our previous work suggested that the combination of physical exercise and a diet supplemented with diphenyl diselenide improves age-related memory decline in rats. The present study investigated the effects of physical exercise and a diet supplemented with diphenyl diselenide on the levels of proteins involved in the hippocampal neuroprotection to figure out the mechanisms related to the beneficial effects of this intervention in aged rats. Male Wistar rats (27 months old) were fed daily with standard chow supplemented with 1 ppm of diphenyl diselenide and subjected to swimming training with a workload (1% of body weight, 20 min/day) for 4 weeks. The hippocampus was dissected from the brain and used for the western blot and immunohistochemistry analyses. The results of this study demonstrate that the association of diphenyl diselenide-supplemented diet and swimming exercise increased the levels of proteins involved in neuroprotection and decreased the activation of those related to apoptosis and neuroinflammation in the hippocampus of old rats. This study suggests that physical exercise and a diet supplemented with (PhSe)2 promoted neuroprotection in the hippocampus of aged rats.
Collapse
Affiliation(s)
- José L Cechella
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brazil
| | - Marlon R Leite
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul, CEP 97500-701, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brazil.
| |
Collapse
|
26
|
Yan H, Song J, Jia X, Zhang Z. Hyaluronic acid-modified didecyldimethylammonium bromide/ d-a-tocopheryl polyethylene glycol succinate mixed micelles for delivery of baohuoside I against non-small cell lung cancer: in vitro and in vivo evaluation. Drug Deliv 2017; 24:30-39. [PMID: 28155337 PMCID: PMC8244624 DOI: 10.1080/10717544.2016.1228713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Baohuoside I is an effective but a poorly soluble antitumor drug. In this study, we prepared baohuoside I-loaded mixed micelles with didecyldimethylammonium bromide (DDAB) and d-a-tocopheryl polyethylene glycol succinate (TPGS) (DTBM) and active targeting mixed micelles (HDTBM) with hyaluronic acid (HA) as the targeting ligand on the surface of the mixed micelles. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using A549 cells. HDTBM showed improved cellular uptake and had a greater hypersensitizing effect on A549 cell lines than baohuoside I; half-maximal inhibitory concentration (IC50) was 8.86 versus 20.42 μg/mL, respectively. Results of the antitumor efficacy study and the imaging study for in vivo targeting showed that the mixed-micelle formulation had higher antitumor efficacy and achieved effective and targeted drug delivery. Therefore, our results indicate that HA/baohuoside I-M may be used as a potential antitumor formulation.
Collapse
Affiliation(s)
- Hongmei Yan
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , PR China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jie Song
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , PR China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Xiaobin Jia
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , PR China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Zhenhai Zhang
- b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine , Nanjing , PR China
| |
Collapse
|
27
|
Qi W, Li Q, Liew CW, Rask-Madsen C, Lockhart SM, Rasmussen LM, Xia Y, Wang X, Khamaisi M, Croce K, King GL. SHP-1 activation inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in a rodent model of insulin resistance and diabetes. Diabetologia 2017; 60:585-596. [PMID: 27933336 PMCID: PMC5672905 DOI: 10.1007/s00125-016-4159-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Accelerated migration and proliferation of vascular smooth muscle cells (VSMCs) enhances arterial restenosis after angioplasty in insulin resistance and diabetes. Elevation of Src homology 2-containing protein tyrosine phosphatase 1 (SHP-1) induces apoptosis in the microvasculature. However, the role of SHP-1 in intimal hyperplasia and restenosis has not been clarified in insulin resistance and diabetes. METHODS We used a femoral artery wire injury mouse model, rodent models with insulin resistance and diabetes, and patients with type 2 diabetes. Further, we modulated SHP-1 expression using a transgenic mouse that overexpresses SHP-1 in VSMCs (Shp-1-Tg). SHP-1 agonists were also employed to study the molecular mechanisms underlying the regulation of SHP-1 by oxidised lipids. RESULTS Mice fed a high-fat diet (HFD) exhibited increased femoral artery intimal hyperplasia and decreased arterial SHP-1 expression compared with mice fed a regular diet. Arterial SHP-1 expression was also decreased in Zucker fatty rats, Zucker diabetic fatty rats and in patients