1
|
Liu S, Popowski KD, Eckhardt CM, Zhang W, Li J, Jing Y, Silkstone D, Belcher E, Cislo M, Hu S, Lutz H, Ghodsi A, Liu M, Dinh PUC, Cheng K. Inhalable Hsa-miR-30a-3p Liposomes Attenuate Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2405434. [PMID: 40119620 DOI: 10.1002/advs.202405434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Indexed: 03/24/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains an incurable form of interstitial lung disease with sub-optimal treatments that merely address adverse symptoms or slow fibrotic progression. Here, inhalable hsa-miR-30a-3p-loaded liposomes (miR-30a) for the treatment of bleomycin-induced pulmonary fibrosis in mice are presented. It was previously found that exosomes (Exo) derived from lung spheroid cells are therapeutic in multiple animal models of pulmonary fibrosis and are highly enriched for hsa-miR-30a-3p. The present study investigates this miRNA as a singular factor to treat IPF. Liposomes containing miR-30a mimic can be delivered to rodents through dry powder inhalation. Inhaled miR-30a and Exo consistently lead to improved pulmonary function across six consecutive pulmonary function tests and promote de-differentiation of profibrotic myofibroblasts. The heterogenous composure of Exo also promotes reparative alveolar type I and II cell remodeling and vascular wound healing through broad transforming growth factor-beta signaling downregulation, while miR-30a targets myofibroblast de-differentiation through CNPY2/PERK/DDIT3 signaling. Overall, inhaled miR-30a represses the epithelial-mesenchymal transition of myofibroblasts, providing fibrotic attenuation and subsequent improvements in pulmonary function.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Weihang Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Junlang Li
- Xsome Biotech Inc., Raleigh, NC, 27606, USA
| | - Yujia Jing
- Xsome Biotech Inc., Raleigh, NC, 27606, USA
| | - Dylan Silkstone
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27606, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC, 27606, USA
| | - Elizabeth Belcher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC, 27606, USA
| | - Megan Cislo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27606, USA
| | - Asma Ghodsi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27606, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Velázquez-Enríquez JM, Santos-Álvarez JC, Ramírez-Hernández AA, Reyes-Jiménez E, Pérez-Campos Mayoral L, Romero-Tlalolini MDLÁ, Jiménez-Martínez C, Arellanes-Robledo J, Villa-Treviño S, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Chlorogenic acid attenuates idiopathic pulmonary fibrosis: An integrated analysis of network pharmacology, molecular docking, and experimental validation. Biochem Biophys Res Commun 2024; 734:150672. [PMID: 39260206 DOI: 10.1016/j.bbrc.2024.150672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. MAIN METHODS Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. KEY FINDINGS Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. SIGNIFICANCE CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Facultad Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - María de Los Ángeles Romero-Tlalolini
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City, 07738, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, México City, 14610, Mexico; Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades, Ciencias y Tecnologías - CONAHCYT, México City, 03940, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca, C.P. 68020, Mexico.
