1
|
Arabi V, Sasanfar B, Sareban Hassanabadi MT, Seyedhosseini SM, Jambarsang S, Motallaei M, Taftian M, Darand M, Mirjalili FS, Salehi-Abargouei A. Medicinal herbs consumption in relation to cardiometabolic indices and coronary artery stenosis in participants undergoing coronary angiography: A cross-sectional study. Phytother Res 2024; 38:4999-5015. [PMID: 38233343 DOI: 10.1002/ptr.8113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Few studies have investigated the association between herbal medicine consumption and coronary artery disease severity. This cross-sectional study aimed to investigate the association between the frequency of medicinal herbs consumption and coronary artery stenosis (CAS), lipid profile, fasting blood sugar (FBS), and blood pressure level in participants undergoing coronary angiography. This study was conducted on 662 participants aged 35-75 years. Serum cardiometabolic markers were measured using standard kits. The extent and severity of CAS were evaluated using the Gensini score (GS) and syntax score (SS). Higher consumption of Thymus vulgaris and Sumac was associated with decreased odds of artery-clogging according to the GS. A higher intake of Thymus vulgaris and Mentha was associated with lower levels of serum cholesterol and triglyceride. Monthly intake of Thymus vulgaris, and weekly/daily intake of Mentha, Nigella Sativa, and Cuminum Cyminum were associated with lower low-density lipoprotein. Weekly/daily intake of Turmeric and Thymus vulgaris were associated with lower high-density lipoprotein levels and monthly intake of Mentha was related to lower serum FBS levels. Higher consumption of Mentha, Mentha pulegium L, Lavandula angustifolia, and Nigella Sativa was associated with lower levels of systolic blood pressure. According to the results of the present study, herbs consumption might be related to a reduction in CAS risk factors.
Collapse
Affiliation(s)
- Vahid Arabi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahareh Sasanfar
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Sareban Hassanabadi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mostafa Seyedhosseini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of public health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Motallaei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Taftian
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mina Darand
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Mirjalili
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Koc Yildirim E, Kaya M, Guler AG, Yildirim E, Ozturan YA, Uner AA. Beneficial effects of swimming and pomegranate juice in rats with hypertension: A possible role of serum adropin. Nutr Res 2024; 126:167-179. [PMID: 38759500 DOI: 10.1016/j.nutres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Hypertension, characterized by persistent and uncontrolled high blood pressure, is one of the most common significant causes of mortality worldwide. Lifestyle modifications such as exercise and antioxidant intake have showed beneficial effects on hypertensive conditions. Adropin and endothelin-1 (ET-1) have important vasoregulatory functions in the endothelium. However, the underlying mechanisms linking exercise- and/or antioxidant intake-mediated improvement of hypertension are not fully understood. In this study, it was hypothesized that swimming exercise and pomegranate juice (PJ) (as an antioxidant) administration might have protective effects on hypertension development and possible involvements of serum adropin and ET-1. To test the hypothesis, the rats with hypertension, induced by Nω-nitro-L-arginine methyl ester hydrochloride, were subjected to swimming exercise and received PJ for 8 weeks. Weekly systolic and diastolic pressures, serum concentrations of adropin and ET-1, and oxidant/antioxidant parameters in various tissues were measured. The obtained data show that swimming exercise leads to complete protection against hypertension within the 8-week duration, whereas the PJ administration causes an ameliorative effect. In addition, the combination of swimming exercise and PJ administration do not have additive effects in protection against hypertension. Notably, the 8-week swimming exercise restores the diminished serum adropin concentration in rats with hypertension to the control level. Serum adropin significantly correlated with systolic and diastolic pressures, depending on swimming exercise, but not PJ administration. Serum ET-1 concentration inconsistently fluctuates in response to Nω-nitro-L-arginine methyl ester hydrochloride, swimming exercise, and PJ intake. In addition, swimming exercise and/or PJ administration lead to a complete normalization in liver malondialdehyde concentrations of rats with hypertension, whereas these interventions cause slight or no improvements in superoxide dismutase, catalase, and glutathione in the heart, liver, and kidney. In conclusion, 8-week swimming exercise modulates hypertension, possibly by influencing adropin concentration and oxidative stress.
Collapse
Affiliation(s)
- Ece Koc Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye
| | - Mehmet Kaya
- Department of Animal Science and Animal Nutrition, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Asude Gulce Guler
- Department of Parasitology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Edasu Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye
| | - Yalcin Alper Ozturan
- Department of Surgery, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09000, Turkiye
| | - Aaron Aykut Uner
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, 09000 Turkiye; Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Nordin NL, Sulaiman R, Bakar J, Noranizan MA. Comparison of Phenolic and Volatile Compounds in MD2 Pineapple Peel and Core. Foods 2023; 12:foods12112233. [PMID: 37297477 DOI: 10.3390/foods12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The peel and core discarded from the processing of MD2 pineapple have the potential to be valorized. This study evaluated the functional and volatile compounds in the extracts of MD pineapple peel and core (MD2-PPC). The total soluble solids, pH, titratable acidity, sweetness index, and astringency index were 9.34 °Brix, 4.00, 0.74%, 12.84, and 0.08, respectively, for the peel and 12.00 °Brix, 3.96, 0.32%, 37.66, and 0.03, respectively, for the core. The fat and protein contents of the peel and core were found to be significantly different (p < 0.05). The total phenolic (TPC) and flavonoid contents (TFC) were significantly higher in the peel. The peel also showed better antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 0.63 mg/mL for DPPH free radical activity compared with the core. The TPC of different phenolic fractions from peel extract was highest in the glycosylated fraction, followed by the esterified, insoluble-bound, and free phenolic fractions. GC-MS analysis identified 38 compounds in the peel and 23 in the core. The primary volatile compounds were 2-furan carboxaldehyde, 5-(hydroxymethyl), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). The identification of phenolics and volatile compounds provides important insights into the valorization of (MD2-PPC) waste.
Collapse
Affiliation(s)
- Nur Liyana Nordin
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
| | - Rabiha Sulaiman
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jamilah Bakar
- Laboratory of Halal Product Science, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Adzahan Noranizan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Razzaq MA, Younis W, Malik MNH, Alsahli TG, Jahan S, Ehsan R, Gasparotto Junior A, Bashir A. Pulegone Prevents Hypertension through Activation of Muscarinic Receptors and Cyclooxygenase Pathway in L-NAME-Induced Hypertensive Rats. Cardiovasc Ther 2023; 2023:8166840. [PMID: 37214130 PMCID: PMC10195173 DOI: 10.1155/2023/8166840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
The current study was designed to determine pulegone's antihypertensive and vasoprotective activity in L-NAME-induced hypertensive rats. Firstly, the hypotensive dose-response relationship of pulegone was evaluated in normotensive anesthetized rats using the invasive method. Secondly, the mechanism involved in hypotensive activity was determined in the presence of pharmacological drugs such as atropine/muscarinic receptor blocker (1 mg/kg), L-NAME/NOS inhibitor (20 mg/kg), and indomethacin/COX inhibitor (5 mg/kg) in anesthetized rats. Furthermore, studies were carried out to assess the preventive effect of pulegone in L-NAME-induced hypertensive rats. Hypertension was induced in rats by administering L-NAME (40 mg/kg) orally for 28 days. Rats were divided into six groups which were treated orally with tween 80 (placebo), captopril (10 mg/kg), and different doses of pulegone (20 mg/kg, 40 mg/kg, and 80 mg/kg). Blood pressure, urine volume, sodium, and body weight were monitored weekly. After 28 days, the effect of pulegone on lipid profile, hepatic markers, antioxidant enzymes, and nitric oxide was estimated from the serum of treated rats. Moreover, plasma mRNA expression of eNOS, ACE, ICAM1, and EDN1 was measured using real-time PCR. Results show that pulegone dose-dependently decreased blood pressure and heart rate in normotensive rats, with the highest effect at 30 mg/kg/i.v. The hypotensive effect of pulegone was reduced in the presence of atropine and indomethacin, whereas L-NAME did not change its hypotensive effect. Concurrent treatment with pulegone for four weeks in L-NAME-treated rats caused a reduction in both systolic blood pressure and heart rate, reversed the reduced levels of serum nitric oxide (NO), and ameliorated lipid profile and oxidative stress markers. Treatment with pulegone also improved the vascular response to acetylcholine. Plasma mRNA expression of eNOS was reduced, whereas ACE, ICAM1, and EDN1 levels were high in the L-NAME group, which was facilitated by pulegone treatment. To conclude, pulegone prevented L-NAME-induced hypertension by demonstrating a hypotensive effect through muscarinic receptors and cyclooxygenase pathway, indicating its use as a potential candidate in managing hypertension.