with type 2 diabetes. In primary cultured VSMCs, oxidised LDL suppressed SHP-1 expression by activating Mek-1 (also known as Map2k1) and increased DNA methylation of the Shp-1 promoter. VSMCs from Shp-1-Tg mice exhibited impaired platelet-derived growth factor (PDGF)-stimulated tyrosine phosphorylation with a concomitant decrease in PDGF-stimulated VSMC proliferation and migration. Similarly, HFD-fed Shp-1-Tg mice and mice treated with the SHP-1 inducer, Icariside II, were protected from the development of intimal hyperplasia following wire injury. CONCLUSIONS/INTERPRETATION Suppression of SHP-1 by oxidised lipids may contribute to the excessive VSMC proliferation, inflammatory cytokine production and intimal hyperplasia observed in arteries from diabetes and insulin resistance. Augmenting SHP-1 levels is a potential therapeutic strategy to maintain stent patency in patients with insulin resistance and diabetes.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cell Movement/genetics
- Cell Movement/physiology
- Cell Proliferation/genetics
- Cell Proliferation/physiology
- Humans
- Hyperplasia/metabolism
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Rats
- Rats, Zucker
- Real-Time Polymerase Chain Reaction
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Weier Qi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Christian Rask-Madsen
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Samuel M Lockhart
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Yu Xia
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Xuanchun Wang
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Mogher Khamaisi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA
| | - Kevin Croce
- Cardiovascular Clinical Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George L King
- Research Division, Joslin Diabetes Center, Harvard Medical School, Dianne Nunnally Hoppes Laboratories, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
28
|
Chen M, Wu J, Luo Q, Mo S, Lyu Y, Wei Y, Dong J. The Anticancer Properties of Herba Epimedii and Its Main Bioactive Componentsicariin and Icariside II. Nutrients 2016; 8:nu8090563. [PMID: 27649234 PMCID: PMC5037548 DOI: 10.3390/nu8090563] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 01/13/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide. Compounds derived from traditional Chinese medicines have been an important source of anticancer drugs and adjuvant agents to potentiate the efficacy of chemotherapeutic drugs and improve the side effects of chemotherapy. HerbaEpimedii is one of most popular herbs used in China traditionally for the treatment of multiple diseases, including osteoporosis, sexual dysfunction, hypertension and common inflammatory diseases. Studies show HerbaEpimedii also possesses anticancer activity. Flavonol glycosides icariin and icariside II are the main bioactive components of HerbaEpimedii. They have been found to possess anticancer activities against various human cancer cell lines in vitro and mouse tumor models in vivo via their effects on multiple biological pathways, including cell cycle regulation, apoptosis, angiogenesis, and metastasis, and a variety of signaling pathways including JAK2-STAT3, MAPK-ERK, and PI3k-Akt-mTOR. The review is aimed to provide an overview of the current research results supporting their therapeutic effects and to highlight the molecular targets and action mechanisms.
Collapse
Affiliation(s)
- Meixia Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shuming Mo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yubao Lyu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
29
|
Yan H, Zhang Z, Jia X, Song J. d-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 2016; 11:4563-4571. [PMID: 27660448 PMCID: PMC5019457 DOI: 10.2147/ijn.s112204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Baohuoside I, extracted from the Herba epimedii, is an effective but a poorly soluble antitumor drug. To improve its solubility, formulation of baohuoside I-loaded mixed micelles with d-α-tocopheryl polyethylene glycol succinate and Solutol HS 15 (BTSM) has been developed in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using non-small-cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of ~62.54 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, BTSM displayed a more potent anti-proliferative action on A549 cell lines than baohuoside I; half-maximal inhibitory concentration was 7.83 vs 20.37 µg/mL, respectively. The antitumor efficacy test in nude mice showed that BTSM exhibited significantly higher antitumor activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the mixed micelles formulation achieved effective and targeted drug delivery. Therefore, BTSM might be a potential antitumor formulation.