| |
Collapse
|
3
|
Zhong B, Zhou JQ, Lyu X, Liu H, Yuan K, Guo ML, Duncan SR, Sanders YY. Anti-Heat Shock Protein 70 Autoantibodies from Patients with Idiopathic Pulmonary Fibrosis Epigenetically Enhance Lung Fibroblast Apoptosis Resistance and Bcl-2 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1150-1156. [PMID: 39248593 PMCID: PMC11458357 DOI: 10.4049/jimmunol.2400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
IgG autoantibodies to heat shock protein 70 (HSP70) are found in many immune-mediated clinical syndromes, and their presence among patients with idiopathic pulmonary fibrosis (IPF) portends especially poor outcomes. However, pathological effects of IPF anti-HSP70 have not been studied extensively. IPF lung fibroblasts are apoptosis resistant, and this dysregulation contributes to the accumulation of fibroblasts that characterizes the disease. During stress, HSP70 protein is exported extracellularly, where it binds to cognate cell surface receptors that mediate a variety of functional effects, including apoptosis inhibition. We hypothesized anti-HSP70 could engage HSP70-receptor complexes on fibroblasts that alter their apoptosis susceptibility. We found HSP70 is ubiquitously expressed on primary human lung fibroblasts. Treatment with anti-HSP70 isolated from patients with IPF with acute exacerbations increased Bcl-2 expression in human lung fibroblasts and reduced their susceptibility to staurosporine-induced apoptosis. Chromatin immunoprecipitation assays showed Bcl-2 gene promoter regions are enriched with the active histone mark H4 lysine 16 acetylation, and this was increased in the autoantibody-treated fibroblasts. When H4 lysine 16 acetylation was decreased by knocking down its acetyltransferase, MOF (males absent on the first), the anti-HSP70 treatments failed to upregulate Bcl-2. This study describes a heretofore unknown, to our knowledge, pathogenic consequence of autoimmunity in which autoantibodies affect the epigenetic regulation of fibroblast apoptosis. In addition to IPF, this autoimmune process could also have relevance in other immunological syndromes characterized by anti-HSP70 autoimmunity. These findings lend credence to the importance of autoimmunity in IPF and illustrate pathways that could be targeted in innovative therapies for this morbid, medically refractory lung disease.
Collapse
Affiliation(s)
- Baiyun Zhong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Q Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Xing Lyu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Kayu Yuan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ming-Lei Guo
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Steven R Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
4
|
Gu L, Li A, He C, Xiao R, Liao J, Xu L, Mu J, Wang X, Yang M, Jiang J, Bai Y, Jin X, Xiao M, Zhang X, Tan T, Xiao Y, Lin J, Li Y, Guo S. Profibrotic role of the SOX9-MMP10-ECM biosynthesis axis in the tracheal fibrosis after injury and repair. Genes Dis 2024; 11:101040. [PMID: 38993791 PMCID: PMC11237849 DOI: 10.1016/j.gendis.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2024] Open
Abstract
Fibroblast activation and extracellular matrix (ECM) deposition play an important role in the tracheal abnormal repair process and fibrosis. As a transcription factor, SOX9 is involved in fibroblast activation and ECM deposition. However, the mechanism of how SOX9 regulates fibrosis after tracheal injury remains unclear. We investigated the role of SOX9 in TGF-β1-induced fibroblast activation and ECM deposition in rat tracheal fibroblast (RTF) cells. SOX9 overexpression adenovirus (Ad-SOX9) and siRNA were transfected into RTF cells. We found that SOX9 expression was up-regulated in RTF cells treated with TGF-β1. SOX9 overexpression activated fibroblasts and promoted ECM deposition. Silencing SOX9 inhibited cell proliferation, migration, and ECM deposition, induced G2 arrest, and increased apoptosis in RTF cells. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) assays identified MMP10, a matrix metalloproteinase involved in ECM deposition, as a direct target of SOX9, which promotes ECM degradation by increasing MMP10 expression through the Wnt/β-catenin signaling pathway. Furthermore, in vivo, SOX9 knockdown ameliorated granulation proliferation and tracheal fibrosis, as manifested by reduced tracheal stenosis. In conclusion, our findings indicate that SOX9 can drive fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/β-catenin signaling pathway. The SOX9-MMP10-ECM biosynthesis axis plays an important role in tracheal injury and repair. Targeting SOX9 and its downstream target MMP10 may represent a promising therapeutic approach for tracheal fibrosis.