Collapse
Affiliation(s)
- Muryam Abdul Razzaq
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Waqas Younis
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ 07103, USA
| | | | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Roma Ehsan
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Asifa Bashir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Ahmad A. Prophylactic Treatment with Hydrogen Sulphide Can Prevent Renal Ischemia-Reperfusion Injury in L-NAME Induced Hypertensive Rats with Cisplatin-Induced Acute Renal Failure. Life (Basel) 2022; 12:1819. [PMID: 36362975 PMCID: PMC9695289 DOI: 10.3390/life12111819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/26/2023] Open
Abstract
(Background and Objectives): Renal ischemia perfusion injury is one of the major issues in kidney transplant. The aim of the study was to investigate the hypothesis that prophylactic treatment-with a hydrogen sulphide donor to an acute renal failure case of hypertensive rats-can minimize the ischemia reperfusion injury of the kidney which is beneficial for kidney transplant. To check this hypothesis, the present study was designed to investigate the effect of chronic administration of a hydrogen sulphide (H2S) donor and sodium hydrosulfide (NaHS) on nuclear factor kappa B (NF-kB) and inter cellular adhesion molecule-1 (ICAM-1) concentration in non-renal failure (NRF) and acute renal failure (ARF) rats in the ischemia-reperfusion injury (IRI) model of the kidney in both normotensive WKY and hypertensive rats (L-nitro arginine methyl ester (L-NAME-induced); (Materials and Methods): A total number of 48 Sprague-Dawley rats were recruited into eight groups each consisting of six animals. Each of these eight groups was used to measure systemic and renal parameters, H2S, antioxidant parameters in plasma, plasma concentration of NF-kB and ICAM-1 and renal cortical blood pressure. ARF was induced by single intraperitoneal (i.p.) cisplatin injection (5 mg/kg). Hypertension was induced by oral administration of L-NAME in drinking water for four weeks at 40 mg/kg/day. NaHS was administered (i.p) at 56 µmol/kg for five weeks while dL-propargylglycine (PAG), a H2S generation inhibitor, was administered as a single intra-peritoneal injection (50 mg/kg). An acute surgical experiment was performed for the induction of renal ischemia for 30 min by renal artery clamping followed by reperfusion for three hours; (Results): Chronic administration of NaHS attenuated the severity of ARF in both normotensive and hypertensive animals (L-NAME) along with lowering the blood pressure in hypertensive groups. NaHS improved the oxidative stress parameters such as total superoxide dismutase (T-SOD), glutathione (GSH) and reduced the malondialdehyde (MDA) concentration along with reduction of NF-kB and ICAM-1 following renal IRI; Conclusions: These findings demonstrate that H2S not only reduced the severity of cisplatin induced ARF but also reduced the severity of renal IRI by upregulating antioxidants along with decreased concentrations of NF-kB and ICAM-1 in normotensive and L-NAME induced hypertensive rats.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
7
|
Yu Q, Chen S, Tang H, Zhang X, Tao R, Yan Z, Shi J, Guo W, Zhang S. Veratric acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway. Int Immunopharmacol 2021; 101:108294. [PMID: 34749250 DOI: 10.1016/j.intimp.2021.108294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
Oxidative stress following liver ischemia/reperfusion (I/R) is an important pathological mechanism responsible for liver injury. Veratric acid (VA) is a phenolic benzoic acid that has been reported to have antioxidant properties. However, whether VA has protective effects against liver I/R injury remains unclear. In the present study, a mouse liver I/R injury model was established. VA was administered intragastrically for one week before liver I/R. Biochemical indicators, histological analysis, cell apoptosis, oxidative stress, and pathway proteins were tested to evaluate the protective effects of VA on liver I/R injury. Furthermore, a mouse AML12 hepatocyte hypoxia/reoxygenation (H/R) model was used to explore the underlying mechanism. VA alleviated liver I/R injury, as manifested by decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, liver necrotic area, oxidative stress, and hepatocyte apoptosis. VA pretreatment increased the expression of Nrf2 and its downstream antioxidant proteins heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO-1). In addition, VA pretreatment increased AML12 cell activity and decreased oxidative stress; it also decreased the apoptosis induced by H/R. Moreover, the protective effect of VA on hepatocytes was related to the activation of the Nrf2 signaling pathway, and to increases in the Nrf2, HO-1, and NQO-1 protein expression. The inhibition of Nrf2 with ML385 offseted VA-mediated protection in AML12 cells. In conclusion, these results suggest that VA protects the liver from oxidative stress and apoptosis induced by liver I/R injury by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Sanyang Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Hashmi SF, Rathore HA, Sattar MA, Johns EJ, Gan CY, Chia TY, Ahmad A. Hydrogen Sulphide Treatment Prevents Renal Ischemia-Reperfusion Injury by Inhibiting the Expression of ICAM-1 and NF-kB Concentration in Normotensive and Hypertensive Rats. Biomolecules 2021; 11:1549. [PMID: 34680182 PMCID: PMC8534271 DOI: 10.3390/biom11101549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023] Open
Abstract
Our main objective was to investigate the effect of chronic administration of hydrogen sulphide donor (sodium hydrosulphide) on the expression of intercellular adhesion molecule-1 (ICAM-1) and concentration of nuclear factor-kappa B (NF-kB) in a renal ischemia-reperfusion injury (IRI) model of WKY and L-nitro-arginine-methyl-ester (L-NAME)-induced hypertensive rats. Sodium hydrosulphide (NaHS) was administered intraperitoneally (i.p.) for 35 days while cystathionine gamma lyase (CSE) inhibitor dL-propargylglycine (PAG) was administered at a single dose of 50 mg/kg. Animals were anesthetised using sodium pentobarbitone (60 mg/kg) and then prepared to induce renal ischemia by clamping the left renal artery for 30 min followed by 3 h of reperfusion. Pre-treatment with NaHS improved the renal functional parameters in both WKY and L-NAME-induced hypertensive rats along with reduction of blood pressure in hypertensive groups. Oxidative stress markers like malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glutathione (GSH) were also improved by NaHS treatment following renal IRI. Levels of ICAM-1 and NF-kB concentration were reduced by chronic treatment with NaHS and increased by PAG administration after renal IRI in plasma and kidney. Treatment with NaHS improved tubular morphology and glomerulus hypertrophy. Pre-treatment with NaHS reduced the degree of renal IRI by potentiating its antioxidant and anti-inflammatory mechanism, as evidenced by decreased NF-kB concentration and downregulation of ICAM-1 expression.
Collapse
Affiliation(s)
- Syed F. Hashmi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.F.H.); (H.A.R.); (M.A.S.)
| | - Hassaan Anwer Rathore
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.F.H.); (H.A.R.); (M.A.S.)
| | - Munavvar A. Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.F.H.); (H.A.R.); (M.A.S.)
| | - Edward J. Johns
- Department of Physiology, University College Cork, T12 K8AF Cork, Ireland;
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia (USM), Lebuh Bukit Jambul, Penang 11900, Malaysia;
| | - Tan Yong Chia
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia (USM), Lebuh Bukit Jambul, Penang 11900, Malaysia;
| | - Ashfaq Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.F.H.); (H.A.R.); (M.A.S.)
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| |
Collapse
|
9
|
Vasorelaxant-Mediated Antihypertensive Effect of the Leaf Aqueous Extract from Stephania abyssinica (Dillon & A. Rich) Walp (Menispermaceae) in Rat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4730341. [PMID: 34660790 PMCID: PMC8519676 DOI: 10.1155/2021/4730341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Stephania abyssinica is a medicinal plant used in Cameroon alternative medicine to treat arterial hypertension (AHT). Previous in vitro studies demonstrated the endothelium nitric oxide-independent vasorelaxant property of the aqueous extract from Stephania abyssinica (AESA). But its effect on AHT is unknown. The present study was undertaken to explore other vasorelaxant mechanisms and to determine the antihypertensive effects of AESA in male Wistar rats. Phytochemical analysis of AESA was carried out using the liquid chromatography-mass spectrometry (LC-MS) method. The vasorelaxant effects of AESA (1-1000 μg/mL) were studied on rat isolated thoracic aorta rings, in the absence or presence of indomethacin (10 μM) or methylene blue (10 μM). The inhibitory effect of AESA on phenylephrine (PE, 10 μM) or KCl- (60 mM) induced contraction as well as the intracellular calcium release was also evaluated. The in vivo antihypertensive activity of AESA (43, 86, or 172 mg/kg/day) or captopril (20 mg/kg/day) administered orally was assessed in L-NAME- (40 mg/kg/day) treated rats. Blood pressure and heart rate (HR) were measured at the end of each week while serum or urinary nitric oxide (NO), creatinine, and glomerular filtration rate (GFR) were determined at the end of the 6 weeks of treatment, as well as histological analysis of the heart and the kidney. The LC-MS profiling of AESA identified 9 compounds including 7 alkaloids. AESA produced a concentration-dependent relaxation on contraction induced either by PE and KCl, which was significantly reduced in endothelium-denuded vessels, as well as in vessels pretreated with indomethacin and methylene blue. Moreover, AESA inhibited the intracellular Ca2+ release-induced contraction. In vivo, AESA reduced the AHT, heart rate (HR), and ventricular hypertrophy and increased serum NO, urine creatinine, and GFR. AESA also ameliorated heart and kidney lesions as compared to the L-NAME group. These findings supported the use of AESA as a potential antihypertensive drug.