Collapse
Affiliation(s)
- Hongmei Yan
- College of Pharmacy, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhenhai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaobin Jia
- College of Pharmacy, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jie Song
- College of Pharmacy, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Third School of Clinical Medical of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, Goh BH. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives. Front Pharmacol 2016; 7:191. [PMID: 27445824 PMCID: PMC4925704 DOI: 10.3389/fphar.2016.00191] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
31
|
Blockage of STAT3 Signaling Pathway by Morusin Induces Apoptosis and Inhibits Invasion in Human Pancreatic Tumor Cells. Pancreas 2016; 45:409-19. [PMID: 26646273 DOI: 10.1097/mpa.0000000000000496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor implicated in carcinogenesis. Here, we investigated the role of morusin, the major prenylflavonoid, isolated from Chinese herbal medicine in abrogating the constitutive STAT3 activation in human pancreatic tumor cells. METHODS The effect of morusin on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was examined. RESULTS Morusin specifically inhibited constitutive STAT3 activation both at tyrosine residue 705 and serine residue 727 in 4 pancreatic tumor cells. The inhibition of STAT3 was mediated through the suppression of activation of upstream JAK1, JAK2, and c-Src kinases. Morusin led to the accumulation of the cells in different phases of the cell cycle and caused induction of apoptosis and loss of mitochondrial membrane potential. Morusin downregulated the expression of various STAT3-regulated gene products; this correlated with induction of caspase-3 activation and anti-invasive effects. Treatment with the protein tyrosine phosphatase inhibitor pervanadate reversed the morusin-induced downregulation of STAT3, thereby suggesting the involvement of a protein tyrosine phosphatase. CONCLUSIONS Morusin is a novel blocker of STAT3 activation and thus may have potential in negative regulation of growth and metastasis of pancreatic tumor cells.
Collapse
|
32
|
Kim C, Baek SH, Um JY, Shim BS, Ahn KS. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol 2016; 17:19. [PMID: 26911335 PMCID: PMC4766620 DOI: 10.1186/s12882-016-0233-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signal transducers and activators of transcription (STAT) proteins are critical transcription factor that are aberrantly activated in various types of malignancies, including renal cell carcinoma (RCC). METHODS We investigated the effect of resveratrol (RES), an edible polyphenol phytoalexin on STAT3 and STAT5 activation cascade in both Caki-1 and 786-O RCC cell lines. RESULTS We found that RES suppressed both constitutive STAT3 (tyrosine residue 705 and serine residue 727) and STAT5 (tyrosine residue 694 and 699) activation, which correlated with the suppression of the upstream kinases (JAK1, JAK2, and c-Src) in RCC. Also, RES abrogated DNA binding capacity and nuclear translocation of these two transcription factors. RES-induced an increased expression of PTPε and SHP-2 and the deletion of these two genes by small interfering RNA abolished the ability of RES to inhibit STAT3 activation, suggesting the critical role of both PTPε and SHP-2 in its possible mechanism of action. Moreover, RES induced S phase cell cycle arrest, caused induction of apoptosis, loss of mitochondrial membrane potential, and suppressed colony formation in RCC. We also found that RES downregulated the expression of STAT3/5-regulated antiapoptotic, proliferative, and metastatic gene products; and this correlated with induction of caspase-3 activation and anti-invasive activity. Beside, RES potentiated sorafenib induced inhibitory effect on constitutive STAT3 and STAT5 phosphorylation, apoptotic effects in 786-O cells, and this correlated with down-regulation of various oncogenic gene products. CONCLUSION Overall, our results suggest that RES is a blocker of both STAT3 and STAT5 activation and thus may exert potential growth inhibitory effects against RCC cells.