Collapse
Affiliation(s)
- Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinyue Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingxing Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meiling Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tairong Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Lin
- Department of Infection Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Yang ZR, Suo H, Fan JW, Lv N, Du K, Ma T, Qin H, Li Y, Yang L, Zhou N, Jiang H, Tao J, Zhu J. Endogenous stimuli-responsive separating microneedles to inhibit hypertrophic scar through remodeling the pathological microenvironment. Nat Commun 2024; 15:2038. [PMID: 38448448 PMCID: PMC10917775 DOI: 10.1038/s41467-024-46328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Hypertrophic scar (HS) considerably affects the appearance and causes tissue dysfunction in patients. The low bioavailability of 5-fluorouracil poses a challenge for HS treatment. Here we show a separating microneedle (MN) consisting of photo-crosslinked GelMA and 5-FuA-Pep-MA prodrug in response to high reactive oxygen species (ROS) levels and overexpression of matrix metalloproteinases (MMPs) in the HS pathological microenvironment. In vivo experiments in female mice demonstrate that the retention of MN tips in the tissue provides a slowly sustained drug release manner. Importantly, drug-loaded MNs could remodel the pathological microenvironment of female rabbit ear HS tissues by ROS scavenging and MMPs consumption. Bulk and single cell RNA sequencing analyses confirm that drug-loaded MNs could reverse skin fibrosis through down-regulation of BCL-2-associated death promoter (BAD), insulin-like growth factor 1 receptor (IGF1R) pathways, simultaneously regulate inflammatory response and keratinocyte differentiation via up-regulation of toll-like receptors (TOLL), interleukin-1 receptor (IL1R) and keratinocyte pathways, and promote the interactions between fibroblasts and keratinocytes via ligand-receptor pair of proteoglycans 2 (HSPG2)-dystroglycan 1(DAG1). This study reveals the potential therapeutic mechanism of drug-loaded MNs in HS treatment and presents a broad prospect for clinical application.
Collapse
Affiliation(s)
- Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Huinan Suo
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Jing-Wen Fan
- Department of Radiology, Xijing Hospital, The Forth Military Medical University (FMMU), Xi'an, 710032, China
| | - Niannian Lv
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Kehan Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Huimin Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Nuoya Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
6
|
Kooistra EJ, Dahm K, van Herwaarden AE, Gerretsen J, Nuesch Germano M, Mauer K, Smeets RL, van der Velde S, van den Berg MJW, van der Hoeven JG, Aschenbrenner AC, Schultze JL, Ulas T, Kox M, Pickkers P. Molecular mechanisms and treatment responses of pulmonary fibrosis in severe COVID-19. Respir Res 2023; 24:196. [PMID: 37559053 PMCID: PMC10413531 DOI: 10.1186/s12931-023-02496-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) patients can develop pulmonary fibrosis (PF), which is associated with impaired outcome. We assessed specific leukocytic transcriptome profiles associated with PF and the influence of early dexamethasone (DEXA) treatment on the clinical course of PF in critically ill COVID-19 patients. METHODS We performed a pre-post design study in 191 COVID-19 patients admitted to the Intensive Care Unit (ICU) spanning two treatment cohorts: the pre-DEXA- (n = 67) and the DEXA-cohort (n = 124). PF was identified based on radiological findings, worsening of ventilatory parameters and elevated circulating PIIINP levels. Longitudinal transcriptome profiles of 52 pre-DEXA patients were determined using RNA sequencing. Effects of prednisone treatment on clinical fibrosis parameters and outcomes were analyzed between PF- and no-PF-patients within both cohorts. RESULTS Transcriptome analyses revealed upregulation of inflammatory, coagulation and neutrophil extracellular trap-related pathways in PF-patients compared to no-PF patients. Key genes involved included PADI4, PDE4D, MMP8, CRISP3, and BCL2L15. Enrichment of several identified pathways was associated with impaired survival in a external cohort of patients with idiopathic pulmonary fibrosis. Following prednisone treatment, PF-related profiles reverted towards those observed in the no-PF-group. Likewise, PIIINP levels decreased significantly following prednisone treatment. PF incidence was 28% and 25% in the pre-DEXA- and DEXA-cohort, respectively (p = 0.61). ICU length-of-stay (pre-DEXA: 42 [29-49] vs. 18 [13-27] days, p < 0.001; DEXA: 42 [28-57] vs. 13 [7-24] days, p < 0.001) and mortality (pre-DEXA: 47% vs. 15%, p = 0.009; DEXA: 61% vs. 19%, p < 0.001) were higher in the PF-groups compared to the no-PF-groups within both cohorts. Early dexamethasone therapy did not influence these outcomes. CONCLUSIONS ICU patients with COVID-19 who develop PF exhibit upregulated coagulation, inflammation, and neutrophil extracellular trap-related pathways as well as prolonged ICU length-of-stay and mortality. This study indicates that early dexamethasone treatment neither influences the incidence or clinical course of PF, nor clinical outcomes.