Collapse
|
10
|
Belemnaba L, Nitiéma M, Ilboudo S, Ouédraogo GG, Ouédraogo N, Belemlilga MB, Compaoré S, Ouédraogo S, Ouédraogo S. Preclinical Evaluation of the Antihypertensive Effect of an Aqueous Extract of Anogeissus leiocarpa (DC) Guill et Perr. Bark of Trunk in L-NAME-Induced Hypertensive Rat. J Exp Pharmacol 2021; 13:739-754. [PMID: 34393522 PMCID: PMC8357407 DOI: 10.2147/jep.s319787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study investigates the effect of an aqueous extract of Anogeissus leiocarpa (AEAL) on normotensive Wistar rats and its chronic antihypertensive effects in L-NAME-induced hypertensive rats by using a non-invasive tail-cuff model. METHODS The effects of AEAL (50mg/kg) and NaCl 0.9% on blood pressure were investigated by daily oral administration in normotensive Wistar rats over four weeks. L-NAME-induced hypertensive rats were produced by L-NAME (40mg/kg) daily oral administration for two weeks. For chronic antihypertensive effects, induced hypertensive rats have received L-NAME in combination with AEAL (10 or 50mg/kg/day) for two following weeks. RESULTS In normotensive rats, daily administration of AEAL (50mg/kg) has no significant effect on their blood pressure, which was similar to that of the control group. L-NAME's daily oral administration induces a progressive increase in systolic blood pressure (SBP) from 115.8 ± 7.9mmHg to 153.5 ± 4.6mmHg after two weeks, which was maintained to the end of the treatment. In L-NAME-induced hypertensive rats, AEAL (50mg/kg/day) significantly decreases the SPB from 160.0 ± 5.8 mmHg to 108.8 ± 2.7mmHg after only four days of administration. However, the lower dose of AEAL (10mg/kg) also normalized the SBP of L-NAME-induced hypertensive rats but only evident after seven days of administration. Moreover, AEAL does not effect on the serum biochemical parameters (ALAT, ASAT, CREAT, etc.) and any macroscopic adverse effect was detected on the sensible organs involved during hypertension. In the aorta rings from treated rats, AEAL (50mg/kg/day) alone or in combination with L-NAME has enhanced the vasodilation effect of acetylcholine. However, the vasodilation effect of AEAL alone or in association with L-NAME has enhanced the sodium nitroprusside effect in treated rat aorta rings after autopsy. CONCLUSION These findings suggest that AEAL affords significant antihypertensive effects against L-NAME-induced hypertensive rats without modification of serum parameters and deleterious effects.
Collapse
Affiliation(s)
- Lazare Belemnaba
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mathieu Nitiéma
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Sylvain Ilboudo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Gueswindé Geoffroy Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Noufou Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mohamed Bonewendé Belemlilga
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Souleymane Compaoré
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Salfo Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Sylvin Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| |
Collapse
|
11
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
12
|
Miguel-Dos-Santos R, Santos JFD, Macedo FN, Marçal AC, Santana Filho VJ, Wichi RB, Lauton-Santos S. Strength Training Reduces Cardiac and Renal Oxidative Stress in Rats with Renovascular Hypertension. Arq Bras Cardiol 2021; 116:4-11. [PMID: 33566958 PMCID: PMC8159508 DOI: 10.36660/abc.20190391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023] Open
Abstract
Fundamento O treino de força tem efeitos benéficos em doenças renais, além de ajudar a melhorar a defesa antioxidante em animais saudáveis. Objetivo Verificar se o treino de força reduz o dano oxidativo ao coração e rim contralateral para cirurgia de indução de hipertensão renovascular, bem como avaliar as alterações na atividade das enzimas antioxidantes endógenas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). Métodos Dezoito ratos machos foram divididos em três grupos (n=6/grupo): placebo, hipertenso e hipertenso treinado. Os animais foram induzidos a hipertensão renovascular através da ligação da artéria renal esquerda. O treino de força foi iniciado quatro semanas após a indução da hipertensão renovascular, teve 12 semanas de duração e foi realizada a 70% de 1RM. Depois do período de treino, os animais foram submetidos a eutanásia e o rim esquerdo e o coração foram retirados para realizar a quantificação de peróxidos de hidrogênio, malondialdeído e grupos sulfidrílicos, que são marcadores de danos oxidativos. Além disso, foram medidas as atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. O nível de significância adotado foi de 5% (p < 0,05). Resultados Depois do treino de força, houve redução de danos oxidativos a lipídios e proteínas, como pode-se observar pela redução de peróxidos de hidrogênio e níveis sulfidrílicos totais, respectivamente. Além disso, houve um aumento nas atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. Conclusão O treino de força tem o potencial de reduzir danos oxidativos, aumentando a atividades de enzimas antioxidantes. (Arq Bras Cardiol. 2021; 116(1):4-11)
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Norwegian University of Science and Technology - Cardiac Exercise Reserch Group, Department of Circulation and Medical Imaging, Trondheim - Noruega.,Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | | | - Fabricio Nunes Macedo
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Educação Física, Centro Universitário Estácio de Sergipe, Aracaju, SE - Brasil
| | - Anderson Carlos Marçal
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Morfologia da Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Valter J Santana Filho
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Rogerio Brandão Wichi
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Sandra Lauton-Santos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| |
Collapse
|
13
|
Ozdemir B, Gulhan MF, Sahna E, Selamoglu Z. The investigation of antioxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-L-arginine methyl ester. Clin Exp Hypertens 2021; 43:69-76. [PMID: 32799699 DOI: 10.1080/10641963.2020.1806294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND High blood pressure effects heart and vessels. Development of pathogenesis is the result of oxidative stress. We aimed to investigate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE), and pollen on the hearts of rats which chronic nitric oxide synthase (NOS) inhibited through Nω-nitro-L-arginine methyl ester (L-NAME). Paraoxonase 1 (PON1), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), asymmetric dimethylarginine (ADMA), and nuclear factor-κB (NF-κB) were analyzed on the heart. MATERIAL AND METHODS Sprague-Dawley rats were divided five groups of seven rats in every group; Group I: Control, Group II: L-NAME, Group III: L-NAME+propolis, Group IV: L-NAME+CAPE and Group V: L-NAME+pollen. L-NAME become dissolved in regular saline (0.9% NaCl w/v). The ethanolic extract of propolis (200 mg/kg/days, gavage), pollen (100 mg/kg/days, by gavage), CAPE (50 µM/kg/days, intraperitoneally), and the NOS inhibitor L-NAME (40 mg/kg, intraperitoneally) had been administered. RESULTS Blood pressure (BP) of rats treated with propolis, CAP,E and pollen statistically significant decreased. Decreasing in BP of the rats of pollen group was more than CAPE and propolis groups (P < .05). PON1 and TAS levels decreased in L-NAME-treated groups (P < .05), but ranges have been better in propolis, CAPE and pollen groups. TOS, ADMA and NF-κB levels increased (P < .05) in L-NAME group; however, these parameters were lower (P < .05) in propolis and CAPE groups (P < .05). CONCLUSIONS Vasorelaxant properties and free radical scavenging actions of propolis, CAPE, and pollen may reduce the oxidative stress and blood pressure in the rats chronic NOS inhibited through L-NAME.