Collapse
Affiliation(s)
- Chulwon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemungu, Seoul, 130-701, Republic of Korea.
| | - Sang Hyun Baek
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemungu, Seoul, 130-701, Republic of Korea.
| | - Jae-Young Um
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemungu, Seoul, 130-701, Republic of Korea.
| | - Bum Sang Shim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemungu, Seoul, 130-701, Republic of Korea.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemungu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
33
|
Lin ZL, Wu HJ, Chen JA, Lin KC, Hsu JH. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells. Cell Biochem Funct 2016; 33:566-74. [PMID: 26833980 DOI: 10.1002/cbf.3156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Zuo-Lin Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Jou Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jin-An Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Kuo-Chih Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jung-Hsin Hsu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
34
|
Jiang J, Zhao BJ, Song J, Jia XB. Pharmacology and Clinical Application of Plants in Epimedium L. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Yan HM, Song J, Zhang ZH, Jia XB. Optimization and anticancer activity in vitro and in vivo of baohuoside I incorporated into mixed micelles based on lecithin and Solutol HS 15. Drug Deliv 2015; 23:2911-2918. [PMID: 26644047 DOI: 10.3109/10717544.2015.1120365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Baohuoside I, extracted from the Herba epimedii, is an effective but a poorly soluble antitumor drug. To improve its solubility, formulation of baohuoside I-loaded mixed micelles with lecithin and Solutol HS 15 (BLSM) has been performed in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using non-small cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of around 62.54 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, BLSM displayed a more potent antiproliferative action on A549 cell lines than baohuoside I; half-maximal inhibitory concentration (IC50) was 6.31 versus 18.28 µg/mL, respectively. The antitumor efficacy test in nude mice showed that BLSM exhibited significantly higher antitumor activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the mixed micelles formulation achieved effective and targeted drug delivery. Therefore, BLSM might be a potential antitumor formulation.
Collapse
Affiliation(s)
- Hong-Mei Yan
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China
| | - Jie Song
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China
| | - Zhen-Hai Zhang
- b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China
| | - Xiao-Bin Jia
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China and.,b Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China
| |
Collapse
|
36
|
Cheng T, Zhang Y, Zhang T, Lu L, Ding Y, Zhao Y. Comparative Pharmacokinetics Study of Icariin and Icariside II in Rats. Molecules 2015; 20:21274-86. [PMID: 26633326 PMCID: PMC6332156 DOI: 10.3390/molecules201219763] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022] Open
Abstract
To explore the pharmacokinetic properties of icariin (ICA) and icariside II (ICA II) following intragastric and intravenous administration in rats, a rapid and sensitive method by using ultra-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) was developed and validated for the simultaneous quantification of ICA and ICA II in rat plasma. The quantification was performed by using multiple reaction monitoring of the transitions m/z 677.1/531.1 for ICA, 515.1/369.1 for ICA II and 463.1/301.1 for diosmetin-7-O-β-d-glucopyranoside (IS). The assay showed linearity over the concentration range of 1.03–1032 ng/mL, with correlation coefficients of 0.9983 and 0.9977. Intra- and inter-day precision and accuracy were within 15%. The lower limit of quantification for both ICA and ICA II was 1.03 ng/mL, respectively. The recovery of ICA and ICA II was more than 86.2%. The LC-MS/MS method has been successfully used in the pharmacokinetic studies of ICA and ICA II in rats. The results indicated that 91.2% of ICA was transformed into ICA II after oral administration by rats, whereas only 0.4% of ICA was transformed into ICA II after intravenous administration. A comparison of the pharmacokinetics of ICA and ICA II after oral administration revealed that the Cmax and AUC0–t of ICA II were 3.8 and 13.0 times higher, respectively, than those of ICA. However, after intravenous administration, the Cmax and AUC0–t of ICA II were about only 12.1% and 4.2% of those of ICA. These results suggest that ICA and ICA II have distinct pharmacokinetic properties, and the insights obtained facilitate future pharmacological action studies.
Collapse
Affiliation(s)
- Tao Cheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuan Zhao
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
37
|
Chen XJ, Tang ZH, Li XW, Xie CX, Lu JJ, Wang YT. Chemical Constituents, Quality Control, and Bioactivity of Epimedii Folium (Yinyanghuo). THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:783-834. [DOI: 10.1142/s0192415x15500494] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epimedii Folium (Yinyanghuo in Chinese) is one of the most commonly used traditional Chinese medicines. Its main active components are flavonoids, which exhibit multiple biological activities, such as promotion of bone formation and sexual function, protection of the nervous system, and prevention of cardiovascular diseases. Flavonoids also show anti-inflammatory and anticancer effects. Various effective methods, including genetic and chemical approaches, have been developed for the quality control of Yinyanghuo. In this review, the studies conducted in the last decade about the chemical constituents, quality control, and bioactivity of Yinyanghuo are summarized and discussed.