Collapse
Affiliation(s)
- Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Kilian Dahm
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, 97080, Würzburg, Bavaria, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Antonius E van Herwaarden
- Radboudumc Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | | | - Karoline Mauer
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Ruben L Smeets
- Radboudumc Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Sjef van der Velde
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten J W van den Berg
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Bradford L, Ross MK, Minso J, Cernelc-Kohan M, Shayan K, Wong SS, Li X, Rivier L, Jegga AG, Deutsch GH, Vece TJ, Loughlin CE, Gower WA, Hurley C, Furman W, Stokes D, Hagood JS. Interstitial lung disease in children with Rubinstein-Taybi syndrome. Pediatr Pulmonol 2022; 57:264-272. [PMID: 34585851 DOI: 10.1002/ppul.25709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Rubinstein-Taybi syndrome (RSTS) is a rare genetic syndrome caused primarily by a mutation in the CREBBP gene found on chromosome 16. Patients with RSTS are at greater risk for a variety of medical problems, including upper airway obstruction and aspiration. Childhood interstitial lung disease (ILD) thus far has not been definitively linked to RSTS. Here we present three patients with RSTS who developed ILD and discuss possible mechanisms by which a mutation in CREBBP may be involved in the development of ILD. METHODS Routine hematoxylin and eosin staining was performed on lung biopsy tissue for histological analysis. Immunofluorescent staining was performed on lung biopsy tissue for markers of fibrosis, surfactant deficiency and histone acetylation. Cases 1 and 2 had standard clinical microarray analysis. Case 3 had whole exome sequencing. Bioinformatics analyses were performed to identify possible causative genes using ToppGene. RESULTS Computed tomography images in all cases showed consolidated densities overlying ground glass opacities. Lung histopathology revealed accumulation of proteinaceous material within alveolar spaces, evidence of fibrosis, and increased alveolar macrophages. Immunofluorescent staining showed increase in surfactant protein C staining, patchy areas of increased anti-smooth muscle antibody staining, and increased staining for acetylated histone 2 and histone 3 lysine 9. DISCUSSION Clinical characteristics, radiographic imaging, lung histopathology, and immunofluorescent staining results shared by all cases demonstrated findings consistent with ILD. Immunofluorescent staining suggests two possible mechanisms for the development of ILD: abnormal surfactant metabolism and/or persistent activation of myofibroblasts. These two pathways could be related to dysfunctional CREBBP protein.