Collapse
Affiliation(s)
- Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University , Nigde, Turkey
| | - Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray University , Aksaray, Turkey
| | - Engin Sahna
- Department of Pharmacology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus , Nigde, Turkey
| |
Collapse
|
14
|
Poasakate A, Maneesai P, Chiangsaen P, Bunbupha S, Settheetham-Ishida W, Pakdeechote P. Cratoxylum formosum dyer extract alleviates testicular damage in hypertensive rats. Andrologia 2020; 53:e13917. [PMID: 33244785 DOI: 10.1111/and.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
The effects of a Cratoxylum formosum (Jack) Dyer ssp. (CF) extract on testicular damage were assessed in hypertensive rats. Nω -nitro-L-arginine methyl ester hydrochloride (L-NAME; 40 mg kg-1 day-1 ) was administered for 5 weeks to induce hypertension in male Sprague-Dawley rats, and treated with CF extract (100, 300 or 500 mg kg-1 day-1 ) or sildenafil (5 mg kg-1 day-1 ) during the final 2 weeks (n = 8/group). Biochemical components of the CF extract were identified and mainly contained phenolic compounds. The CF extract significantly reduced systolic blood pressure and alleviated impaired sperm quality and seminiferous tubular morphology in hypertensive rats. CF extract restored reduced serum testosterone and protein expression of steroidogenic acute regulatory protein (StAR), nuclear factor erythroid-related factor 2 (Nrf2), and haem oxygenase 1 (HO-1) in L-NAME rats. Hypertensive rats presented decreased antioxidant enzyme activities, and increased testicular and plasma malondialdehyde (MDA) levels and superoxide production, all of which were normalised by CF extract. Furthermore, endothelial nitric oxide synthase (eNOS) expression in testicular tissue and plasma nitrate/nitrite levels were restored in hypertensive rats administered CF extract. Conclusion: CF extract alleviated testicular damage in hypertensive rats. Potential molecular mechanisms may involve suppression of oxidative stress and restoration of StAR, Nrf2, HO-1 and eNOS expression in hypertensive rats.
Collapse
Affiliation(s)
- Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Petcharat Chiangsaen
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Potue P, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Cratoxylum Formosum extract exhibits antihypertensive effects via suppressing the renin-angiotensin cascade in hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Koc Yildirim E, Dedeoglu Z, Kaya M, Uner AG. The effect of swimming training on adrenomedullin levels, oxidative stress variables, and gastrocnemius muscle contractile properties in hypertensive rats. Clin Exp Hypertens 2020; 43:131-137. [PMID: 32985250 DOI: 10.1080/10641963.2020.1825726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction/Aim: Regular exercise may have beneficial effects on high blood-pressure, as shown in different types of experimental hypertension models in rats. The present study aims to investigate the effects of 6-week swimming training on blood pressure, oxidative stress variables of selected tissues, serum adrenomedullin (ADM) levels, and in situ muscle contraction in rats with hypertension induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of endothelial nitric oxide synthases (eNOs). Materials and Methods: Twenty-six male Sprague Dawley, 8 weeks of age, rats were randomly divided into four groups: (I) normotensive (C), (II) normotensive + exercise (E), (III) hypertensive (L), and (IV) hypertensive + exercise (LE). Hypertension was induced by the oral administration of L-NAME (60 mg/kg) for 6 weeks. Exercise was performed 5 times (1-h each) per week for 6 weeks. At the end of the experiment, blood and tissue samples (the gastrocnemius muscle, heart, kidney, and thoracic aorta) were collected following contractile properties of the gastrocnemius muscle in situ weredetermined. In the collected tissues, oxidative stress (e.g., lipid oxidation and antioxidant enzyme activity) and serum ADM levels were measured. 6-week L-NAME administration per se (Group L) led to a significant increase in systolic and diastolic blood pressure compared to other groups. Results: Importantly, 6-week exercise caused a protective effect of high blood pressure in the rats received L-NAME (Group LE). The level of ADM was lower in the rats received L-NAME than that of the control group. L-NAME increased lipid peroxidation in the thoracic aorta and decreased superoxide dismutase in the heart, kidney and muscle, and decreased catalase and glutathione in the heart. However, the exercise intervention did not have protective effect on the L-NAME-mediated oxidative damage in the collected tissues. Conclusion: In conclusion, 6-week exercise intervention rescued rats from high blood pressure, but did not have ameliorative effect on the decreased ADM levels.
Collapse
Affiliation(s)
- Ece Koc Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Zahide Dedeoglu
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Mehmet Kaya
- Department of Zootechny, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Aykut G Uner
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| |
Collapse
|
17
|
Daliri EBM, Ofosu FK, Chelliah R, Kim JH, Kim JR, Yoo D, Oh DH. Untargeted Metabolomics of Fermented Rice Using UHPLC Q-TOF MS/MS Reveals an Abundance of Potential Antihypertensive Compounds. Foods 2020; 9:foods9081007. [PMID: 32726971 PMCID: PMC7466378 DOI: 10.3390/foods9081007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
- R&D, Erom, Co., Ltd., Chuncheon 24427, Gangwon-do, Korea
| | - Jong-Rae Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju 10808, Gyeonggi, Korea
| | - Daesang Yoo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi 12041, Gyung Gi-Do, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- Correspondence:
| |
Collapse
|
18
|
Sinapic Acid Attenuates Cardiovascular Disorders in Rats by Modulating Reactive Oxygen Species and Angiotensin Receptor Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1436858. [PMID: 32765804 PMCID: PMC7374234 DOI: 10.1155/2020/1436858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
The main avoidable risk factor for cardiovascular conditions is high blood pressure (hypertension). At global level, hypertension is believed to be responsible for a 54% stroke-related mortality rate and a 47% mortality rate associated with coronary heart disease. It is postulated that sinapic acid (SA) could help in hypertension management because it displays robust antioxidant, antihyperglycemic, and peroxynitrite scavenging effects. To explore this hypothesis, this work examined the effect of SA on oxidative stress and cardiovascular disease in rats with hypertension by comparison against captopril. For this purpose, 50 male rats were used and equally allocated to five groups, namely, normal control, positive control (L-NAME), L-NAME with concomitant captopril administration, L-NAME with concomitant SA administration, and L-NAME with concomitant administration of both SA and captopril. Results showed that, by contrast to control, L-NAME exhibited marked elevation in serum CK-MB, total cholesterol, triglycerides, VLDL-C, LDL-C, Ang II, AT2R, ET-1, and angiopoietin-2; on the other hand, L-NAME exhibited marked reduction in serum HDL-C, superoxide dismutase (SOD) activity, nitric oxide synthase 3 (NOS3), and glutathione (GSH). Furthermore, joint administration of SA and captopril ameliorated hypertension, enhanced cardiovascular function, hindered hyperlipidemia, and decreased oxidative stress and myocardial hypertrophy displayed by rats with hypertension. Based on such findings, better chemopreventive or therapeutic approaches can be devised to manage hypertension and cardiovascular conditions.
Collapse
|
19
|
Enzymatic Synthesis of O-Methylated Phenophospholipids by Lipase-Catalyzed Acidolysis of Egg-Yolk Phosphatidylcholine with Anisic and Veratric Acids. Catalysts 2020. [DOI: 10.3390/catal10050538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most effective biocatalyst for the incorporation of ANISA into phospholipids was Novozym 435. None of the tested enzymes were able to catalyze the synthesis of PC structured with VERA. The effects of different solvents, substrate molar ratios, temperature, enzyme loading, and time of the reaction on the process of incorporation of ANISA into the phospholipids were evaluated in the next step of the study. The mixture of toluene/chloroform in the ratio 9:1 (v/v) significantly increased the incorporation of ANISA into PC. The acidolysis reaction was carried out using the selected binary solvent system, 1/15 substrate molar ratio PC/ANISA, 30% (w/w) enzyme load, and temperature of 50 °C afforded after 72 h anisoylated lysophosphatidylcholine (ANISA-LPC) and anisoylated phosphatidylcholine (ANISA-PC) in isolated yields of 28.5% and 2.5% (w/w), respectively. This is the first study reporting the production of ANISA-LPC and ANISA-PC via a one-step enzymatic method, which is an environmentally friendly alternative to the chemical synthesis of these biologically active compounds.
Collapse
|
20
|
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193:111110. [PMID: 32416516 DOI: 10.1016/j.colsurfb.2020.111110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
Veratric acid (3,4-dimethoxy benzoic acid) (VA) is a hydrophobic phenolic phytocompound possessing therapeutic potential, but it has not been reported as actuating bone regeneration to date. Furthermore, delivery of hydrophobic compounds is often impeded in the body, thus depreciating their bioavailability. In this study, VA was found to have osteogenic potential and its sustained delivery was facilitated through a nanoparticle-embedded coaxial electrospinning technique. Polycaprolactone/polyvinylpyrrolidone (PCL/PVP) coaxial fibers were electrospun, encasing VA-loaded chitosan nanoparticles (CHS-NP). The fibers showed commendable physiochemical and material properties and were biocompatible with mouse mesenchymal stem cells (mMSCs). When mMSCs were grown on coaxial fibers, VA promoted these cells towards osteoblast differentiation as was reflected by calcium deposits. The mRNA expression of Runx2, an important bone transcriptional regulator, and other differentiation markers such as alkaline phosphatase, collagen type I, and osteocalcin were found to be upregulated in mMSCs grown on the PCL/PVP/CHS-NP-VA fibers. Overall, the study portrays the delivery of the phytocompound, VA, in a sustained manner to promote bone regeneration.