Collapse
Affiliation(s)
- Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xi-Wen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cai-Xiang Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
38
|
Khan M, Maryam A, Qazi JI, Ma T. Targeting Apoptosis and Multiple Signaling Pathways with Icariside II in Cancer Cells. Int J Biol Sci 2015. [PMID: 26221076 PMCID: PMC4515820 DOI: 10.7150/ijbs.11595] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials. Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Amara Maryam
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Javed Iqbal Qazi
- 2. Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tonghui Ma
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
39
|
Kim B, Park B. Baohuoside I Suppresses Invasion of Cervical and Breast Cancer Cells through the Downregulation of CXCR4 Chemokine Receptor Expression. Biochemistry 2014; 53:7562-9. [DOI: 10.1021/bi5011927] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
40
|
Wu J, Song T, Liu S, Li X, Li G, Xu J. Icariside II inhibits cell proliferation and induces cell cycle arrest through the ROS-p38-p53 signaling pathway in A375 human melanoma cells. Mol Med Rep 2014; 11:410-6. [PMID: 25333296 DOI: 10.3892/mmr.2014.2701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 07/23/2014] [Indexed: 11/05/2022] Open
Abstract
Icariside II (IS) is a metabolite of icariin, which is derived from Herba Epimedii. In the present study, the antiproliferative effects of IS on A375 human melanoma cells were examined in vitro and a possible mechanism through the ROS-p38-p53 pathway is discussed. A cell WST-8 assay revealed that treatment with IS markedly reduced cell viability from 77 to 21% (25 and 100 µM, respectively), and cell counting demonstrated that IS treatment reduced cell proliferation. IS treatment also induced cell cycle arrest of A375 cells at the G0/G1 and G2/M transitions and inhibited the expression of cell-cycle related proteins, including cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin B1 and phosphorylated cyclin-dependent kinase 1 (P-CDK1). In this study, it was determined that IS inhibits cell proliferation and induces cell cycle arrest through the generation of reactive oxygen species and activation of p38 and p53. These findings were further supported by the evidence that pretreatment with N-acetyl-L-cysteine, SB203580 or pifithrin-α significantly blocked IS-induced reduction of cell viability, increase of cell death and cell cycle arrest. In conclusion, IS inhibits cell proliferation and induces cell cycle arrest. Crucially, it was confirmed that these effects were mediated at least in part by activating the ROS-p38-p53 pathway.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Tao Song
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 25002, P.R. China
| | - Shuyong Liu
- Department of Radiology, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiaomei Li
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Gang Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, P.R. China
| |
Collapse
|
41
|
Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett 2013; 345:140-8. [PMID: 24333736 DOI: 10.1016/j.canlet.2013.12.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/21/2022]
Abstract
Signal transducers and activators of transcription (STAT)-3 is a latent cytosolic transcription factor that has been closely associated with survival, proliferation, chemoresistance, and metastasis of tumor cells. Whether the anti-proliferative, pro-apoptotic, and anti-metastatic effects of capillarisin (CPS), derived from Artemisia capillaris (Compositae), are linked to its capability to inhibit STAT3 activation was investigated. We found that CPS specifically inhibited both constitutive and inducible STAT3 activation at tyrosine residue 705 but not at serine residue 727 in human multiple myeloma cells. Besides the inhibition of STAT3 phosphorylation, CPS also abrogated STAT3 constitutive activity and nuclear translocation. The suppression of STAT3 was mediated through the inhibition of activation of upstream JAK1, JAK2, and c-Src kinases. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate treatment reversed the CPS-induced down-regulation of JAK1/2 and STAT3, thereby suggesting the involvement of a PTP. Indeed, knockdown of the SHP-1 and SHP-2 genes by small interfering RNA suppressed the ability of CPS to inhibit JAK1 and STAT3 activation, suggesting the critical role of both SHP-1 and SHP-2 in its possible mechanism of action. CPS downregulated the expression of STAT3-regulated antiapoptotic and proliferative gene products; and this correlated with suppression of cell viability, the accumulation of cells in sub-G1 phase of cell cycle and induction of apoptosis. Moreover, CPS potentiated bortezomib-induced apoptotic effects in MM cells, and this correlated with down-regulation of various gene products that mediate cell proliferation (Cyclin D1 and COX-2), cell survival (Bcl-2, Bcl-xl, IAP1, IAP2, and Survivin), invasion (MMP-9), and angiogenesis (VEGF). Thus, overall, our results suggest that CPS is a novel blocker of STAT3 activation and thus may have a potential in negative regulation of growth, metastasis, and chemoresistance of tumor cells.