Collapse
Affiliation(s)
- Lauren Bradford
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mindy K Ross
- Division of Pediatric Pulmonology, University of California-Los Angeles, Los Angeles, California, USA
| | - Jagila Minso
- Division of Pediatric Critical Care, Sanford Health, Fargo, North Dakota, USA
| | - Mateja Cernelc-Kohan
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA.,Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Katayoon Shayan
- Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Simon S Wong
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA
| | - Xiaoping Li
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA
| | - Lauraine Rivier
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anil G Jegga
- Department of Pediatrics, Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gail H Deutsch
- Department of Pathology and Laboratory Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Timothy J Vece
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ceila E Loughlin
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A Gower
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caitlin Hurley
- Critical Care Medicine Division, Departments of Pediatric Medicine and Bone Marrow Transplant, St. Jude Children's Hospital, Memphis, Tennessee, USA.,Department of Oncology, Division of Solid Tumor, St. Jude Children's Hospital, Memphis, Tennessee, USA
| | - Wayne Furman
- Critical Care Medicine Division, Departments of Pediatric Medicine and Bone Marrow Transplant, St. Jude Children's Hospital, Memphis, Tennessee, USA.,Department of Oncology, Division of Solid Tumor, St. Jude Children's Hospital, Memphis, Tennessee, USA
| | - Dennis Stokes
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Hagood
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Qi Z, Le Z, Han F, Feng Y, Yang M, Ji C, Zhao L. Inhibitory regulation of purple sweet potato polysaccharide on the hepatotoxicity of tri-(2,3-dibromopropyl) isocyanate. Int J Biol Macromol 2022; 194:445-451. [PMID: 34813788 DOI: 10.1016/j.ijbiomac.2021.11.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Tri-(2,3-dibromopropyl) isocyanate (TBC), a new emerged persistent organic pollutant, is widely used in fields of flame retardant, textile, rubber and plastic with strong hepatotoxicity. Purple Sweet Potato Polysaccharide (PSPP) has antioxidant and hepatoprotective effects. This study aims to answer the scientific question whether PSPP has a protective effect on TBC induced liver injury. The effect of PSPP on the apoptosis of HepG2 cells was detected by MTT assay, the morphological changes were observed by morphological observation, and the apoptosis rate was determined by flow cytometry. The apoptotic genes were detected by qPCR assay, the relevant protein express was detected by western blot. The correlation between proteins and genes in the apoptosis pathway of HepG2 cells was calculated. To further reveal the apoptosis mechanism of TBC hepatotoxicity in vivo, 19 target genes and 14 apoptotic related proteins of inhibiting apoptosis via death receptor and mitochondria were discussed, all the above results proved that PSPP had protective effect on liver injury induced by TBC. This study not only provided a scientific basis for clarifying the mechanism of TBC hepatotoxicity and the protective effect of PSPP, but also generated the new point and method in terms of the prevention in advance and early intervention of diseases caused by environmental pollution.
Collapse
Affiliation(s)
- Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Zhiwei Le
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Furui Han
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Yajie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Ming Yang
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Chenfeng Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Liangliang Zhao
- Department of Colorectal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
10
|
Gajjala PR, Kasam RK, Soundararajan D, Sinner D, Huang SK, Jegga AG, Madala SK. Dysregulated overexpression of Sox9 induces fibroblast activation in pulmonary fibrosis. JCI Insight 2021; 6:e152503. [PMID: 34520400 PMCID: PMC8564901 DOI: 10.1172/jci.insight.152503] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease associated with unremitting fibroblast activation including fibroblast-to-myofibroblast transformation (FMT), migration, resistance to apoptotic clearance, and excessive deposition of extracellular matrix (ECM) proteins in the distal lung parenchyma. Aberrant activation of lung-developmental pathways is associated with severe fibrotic lung disease; however, the mechanisms through which these pathways activate fibroblasts in IPF remain unclear. Sry-box transcription factor 9 (Sox9) is a member of the high-mobility group box family of DNA-binding transcription factors that are selectively expressed by epithelial cell progenitors to modulate branching morphogenesis during lung development. We demonstrate that Sox9 is upregulated via MAPK/PI3K-dependent signaling and by the transcription factor Wilms' tumor 1 in distal lung-resident fibroblasts in IPF. Mechanistically, using fibroblast activation assays, we demonstrate that Sox9 functions as a positive regulator of FMT, migration, survival, and ECM production. Importantly, our in vivo studies demonstrate that fibroblast-specific deletion of Sox9 is sufficient to attenuate collagen deposition and improve lung function during TGF-α-induced pulmonary fibrosis. Using a mouse model of bleomycin-induced pulmonary fibrosis, we show that myofibroblast-specific Sox9 overexpression augments fibroblast activation and pulmonary fibrosis. Thus, Sox9 functions as a profibrotic transcription factor in activating fibroblasts, illustrating the potential utility of targeting Sox9 in IPF treatment.