Collapse
Affiliation(s)
- R Sruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India.
| |
Collapse
|
21
|
Drzazga A, Okulus M, Rychlicka M, Biegała Ł, Gliszczyńska A, Gendaszewska-Darmach E. Lysophosphatidylcholine Containing Anisic Acid Is Able to Stimulate Insulin Secretion Targeting G Protein Coupled Receptors. Nutrients 2020; 12:E1173. [PMID: 32331428 PMCID: PMC7230207 DOI: 10.3390/nu12041173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem with high rates of mortality and morbidity. Management of diabetes mellitus by dietary components is achievable especially at the initial stage of the disease. Several studies confirmed the antidiabetic activities of simple phenolic acids and lysophosphatidylcholine (LPC). The main goal of this study was to identify new potential insulin secretion modulators obtained by combining the structures of two natural compounds, namely O-methyl derivatives of phenolic acids and phospholipids. LPC and phosphatidylcholine bearing methoxylated aromatic carboxylic acids were tested as potential agents able to improve glucose-stimulated insulin secretion (GSIS) and intracellular calcium mobilization in MIN6 β pancreatic cell line. Our results show that LPC with covalently bonded molecule of p-anisic acid at the sn-1 position was able to induce GSIS and intracellular calcium flux. Notably, 1-anisoyl-2-hydroxy-sn-glycero-3-phosphocholine did not affect the viability of MIN6 cells, suggesting its potential safe use. Furthermore, we have shown that three G protein coupled receptors, namely GPR40, GPR55, and GPR119, are targeted by this LPC derivative.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (Ł.B.)
| | - Marta Okulus
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.O.); (M.R.)
| | - Magdalena Rychlicka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.O.); (M.R.)
| | - Łukasz Biegała
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (Ł.B.)
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.O.); (M.R.)
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (Ł.B.)
| |
Collapse
|
22
|
Wunpathe C, Maneesai P, Rattanakanokchai S, Bunbupha S, Kukongviriyapan U, Tong-un T, Pakdeechote P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct 2020; 11:1322-1333. [DOI: 10.1039/c9fo02365h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tangeretin alleviates ventricular alterations in l-NAME hypertensive rats.
Collapse
Affiliation(s)
- Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Putcharawipa Maneesai
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Siwayu Rattanakanokchai
- Veterinary Teaching Hospital
- Faculty of Veterinary Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Terdthai Tong-un
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| |
Collapse
|
23
|
Acute and Chronic Effects of Prangos ferulacea Hydroalcoholic Extract on Normal and High Blood Pressure Induced by L-NAME and Its Mechanism of Action in Male Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.90508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Hamounpeima I, Hosseini M, Mohebbati R, Shafei MN. Effect of Hydroalcoholic Extract of Ribes khorasanicum on Acute Hypertension Induced by L-NAME in Rat. J Pharmacopuncture 2019; 22:160-165. [PMID: 31673446 PMCID: PMC6820474 DOI: 10.3831/kpi.2019.22.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of Ribes khorasanicum (R. khorasanicum); a plant growing in north Khorasan of Iran; on cardiovascular and stress oxidative in acute hypertension induced by N-nitro-l-arginine methyl ester (L-NAME), anitric oxide synthase inhibitor. METHODS Rats were divided into Control, L-NAME (10 mg/kg), Sodium Nitroprusside (SNP) (50 mg/kg) + L-NAME and three treated groups with R. khorasanicum (4, 12 and 24 mg/kg) groups + L-NAME. L-NAME and SNP were injected intravenously and extract intraperitoneal. In R. khorasanicum groups, L-NAME was injected 30 min after injection of the extract. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were recorded continuously using power lab software. At the end of study oxidative stress parameters including of total thiol content (SH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in heart and aorta of all groups were also measured. RESULTS In groups 4 and 24 mg/kg extract +L-NAME, there was a non-significant decrease in SBP and MAP compared to L-NAME group but dose 12 mg/kg significantly attenuate the effect of L-NAME(P < 0.05). In L-NAME group the heart and aorta tissues antioxidant enzymes levels decreased, while in treated rats these enzymes significantly increased. CONCLUSION The extract of R. khorasanicum in dose 12 mg/kg show anti-hypertensive effect that is mediated by an effect on NO system or antioxidant parameters.
Collapse
Affiliation(s)
- Ismael Hamounpeima
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Mahmoud Hosseini
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Mohammad Naser Shafei
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| |
Collapse
|
25
|
Solvent and temperature effects on the solubility of syringic, vanillic or veratric acids: Experimental, modeling and solid phase studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Mali DP, Bhatia NM. Hetero-Tricyclic Lead Scaffold as Novel PDE5A Inhibitor for Antihypertensive Activity: In Silico Docking Studies. Curr Comput Aided Drug Des 2019; 15:318-333. [DOI: 10.2174/1573409915666190214161221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/14/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.
Collapse
Affiliation(s)
- Dipak P. Mali
- Department of Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, 416013, Maharashtra, India
| | - Neela M. Bhatia
- Department of Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, 416013, Maharashtra, India
| |
Collapse
|
27
|
Dehghani Z, Khoshneviszadeh M, Khoshneviszadeh M, Ranjbar S. Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers. Bioorg Med Chem 2019; 27:2644-2651. [DOI: 10.1016/j.bmc.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
|
28
|
Ge Y, Bian X, Sun B, Zhao M, Ma Y, Tang Y, Li N, Wu JL. Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography-Mass Spectrometry Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4568-4577. [PMID: 30932482 DOI: 10.1021/acs.jafc.9b00789] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pu-erh tea, a famous traditional Chinese tea with multiple health benefits, is produced by microbial fermentation. It has been reported that major known bioactive compounds in green tea, e.g. epicatechin, epigallocatechin gallate, and theanine, decreased during fermentation. Then which components account for the benefits of Pu-erh tea? Phenolic acids are aromatic secondary metabolites and possess various biological properties. In this research, phenolic acids in Pu-erh tea were investigated qualitatively and quantitatively to reveal the influence of fermentation and their potential effects using 5-(diisopropylamino)amylamine (DIAAA) derivatization-ultrahigh performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UHPLC-Q-TOF/MS) approach. A total of 33 phenolic acids were determined, and most of them were detected in Pu-erh tea for the first time. Moreover, gallic acid and theogallin were the major components in ripened and raw Pu-erh tea, respectively. Dynamic profiling revealed the increase of simple phenolic acids and the decrease of most of phenolic acid esters during Pu-erh tea fermentation. These results provided firm basis for practical fermentation and quality control of Pu-erh tea.
Collapse
Affiliation(s)
- Yahui Ge
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Avenida Wai Long , Taipa 999078 , Macau SAR China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Avenida Wai Long , Taipa 999078 , Macau SAR China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510182 , Guangdong Province China
| | - Ming Zhao
- College of Longrun Pu-erh Tea , Yunnan Agricultural University , Kunming 650201 , Yunnan , China
| | - Yan Ma
- College of Longrun Pu-erh Tea , Yunnan Agricultural University , Kunming 650201 , Yunnan , China
| | - Yuping Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and College of Pharmacy , Shaanxi University of Chinese Medicine , Xianyang 712083 , China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Avenida Wai Long , Taipa 999078 , Macau SAR China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Avenida Wai Long , Taipa 999078 , Macau SAR China
| |
Collapse
|
29
|
Morais ICPDS, Moura IJL, Sabino CKB, Nicolau LAD, Souza FDM, Silva-Filho JCD, Oliveira RDCM, Medeiros JVR, Lima SGD, Oliveira APD. Cardiovascular Effect of Diosgenin in Ovariectomized Rats. J Med Food 2019; 22:248-256. [PMID: 30735081 DOI: 10.1089/jmf.2018.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diosgenin is a phytoestrogen and a constituent of Dioscorea. It has several biological effects, and some of them are anti-inflammatory, antidiabetic, antitumor, and vasodilatory. The present study investigated both the vasorelaxing and antioxidant mechanisms of diosgenin in isolated rat aortic rings. Female rats weighing 200-220 g were subjected to sham or OVX operations at 8 weeks of age. Ovariectomy was performed for menopause induction after anesthesia. Diosgenin (10-9 M-3 × 10-4 M) produced a concentration-dependent relaxation in aortic rings precontracted with phenylephrine (1 μM), exhibiting Emax value of 55.34% ± 7.7% (in endothelium-intact rings) and Emax value of 30.30% ± 5.7% (in endothelium-denuded rings). In the endothelium-intact rings, the vasorelaxing effect of diosgenin was reduced by NG-nitro-l-arginine methyl ester (L-NAME) (100 μM), atropine (1 μM), indomethacin (10 μM), 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) (10 μM), 4-aminopyridine (1 mM), tetraethylammonium (3 mM), glibenclamide (10 μM), apamin (10 μM), and Tiron (1 μM). Diosgenin (10-5 M) inhibited the contractions induced by cumulative addition of phenylephrine (10-9-10-5 M). The 28-days treatment with diosgenin (50 mg/kg, v.o.) did not imply changes in the myeloperoxidase parameter, but increased significantly, levels of glutathione, superoxide dismutase, and nitric oxide, as well as reduced the concentration of malondialdehyde related to lipid peroxidation. Our results suggest that diosgenin induced relaxation in aortic rings via an endothelium-dependent pathway, which involves the EDRF, the opening of potassium channels and antioxidant action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Aldeidia Pereira de Oliveira
- 1 Medicinal Plants Research Center-PI, Terezina, Piauí, Brazil
- 2 Federal University of Piauí, Terezina, Piauí, Brazil
| |
Collapse
|
30
|
Potue P, Wunpathe C, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct 2019; 10:1880-1892. [DOI: 10.1039/c8fo02408a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nobiletin alleviates l-NAME-induced vascular dysfunction and remodeling and superoxide production in rats.