Collapse
|
42
|
Qian C, Wang J, Yao J, Wang L, Xue M, Liu W, Si J. Involvement of Nuclear JAK2 Signaling in AG490-Induced Apoptosis of Gastric Cancer Cells. Anat Rec (Hoboken) 2013; 296:1865-73. [PMID: 24151255 DOI: 10.1002/ar.22820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Cuijuan Qian
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jiji Wang
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jun Yao
- Institute of Tumor; School of Medicine, Taizhou University; Taizhou Zhejiang China
| | - Lan Wang
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Meng Xue
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Weili Liu
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jianmin Si
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
43
|
Wu J, Zuo F, Du J, Wong PF, Qin H, Xu J. Icariside II induces apoptosis via inhibition of the EGFR pathways in A431 human epidermoid carcinoma cells. Mol Med Rep 2013; 8:597-602. [PMID: 23807305 DOI: 10.3892/mmr.2013.1557] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/18/2013] [Indexed: 11/05/2022] Open
Abstract
Improvements in skin cancer treatment are likely to derive from novel agents targeting the molecular pathways that promote tumor cell growth and survival. Icariside II (IS) is a metabolite of icariin, which is derived from Herba Epimedii. The aim of the present study was to evaluate the antitumor effects of IS and to determine the mechanism of apoptosis in A431 human epidermoid carcinoma cells. A431 cells were treated with IS (0‑100 µM) for 24 or 48 h and cell viability was detected using the WST‑8 assay. Apoptosis was measured by the Annexin‑V/propidium iodide (PI) flow cytometric assay. Western blot analysis was used to measure the expression of cleaved caspase‑9, cleaved poly ADP ribose polymerase (PARP), phosphorylated signal transducer and activator of transcription 3 (P‑STAT3), phosphorylated extracellular signal-regulated kinase (P‑ERK), and P‑AKT. A431 cells were also pretreated with IS (0‑100 µM) 2 h prior to treatment with epidermal growth factor (EGF; 100 ng/ml) for 10 min. Phosphorylated EGF receptor (P‑EGFR), P‑STAT3, P‑ERK and P‑AKT were detected by western blot analysis. The results demonstrated that IS inhibited the cell viability of the A431 cells in a dose‑dependent manner. Pretreatment with LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor], EGF (an EGFR agonist) and AG1478 (an EGFR inhibitor) partially reversed IS‑induced decreases in cell viability. Treatment with 50 µm IS resulted in an increased number of apoptotic cells mirrored by increases in cleaved caspase‑9 and cleaved PARP. In addition, treatment with 50 µM IS significantly inhibited the activation of the Janus kinase (JAK)‑STAT3 and mitogen‑activated protein kinase (MAPK)‑ERK pathways, but promoted the activation of the PI3K‑AKT pathway. Furthermore, IS effectively inhibited the EGF-induced activation of the EGFR pathways. In conclusion, IS inhibited the cell viability of the A431 cells through the regulation of apoptosis. These effects were mediated, at least in part, by inhibiting the activation of the EGFR pathways.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | | | | | | | | | | |
Collapse
|
44
|
Sook SH, Lee HJ, Kim JH, Sohn EJ, Jung JH, Kim B, Kim JH, Jeong SJ, Kim SH. Reactive oxygen species-mediated activation of AMP-activated protein kinase and c-Jun N-terminal kinase plays a critical role in beta-sitosterol-induced apoptosis in multiple myeloma U266 cells. Phytother Res 2013; 28:387-94. [PMID: 23640957 DOI: 10.1002/ptr.4999] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/26/2013] [Accepted: 03/22/2013] [Indexed: 11/07/2022]