Collapse
Affiliation(s)
- Prathibha R Gajjala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Rajesh K Kasam
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Divyalakshmi Soundararajan
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Debora Sinner
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Divisions of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Satish K Madala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| |
Collapse
|
11
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
12
|
Liu X, Liu H, Jia X, He R, Zhang X, Zhang W. Changing Expression Profiles of Messenger RNA, MicroRNA, Long Non-coding RNA, and Circular RNA Reveal the Key Regulators and Interaction Networks of Competing Endogenous RNA in Pulmonary Fibrosis. Front Genet 2020; 11:558095. [PMID: 33193637 PMCID: PMC7541945 DOI: 10.3389/fgene.2020.558095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023] Open
Abstract
Pulmonary fibrosis is a kind of interstitial lung disease with architectural remodeling of tissues and excessive matrix deposition. Apart from messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) could also play important roles in the regulatory processes of occurrence and progression of pulmonary fibrosis. In the present study, the pulmonary fibrosis model was administered with bleomycin. Whole transcriptome sequencing analysis was applied to investigate the expression profiles of mRNAs, lncRNAs, circRNAs, and miRNAs. After comparing bleomycin-induced pulmonary fibrosis model lung samples and controls, 286 lncRNAs, 192 mRNAs, 605 circRNAs, and 32 miRNAs were found to be differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential functions of these differentially expressed (DE) mRNAs and non-coding RNAs (ncRNAs). The terms related to inflammatory response and tumor necrosis factor (TNF) signaling pathway were enriched, implying potential roles in regulatory process. In addition, two co-expression networks were also constructed to understand the internal regulating relationships of these mRNAs and ncRNAs. Our study provides a systematic perspective on the potential functions of these DE mRNAs and ncRNAs during PF process and could help pave the way for effective therapeutics for this devastating and complex disease.
Collapse
Affiliation(s)
- Xue Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong He
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Associations of BCL2 CA-Repeat Polymorphism and Breast Cancer Susceptibility in Isfahan Province of Iran. Biochem Genet 2020; 59:506-515. [PMID: 33151448 DOI: 10.1007/s10528-020-10013-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023]
Abstract
BCL2 apoptosis regulator (BCL2) is a cause of tumorigenesis whose CA-repeat promoter polymorphisms has inconsistent association with various types of cancers. The association of BCL2 polymorphism with breast cancer was investigated in the Isfahan province of Iran. PCRamplification of the CA-repeat was followed by polyacrylamide gel electrophoresis and direct sequencing for 120 breast cancer women and an equal number of corresponding healthy control individuals. Seven different alleles, ranging from 11 to 17 CA-repeats were observed. Short alleles with 11 to 14 repeats were protective (OR 0.363, P = 0.001), but large alleles with 15 to 17 repeats were threatening against breast cancer development (OR 2.780, P = 0.001). Accordingly, genotypes with large alleles showed a higher risk of breast cancer development (OR 3.400, P = 0.004). ERS1\ERBB2 positive breast cancer patients, but not PGRpositive ones, showed protection against breast cancer (OR 0.405, OR 0.346 respectively). In conclusion, women with at least one large allele of BCL2 were 3.4 times at higher risk of breast cancer development in the Isfahan province of Iran.