Collapse
Affiliation(s)
- Prapassorn Potue
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | | | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Parichat Prachaney
- Department of Anatomy
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| |
Collapse
|
31
|
Han L, Yang Q, Ma W, Li J, Qu L, Wang M. Protocatechuic Acid Ameliorated Palmitic-Acid-Induced Oxidative Damage in Endothelial Cells through Activating Endogenous Antioxidant Enzymes via an Adenosine-Monophosphate-Activated-Protein-Kinase-Dependent Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10400-10409. [PMID: 30220205 DOI: 10.1021/acs.jafc.8b03414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid), the main metabolite of anthocyanins, is widely distributed in fruits and vegetables and has been reported to possess a strong antioxidant activity. Herein, we aimed to investigate the protective effect of PCA against high palmitic-acid (PA)-induced oxidative damage and the underling molecular mechanisms in human umbilical vein endothelial cells (HUVECs). PCA reduced the levels of intracellular reactive oxygen species and malondialdehyde and increased the activities of endogenous antioxidant enzymes, including superoxide dismutase, glutathione peroxidase 1, and heme oxygenase 1 (HO-1). Metabolomic analysis showed that PCA affected numerous metabolites, especially some of which were related with energy metabolism. PCA also upregulated the phosphorylation of adenosine-monophosphate-activated protein kinase (AMPK) at Thr172 through activating liver kinase B1 and then promoted the expression of p-Nrf2 and HO-1. Moreover, PCA reversed the decreased expression of peroxisome proliferator-activated receptor γ coactivator 1α and significantly increased the mitochondrial density. Collectively, these results demonstrated that PCA attenuated PA-induced oxidative damage in HUVECs via an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Lin Han
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering , Chongqing Three Gorges University , Chongqing 404100 , People's Republic of China
| | | | | | | | - Liuzhu Qu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering , Chongqing Three Gorges University , Chongqing 404100 , People's Republic of China
| | | |
Collapse
|
32
|
Czarnecka M, Świtalska M, Wietrzyk J, Maciejewska G, Gliszczyńska A. Synthesis, Characterization, and In Vitro Cancer Cell Growth Inhibition Evaluation of Novel Phosphatidylcholines with Anisic and Veratric Acids. Molecules 2018; 23:molecules23082022. [PMID: 30104549 PMCID: PMC6222722 DOI: 10.3390/molecules23082022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 01/31/2023] Open
Abstract
Phenolic acids and its methoxy derivatives are known to induce caspase-mediated apoptosis activity and exhibit cytotoxic effect towards various cancer cell lines. However, their low stability and poor bioavailability in the human organism extensively restrict the utility of this group of compounds as anticancer and health-promoting agents. In this report, a series of eight novel phosphatidylcholines (3a-b, 5a-b, 7a-b, 8a-b) containing anisic or veratric acids (1a-b) at sn-1 and/or sn-2 positions were synthesized. The phenoylated phospholipids were obtained in good yields 28–66%. The structures of novel compounds were determined by their spectroscopic data. All synthesized compounds were evaluated for their antiproliferative activity towards six cancer cell lines and normal cell line Balb/3T3. Lipophilization of phenolcarboxylic acids significantly increased their anticancer properties. The asymmetrically substituted phenoylated phosphatidylcholines exhibited higher antiproliferative effect than free acids. Lysophosphatidylcholine (7b) effectively inhibited the proliferation of human leukaemia (MV4-11), breast (MCF-7), and colon (LoVo) cancer cell lines at concentrations of 9.5–20.7 µm and was from 19 to 38-fold more active than corresponding free veratric acid. The conjugation of anisic/veratric acids with the phosphatidylcholine have proved the anticancer potential of these phenolcarboxylic acids and showed that this type of lipophilization is an effective method for the production of active biomolecules.
Collapse
Affiliation(s)
- Marta Czarnecka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Gabriela Maciejewska
- Central Laboratory of the Instrumental Analysis, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
33
|
Wang PS, Kuo CH, Yang HC, Liang YJ, Huang CJ, Sheen LY, Pan WH. Postprandial Metabolomics Response to Various Cooking Oils in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4977-4984. [PMID: 29716192 DOI: 10.1021/acs.jafc.8b00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lipids account for a high proportion of dietary calories, which greatly affect human health. As a result of differences in composition of fatty acid of individual cooking oils, certain biological effects of these oils may vary. This study aimed to compare postprandial metabolomic profiles of six commonly consumed cooking oils/fats. Adopting a switch-over experimental design ( n = 15), we carried out a human feeding study with six groups (control without oils, soybean oil, olive oil, palm oil, camellia oil, and tallow) and collected fasting and postprandial serum samples. The metabolomic profile was measured by ultra-high-pressure liquid chromatography-quadrupole time of flight. We observed significant differences between the control group and experimental groups for 33 serum metabolites (false discovery rate; p < 0.05), which take part in lipid digestion, fatty acid metabolism, metabolism of pyrimidines and pyrimidine nucleosides, amino acid metabolism, neurobiology, and antioxidation. Sparse partial least squares discriminant analysis revealed distinct metabolomics patterns between monounsaturated fatty acid (MUFA) and saturated fatty acid oils, between soybean oil, olive oil, and palm oil, and between two MUFA-rich oils (olive and camellia oils). The present metabolomics study suggests shared and distinct metabolisms of various cooking oils/fats.
Collapse
Affiliation(s)
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , 33 Linsen South Road , Zhongzheng District, Taipei 10055 , Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , 2 Syu-jhou Road , Taipei 10055 , Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
AbstractTerpineols are monocyclic monoterpene tertiary alcohols which are naturally present in plant species. There are five common isomers of terpineols, alpha-, beta-, gamma-, delta- and terpinen-4-ol, of which α-terpineol and its isomer terpinen-4-ol are the most common terpineols found in nature. α-Terpineol plays an important role in the industrial field. It has a pleasant odor similar to lilacs and it is a common ingredient in perfumes, cosmetics, and aromatic scents.In addition, α-terpineol attracts a great interest as it has a wide range of biological applications as an antioxidant, anticancer, anticonvulsant, antiulcer, antihypertensive, anti-nociceptive compound. It is also used to enhance skin penetration, and also has insecticidal properties. This study reviews the relevance of α-terpineol based on scientific findings on Google Scholar, Pubmed, Web of Science, Scopus and Chemical Abstracts.Collectively, the use of α-terpineol in medicine and in the pharmaceutical industry plays an important role in therapeutic applications. This review will, therefore, support future research in the utilization of α-terpineol.
Collapse
|
35
|
Zhang M, Zhao R, Zhou S, Liu W, Liang Y, Zhao Z, Li S, Wang X, Wong T, Zhao H. Chemical characterization and evaluation of the antioxidants in Chaenomeles fruits by an improved HPLC-TOF/MS coupled to an on-line DPPH-HPLC method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:43-62. [PMID: 29336723 DOI: 10.1080/10590501.2017.1418814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An improved method based on HPLC-TOF/MS was developed to catalog the antioxidants in five species of Chaenomeles (Mugua). Forty-four fractions from the Mugua extracts show appreciable levels of antioxidative activity in scavenging the stable free-radical 2,2-diphenyl-1-picrylhydrazyl and the hydroxyl radicals. Twelve major antioxidant's chemical structures are identified. Antioxidant activities differ between species, but intra-species level of antioxidants, regardless of their ripeness, are similar. C. sinensis has the highest antioxidant level. A rigorous quality control procedure was implemented to ensure accuracy of antioxidant quantification. This improved procedure can be used for rapid discovery of antioxidants in other plant extracts.