Abstract
Although beta-sitosterol has been well known to have anti-tumor activity in liver, lung, colon, stomach, breast and prostate cancers via cell cycle arrest and apoptosis induction, the underlying mechanism of anti-cancer effect of beta-sitosterol in multiple myeloma cells was never elucidated until now. Thus, in the present study, the role of reactive oxygen species (ROS) in association with AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK) pathways was demonstrated in beta-sitosterol-treated multiple myeloma U266 cells. Beta-sitosterol exerted cytotoxicity, increased sub-G1 apoptotic population and activated caspase-9 and -3, cleaved poly (ADP-ribose) polymerase (PARP) followed by decrease in mitochondrial potential in U266 cells. Beta-sitosterol promoted ROS production, activated AMPK, acetyl-CoA carboxylase (ACC) and JNK in U266 cells. Also, beta-sitosterol attenuated the phosphorylation of AKT, mammalian target of rapamycin and S6K, and the expression of cyclooxygenase-2 and VEGF in U266 cells. Conversely, AMPK inhibitor compound C and JNK inhibitor SP600125 suppressed apoptosis induced by beta-sitosterol in U266 cells. Furthermore, ROS scavenger N-acetyl L-cysteine attenuated beta-sitosterol-mediated sub-G1 accumulation, PARP cleavage, JNK and AMPK activation in U266 cells. Overall, these findings for the first time suggest that ROS-mediated activation of cancer metabolism-related genes such as AMPK and JNK plays an important role in beta-sitosterol-induced apoptosis in U266 multiple myeloma cells.
Collapse
Affiliation(s)
- Song Hyo Sook
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cui L, Zhang Z, Sun E, Jia X, Qian Q. Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin. J Nat Sci Biol Med 2013; 4:201-6. [PMID: 23633863 PMCID: PMC3633278 DOI: 10.4103/0976-9668.107291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: The aim of this work was to investigate the effect of β-cyclodextrin complexation on the solubility and hydrolysis rate of icariin. Material and Methods: The inclusion complex of icariin at the molar ratio of 1:1 was obtained by the dropping method and was characterized by differential scanning calorimetry. The solubility of icariin complex in water at 37°C was 36 times greater than that of free icariin. Enzymatic hydrolysis conditions were tested for the bioconversion of icariin by mono-factor experimental design. Methods: The inclusion complex of icariin at the molar ratio of 1:1 was obtained by the dropping method and was characterized by differential scanning calorimetry. The solubility of icariin complex in water at 37°C was 36 times greater than that of free icariin. Enzymatic hydrolysis conditions were tested for the bioconversion of icariin by mono-factor experimental design. Results: The enzymatic hydrolysis experiment showed that icariin can be transformed into baohuoside I. The optimum conditions determined were as follows: pH 5.0, 50°C, the ratio of cellulase/substrate (0.6), the concentration of icariin 20 mg/ml, and reaction time 12 h. Under these enzymatic conditions, 98.2% transforming rate of baohuoside I from icariin in inclusion complexes was obtained. Conclusion The aqueous solubility and enzymatic hydrolysis rate of icariin were improved owing to the inclusion complexation.