Collapse
Affiliation(s)
- Minmin Zhang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Ruixuan Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Siduo Zhou
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
- b College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Wei Liu
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Yan Liang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Zhiguo Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Shengbo Li
- c Shandong Yate Eco-tech Co. LTD. , Linyi , P. R. China
| | - Xiao Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| | - Tityee Wong
- d Department of Biological Sciences , University of Memphis , Tennessee , USA
| | - Hengqiang Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , P. R. China
| |
Collapse
|
36
|
Taurine enhances spermatogenic function and antioxidant defense mechanisms in testes and epididymis of L-NAME-induced hypertensive rats. Biomed Pharmacother 2018; 97:181-189. [DOI: 10.1016/j.biopha.2017.10.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/20/2022] Open
|
37
|
Salmas RE, Gulhan MF, Durdagi S, Sahna E, Abdullah HI, Selamoglu Z. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem Funct 2017; 35:304-314. [PMID: 28833317 DOI: 10.1002/cbf.3277] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
Abstract
The objective of this study was to evaluate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE; active compound in propolis), and pollen on biochemical oxidative stress biomarkers in rat kidney tissue inhibited by Nω -nitro-L-arginine methyl ester (L-NAME). The biomarkers evaluated were paraoxonase (PON1), oxidative stress index (OSI), total antioxidant status (TAS), total oxidant status (TOS), asymmetric dimethylarginine (ADMA), and nuclear factor kappa B (NF-κB). TAS levels and PON1 activity were significantly decreased in kidney tissue samples in the L-NAME-treated group (P < 0.05). The levels of TAS and PONI were higher in the L-NAME plus propolis, CAPE, and pollen groups compared with the L-NAME-treated group. TOS, ADMA, and NF-κB levels were significantly increased in the kidney tissue samples of the L-NAME-treated group (P < 0.05). However, these parameters were significantly lower in the L-NAME plus propolis, CAPE, and pollen groups (P < 0.05) compared with rats administered L-NAME alone (P < 0.05). Furthermore, the binding energy of CAPE within catalytic domain of glutathione reductase (GR) enzyme as well as its inhibitory mechanism was determined using molecular modeling approaches. In conclusion, experimental and theoretical data suggested that oxidative alterations occurring in the kidney tissue of chronic hypertensive rats may be prevented via active compound of propolis, CAPE administration.
Collapse
Affiliation(s)
- Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Engin Sahna
- Department of Pharmacology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Huda I Abdullah
- Department of Medical Biology, Faculty of Medicine, Omer Halisdemir University, Nigde, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Omer Halisdemir University, Nigde, Turkey
| |
Collapse
|
38
|
Chemical Composition and Hypotensive Effect of Campomanesia xanthocarpa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1591762. [PMID: 28584558 PMCID: PMC5443999 DOI: 10.1155/2017/1591762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
Abstract
Campomanesia xanthocarpa is known in Brazil as Guabiroba and is popularly used for various diseases, such as inflammatory, renal, and digestive diseases and dyslipidemia. The aim of the study was to analyze the chemical composition and investigate the effects of aqueous extract of C. xanthocarpa on the blood pressure of normotensive rats, analyzing the possible action mechanism using experimental and in silico procedures. The extract was evaluated for total phenolic compounds and total flavonoid content. The chemical components were determined by HPLC analyses. Systolic and diastolic blood pressure and heart rate were measured with extract and drugs administration. The leaves of C. xanthocarpa presented the relevant content of phenolics and flavonoids, and we suggested the presence of chlorogenic acid, gallic acid, quercetin, and theobromine. The acute administration of aqueous extract of C. xanthocarpa has a dose-dependent hypotensive effect in normotensive rats, suggesting that the action mechanism may be mediated through the renin-angiotensin system by AT1 receptor blockade and sympathetic autonomic response. Docking studies showed models that indicated an interaction between chlorogenic acid and quercetin with the AT1 receptor (AT1R) active site. The findings of these docking studies suggest the potential of C. xanthocarpa constituents for use as preventive agents for blood pressure.
Collapse
|
39
|
KLENIEWSKA P, GORĄCA A. Influence of Endothelin 1 Receptor Blockers and a Nitric Oxide Synthase Inhibitor on Reactive Oxygen Species Formation in Rat Lungs. Physiol Res 2016; 65:789-798. [DOI: 10.33549/physiolres.933263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study was designated to estimate protective role of ETA and ETB receptor antagonist against endothelin 1 (ET-1)-induced oxidative stress in lungs and determine whether these effects are mediated by nitric oxide (NO) synthase. Experiments were performed on Wistar rats divided into the following groups: I – saline (0.9 % NaCl); II – ET-1 (3 μg/kg b.w.), III – BQ123 (1 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), IV – BQ788 (3 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), V – N-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg b.w.) + ET-1 (3 μg/kg b.w.). ETA and ETB receptor antagonists or L-NAME were administered 30 min before ET-1 injection. The levels of the following substances were measured in the lungs homogenates: thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), reduced glutathione (GSH) and tumor necrosis factor-alpha (TNF-α). The results showed that ET-1 significantly increased TBARS, H2O2 (respectively: p<0.001, p<0.02) and TNF-α levels (p<0.02) and decreased the GSH level (p<0.01) vs. control group. On the other hand, prior administration of ETA receptor blocker (BQ123) significantly attenuated TBARS (p<0.01), H2O2 (p<0.02), TNF-α (p<0.02) and increased GSH (p<0.02) levels vs. ET-1. However, prior administration of ETB receptor blocker BQ788 did not cause significant changes in the: TBARS, H2O2 and TNF-α (p>0.05) levels, but significantly increased the GSH level and GSH/GSSG ratio (p<0.05). Administration of L-NAME significantly attenuated TBARS (p<0.001), H2O2 (p<0.05), TNF-α (p<0.01) and increased GSH (p<0.05) levels vs. ET-1. In conclusion, we demonstrated that ET-1 induced oxidative stress in the lungs is mediated by ETA receptors. ETA receptor blockage inhibited generation of free radicals and TNF-α and ameliorated antioxidant properties. Moreover, generation of reactive oxygen species is mediated by NOS in the lungs.
Collapse
Affiliation(s)
- P. KLENIEWSKA
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Poland
| | | |
Collapse
|
40
|
Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase. Eur J Pharmacol 2016; 777:113-23. [PMID: 26945821 DOI: 10.1016/j.ejphar.2016.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
Abstract
The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40 mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5 kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations.
Collapse
|
41
|
A study of facial wrinkles improvement effect of veratric acid from cauliflower mushroom through photo-protective mechanisms against UVB irradiation. Arch Dermatol Res 2016; 308:183-92. [PMID: 26914455 DOI: 10.1007/s00403-016-1633-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Solar ultraviolet (UV) irradiation is a primary cause of premature skin aging that is closely associated with the degradation of collagens caused by up-regulation of matrix metalloproteinases (MMPs) or a decrease in collagen synthesis. The phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from fruits, vegetables and medicinal mushrooms. VA has been reported to have anti-inflammatory, anti-oxidant and photo-protective effects. In this study, anti-photoaging effects were investigated through the photo-protective mechanisms of VA against UV irradiation in human dermal fibroblasts and the reconstructed human epidermal model. We used reverse transcription-polymerase chain reaction, Western blot analysis, hematoxylin and eosin staining (H&E) and immunohistochemistry assays. Finally, we further investigated the clinical effects of VA on facial wrinkle improvements in humans. Our results demonstrate that VA attenuated the expression of MMPs, increased cell proliferation, type Ι procollagen, tissue inhibitors of metalloproteinases, and filaggrin against UV radiation; however, has no effect on improvement expressions of elastic fiber. In addition, treatment with cream containing VA improved facial wrinkles in a clinical trial. These findings indicate that VA improves wrinkle formation by modulating MMPs, collagens and epidermal layer integrity, suggesting its potential use in UV-induced premature skin aging.
Collapse
|
42
|
Oral administration of veratric acid, a constituent of vegetables and fruits, prevents cardiovascular remodelling in hypertensive rats: a functional evaluation. Br J Nutr 2015; 114:1385-94. [PMID: 26346559 DOI: 10.1017/s0007114515003086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system. Hypertension was induced in male albino Wistar rats by oral administration of N ω -nitro-l-arginine methyl ester hydrochloride (l-NAME) (40 mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. l-NAME-treated rats showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies, respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Masson's Trichrome staining and Van Gieson's staining, respectively. In addition, l-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis. VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-associated cardiovascular remodelling.