Collapse
Affiliation(s)
- Li Cui
- Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, China
| | | | | | | | | |
Collapse
|
46
|
Liu J, Li W, Piao X, Zhang J, Zhang D, Wei N, Hu D, Liu S. Icariside II reduces testosterone production by inducing necrosis in rat Leydig cells. J Biochem Mol Toxicol 2013; 27:243-50. [PMID: 23526545 DOI: 10.1002/jbt.21481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022]
Abstract
The present study demonstrates that Icariside II (10, 20, and 40 µM) reduced Leydig cell testosterone production and cell viability in a concentration- and time-dependent manner. Hoechst 33342/propidium iodide staining indicated that no morphological changes in Leydig cell nuclear chromatin occurred, caspase-3 expression also showed no significant change, but cell death was caused by the 10-µM Icariside II treatment. Furthermore, a significant reduction in NAD(+) levels was observed following Icariside II exposure (10, 20, and 40 µM). Cell death was avoided when Icariside II treated cells were incubated with extracellular NAD(+) (5 and 10 mM). Moreover, the addition of NAD(+) (5 and 10 mM) could restore ATP production and prevent cell death. The results suggest that Icariside II can reduce testosterone production by inducing necrosis, but not apoptosis, in rat Leydig cells. This mechanism may also account for the Icariside II induced depletion of NAD(+) and ATP levels.
Collapse
Affiliation(s)
- Jinwen Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin X, Zhang ZH, Sun E, Tan XB, Zhu FX, Jia XB. A novel drug–phospholipid complex loaded micelle for baohuoside I enhanced oral absorption:in vivoandin vivoevaluations. Drug Dev Ind Pharm 2012; 39:1421-30. [DOI: 10.3109/03639045.2012.719234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Jin X, Zhang ZH, Sun E, Qian Q, Tan XB, Jia XB. Preparation of a nanoscale baohuoside I-phospholipid complex and determination of its absorption: in vivo and in vitro evaluations. Int J Nanomedicine 2012; 7:4907-16. [PMID: 23028219 PMCID: PMC3446837 DOI: 10.2147/ijn.s35965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Baohuoside I is a potential anticancer drug for a variety of malignancies and has been approved for in vitro use. However, baohuoside I has very poor oral absorption. Methods In the present study, we prepared baohuoside I-phospholipid complexes of different diameters and determined their physicochemical properties using transmission electron microscopy, ultraviolet spectroscopy, and differential scanning calorimetry. The in vitro absorption of baohuoside I and baohuoside I-phospholipid complexes of different sizes were compared using the Caco-2 cell culture model, and subsequently, the bioavailability of baohuosidel and its complexes were estimated in vivo. Results Compared with the large-sized phospholipid complexes, a nanoscale phospholipid complex improved the oral bioavailability of baohuoside I. In addition, our results suggest that the smaller the particle size, the faster the complexes crossed the Caco-2 monolayer and the faster they were resorbed after oral administration in rats. The relative oral bioavailability of a nanoscale size 81 ± 10 nm baohuoside I-phospholipid complex (area under the concentration-time curve [AUC]0–∞) was 342%, while that of baohuoside I and a 227.3 ± 65.2 μm baohuoside I-phospholipid complex was 165%. Conclusion We enhanced the oral bioavailability of baohuoside I by reducing the particle size of the phospholipid complex to the nanometer range, thereby improving its potential for clinical application.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Icariside II induces apoptosis in U937 acute myeloid leukemia cells: role of inactivation of STAT3-related signaling. PLoS One 2012; 7:e28706. [PMID: 22493659 PMCID: PMC3320887 DOI: 10.1371/journal.pone.0028706] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium koreanum Nakai on human acute myeloid leukemia (AML) cell line U937. Methodology/Principal Findings Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) in a time-dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-xL and survivin in U937 cells, were downregulated by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the activation of Janus activated kinase 2 (JAK2), the upstream activators of STAT3, in a dose- and time-dependent manner. Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP) SH2 domain-containing phosphatase (SHP)-1, and the addition of sodium pervanadate (a PTP inhibitor) prevented Icariside II-induced apoptosis as well as STAT3 inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3 inactivation and apoptosis induced by Icariside II in U937 cells. Conclusions/Significance Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937 cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML.
Collapse
|
50
|
Rhee YH, Jeong SJ, Lee HJ, Lee HJ, Koh W, Jung JH, Kim SH, Sung-Hoon K. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer 2012; 12:28. [PMID: 22260501 PMCID: PMC3292511 DOI: 10.1186/1471-2407-12-28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/20/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. RESULTS Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. CONCLUSION These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells.
Collapse
Affiliation(s)
- Yun-Hee Rhee
- Clinical Trial Institute, Dankook University, Chenan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|