Collapse
|
43
|
Alkaloids in Erythrina by UPLC-ESI-MS and In Vivo Hypotensive Potential of Extractive Preparations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:959081. [PMID: 26356581 PMCID: PMC4556073 DOI: 10.1155/2015/959081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/19/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
Abstract
Erythrina species are used in popular medicine as sedative, anxiolytic, anti-inflammatory, and antihypertensive. In this work, we investigated the chemical composition of extracts obtained from leaves of E. falcata and E. crista-galli. The hypotensive potential of E. falcata and the mechanism of action were also studied. The extracts were obtained by maceration and infusion. The total content of phenolic compounds and flavonoids was estimated by spectrophotometric methods. The chemical constituents were studied performing a chromatographic analysis by UPLC-ESI-MS. For in vivo protocols, blood pressure and heart rate were measured by the invasive hemodynamic monitoring method. Different concentrations of extracts and drugs such as L-NAME, losartan, hexamethonium, and propranolol were administrated i.v. The results of total phenolic contents for E. falcata and E. crista-galli were 1.3193-1.4989 mgGAE/mL for maceration and 0.8771-0.9506 mgGAE/mL for infusion. In total flavonoids, the content was 7.7829-8.1976 mg RE/g for maceration and 9.3471-10.4765 RE mg/g for infusion. The chemical composition was based on alkaloids, suggesting the presence of erythristemine, 11β-methoxyglucoerysodine, erysothiopine, 11β-hydroxyerysodine-glucose, and 11-hydroxyerysotinone-rhamnoside. A potent dose-dependent hypotensive effect was observed for E. falcata, which may be related to the route of β-adrenergic receptors.
Collapse
|
44
|
Kim EJ, Yoo KH, Kim YS, Seok SJ, Kim JH. Biological Activities of Wild Sparassis crispa Extracts. 한국균학회지 2015. [DOI: 10.4489/kjm.2015.43.1.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Manivannan J, Silambarasan T, Kadarkarairaj R, Raja B. Systems pharmacology and molecular docking strategies prioritize natural molecules as cardioprotective agents. RSC Adv 2015. [DOI: 10.1039/c5ra10761j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multidimensional prioritization of cardioprotective natural compounds.
Collapse
Affiliation(s)
| | - Thangarasu Silambarasan
- Cardiovascular Biology Lab
- Department of Biochemistry and Biotechnology
- Annamalai University
- India
| | | | - Boobalan Raja
- Cardiovascular Biology Lab
- Department of Biochemistry and Biotechnology
- Annamalai University
- India
| |
Collapse
|
46
|
Piotrkowski B, Calabró V, Galleano M, Fraga CG. (−)-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts ofl-NAME-treated rats. Food Funct 2015; 6:155-61. [DOI: 10.1039/c4fo00554f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this work was to evaluate the effects of (−)-epicatechin administration in the heart of a rat model with reduced NO production that follows a short-term treatment withl-NAME.
Collapse
Affiliation(s)
- Barbara Piotrkowski
- Physical Chemistry and Institute of Molecular Biochemistry and Medicine
- University of Buenos Aires (IBIMOL) – CONICET
- School of Pharmacy and Biochemistry
- University of Buenos Aires
- Argentina
| | - Valeria Calabró
- Physical Chemistry and Institute of Molecular Biochemistry and Medicine
- University of Buenos Aires (IBIMOL) – CONICET
- School of Pharmacy and Biochemistry
- University of Buenos Aires
- Argentina
| | - Mónica Galleano
- Physical Chemistry and Institute of Molecular Biochemistry and Medicine
- University of Buenos Aires (IBIMOL) – CONICET
- School of Pharmacy and Biochemistry
- University of Buenos Aires
- Argentina
| | - César G. Fraga
- Physical Chemistry and Institute of Molecular Biochemistry and Medicine
- University of Buenos Aires (IBIMOL) – CONICET
- School of Pharmacy and Biochemistry
- University of Buenos Aires
- Argentina
| |
Collapse
|
47
|
Silambarasan T, Manivannan J, Krishna Priya M, Suganya N, Chatterjee S, Raja B. Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS One 2014; 9:e115682. [PMID: 25531679 PMCID: PMC4274097 DOI: 10.1371/journal.pone.0115682] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the treatment of hypertensive heart disease by attenuating fibrosis and oxidative stress through its antioxidant potential.
Collapse
Affiliation(s)
- Thangarasu Silambarasan
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Jeganathan Manivannan
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India
| | - Mani Krishna Priya
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India
| | - Natarajan Suganya
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Boobalan Raja
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
48
|
Harisa GI, Mariee AD, Abo-Salem OM, Attiaa SM. Erythrocyte nitric oxide synthase as a surrogate marker for mercury-induced vascular damage: the modulatory effects of naringin. ENVIRONMENTAL TOXICOLOGY 2014; 29:1314-1322. [PMID: 23650045 DOI: 10.1002/tox.21862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
In this study, endothelial nitric oxide synthase activity and nitric oxide (NO) production by human erythrocytes in the presence and absence of mercuric chloride (HgCl2 ), L-arginine (L-ARG), N ω- nitro-L-arginine methyl ester (L-NAME), and naringin (NAR) were investigated. In addition, the levels of reduced glutathione (GSH) and related enzymes were estimated in erythrocytes hemolysate. The protein carbonyl content (PCC) and thiobarbituric acid-reactive substances (TBARS) levels were also determined. The results of this study revealed that the treatment of erythrocytes with either HgCl2 or L-NAME induced a significant decrease in NOS activity and nitrite levels compared with control cells. Furthermore, mercury exposure significantly increased the levels of PCC and TBARS but reduced the GSH level. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase (GST) were inhibited. The exposure of erythrocytes to HgCl2 in combination with L-ARG, NAR, or both ameliorated the investigated parameters compared with erythrocytes incubated with HgCl2 alone. These results indicate that mercury exposure decreased both erythrocyte NOS activity and nitrite production, and that these parameters might be indicative of mercury exposure. The data also suggest that concomitant treatment with NAR can restore NO bioavailability through either its metal-chelating properties or its antioxidant activity.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
| | | | | | | |
Collapse
|
49
|
Choi WS, Seo YB, Shin PG, Kim WY, Lee SY, Choi YJ, Kim GD. Veratric acid inhibits iNOS expression through the regulation of PI3K activation and histone acetylation in LPS-stimulated RAW264.7 cells. Int J Mol Med 2014; 35:202-10. [PMID: 25352364 DOI: 10.3892/ijmm.2014.1982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/09/2014] [Indexed: 11/05/2022] Open
Abstract
In the present study, we investigated regulatory effects of veratric acid on the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. NO production was significantly decreased by veratric acid in the LPS-stimulated RAW264.7 cells in a dose-dependent manner. The reduction in nitric oxide production was induced by the downregulation of inducible NO synthase (iNOS) expression. Veratric acid suppressed the LPS-induced effects on the regulatory and catalytic subunits of phosphoinositide 3-kinase (PI3K), comprised of p85, p110α, p110β and Akt. The acetylation of p300 and the phosphorylation of activating transcription factor 2 (ATF-2) induced by LPS were downregulated following treatment with veratric acid; similar effects were observed following treatment with LY294002, a specific inhibitor of PI3K/Akt. The LPS-induced expression of histone deacetylase (HDAC)3 decreased to basal levels following treatment with veratric acid, and its expression was also downregulated by LY294002. In the measurement of histone acetylation levels, the LPS-stimulated acetylation of histone H4 was significantly attenuated by veratric acid, and was also reduced following the inhibition of PI3K/Akt with LY294002. From our data, it can be concluded that veratric acid exerts a regulatory effect on LPS-induced iNOS expression. Our results suggest that veratric acid impedes the PI3K/Akt-mediated histone acetyl-transferase (HAT) activation and HDAC expression induced by LPS, thereby abrogating iNOS expression.
Collapse
Affiliation(s)
- Woo-Suk Choi
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| | - Yong-Bae Seo
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| | - Pyung-Gyun Shin
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Young-Ju Choi
- Department of Food and Nutrition, College of Medical Life, Silla University, Busan 617-736, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
50
|
Kumar S, Prahalathan P, Raja B. Vanillic acid: a potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:643-652. [PMID: 25218092 DOI: 10.1016/j.etap.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The objective of the present study is to investigate the effects of vanillic acid on blood pressure, cardiac marker enzymes, left ventricular function and endothelial nitric oxide synthase (eNOS) expression in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertension in male albino Wistar rats. In hypertensive rats, mean arterial pressure (MAP), heart rate, cardiac marker enzymes and organ weight were increased. Impaired left ventricular function and decreased aortic eNOS expression was also observed in hypertensive rats. Moreover, treatment with vanillic acid exhibited beneficial effect on blood pressure, left ventricular function and cardiac marker enzymes. In addition, treatment with vanillic acid on hypertensive rats had upregulated eNOS expression and showed beneficial effects evidenced by histopathology and ultrastructural observations of aorta. In conclusion, vanillic acid has enough potential to normalize hypertension and left ventricular function in l-NAME induced hypertensive rats. With additional studies, vanillic acid might be used as a functional drug or as an adjuvant in the management of hypertension.
Collapse
Affiliation(s)
- Subramanian Kumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Pichavaram Prahalathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Boobalan Raja
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| |
Collapse
|