Collapse
|
14
|
Krakhotkin DV, Chernylovskyi VA, Mottrie A, Greco F, Bugaev RA. New insights into the pathogenesis of Peyronie's disease: A narrative review. Chronic Dis Transl Med 2020; 6:165-181. [PMID: 32885153 PMCID: PMC7451633 DOI: 10.1016/j.cdtm.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Peyronie's disease (PD) is a benign, progressive fibrotic disorder characterized by scar or plaques within the tunica albuginea (TA) of the penis. This study provides new insights into the pathogenesis of PD based on data from different studies regarding the roles of cytokines, cell signaling pathways, biochemical mechanisms, genetic factors responsible for fibrogenesis. A growing body of literature has shown that PD is a chronically impaired, localized, wound healing process within the TA and the Smith space. It is caused by the influence of different pathological stimuli, most often the effects of mechanical stress during sexual intercourse in genetically sensitive individuals with unusual anatomical TA features, imbalanced matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP), and suppressed antioxidant systems during chronic inflammation. Other intracellular signal cascades are activated during fibrosis along with low expression levels of their negative regulators and transforming growth factor-β1 signaling. The development of multikinase agents with minimal side effects that can block several signal cell pathways would significantly improve fibrosis in PD tissues by acting on common downstream mediators.
Collapse
Affiliation(s)
- Denis V Krakhotkin
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| | | | - Alexandre Mottrie
- Department of Urology, Onze Lieve Vrouw Hospital, Aalst, Belgium.,ORSI Academy, Melle, Belgium
| | | | - Ruslan A Bugaev
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| |
Collapse
|
15
|
Zhuang J, Yin J, Xu C, Jiang M, Lv S. Diverse autophagy and apoptosis in myeloid leukemia cells induced by 20(s)-GRh2 and blue LED irradiation. RSC Adv 2019; 9:39124-39132. [PMID: 35540666 PMCID: PMC9075934 DOI: 10.1039/c9ra08049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Autophagy is an important mechanism for cell death regulation. To improve the anticancer effect during the treatment of leukemia and promote the apoptosis of leukemic cells, it is important to define the relationship between autophagy and apoptosis. A key bioactive compound in traditional Chinese medicine, 20(s)-Ginsenoside (GRh2), demonstrated an advancement in leukemia treatment. Blue LED therapy (BL) is a physical treatment method that can induce leukemic cell death. In this study, we tested the effect of 20(s)-GRh2, BL, and their combination (BL-GRh2) on the activation of leukemic cell apoptosis and autophagy. Both treatments, whether used individually or simultaneously, induce apoptosis through the induction of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP) and regulated the expression of apoptosis-related genes and proteins. Furthermore, using western blotting to analyze the autophagy markers LC3B and P62, we detected the activation of autophagy. In cells treated with autophagy inhibitor 3-MA, both autophagy and apoptosis were inhibited, either by BL alone or by BL-GRh2. However, apoptosis in 20(s)-GRh2-treated cells was enhanced. In cells treated with apoptosis suppressor Z-VAD-FMK, autophagy was inhibited in the BL and BL-GRh2-treated cells, although it was enhanced in cells treated with 20(s)-GRh2 alone. Moreover, we observed a stronger induction of apoptosis by BL-GRh2 in myeloid leukemia cells. Our data indicate that autophagy induced by different factors can play diverse roles on the same cells. Our results also indicate that the combination of traditional Chinese medicine with physical therapy may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Jianjian Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Juxin Yin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University Hangzhou Zhejiang Province 310058 P. R. China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Mengmeng Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| |
Collapse
|
16
|
Kasam RK, Reddy GB, Jegga AG, Madala SK. Dysregulation of Mesenchymal Cell Survival Pathways in Severe Fibrotic Lung Disease: The Effect of Nintedanib Therapy. Front Pharmacol 2019; 10:532. [PMID: 31156440 PMCID: PMC6533541 DOI: 10.3389/fphar.2019.00532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired apoptotic clearance of myofibroblasts can result in the continuous expansion of scar tissue during the persistent injury in the lung. However, the molecular and cellular mechanisms underlying the apoptotic clearance of multiple mesenchymal cells including fibrocytes, fibroblasts and myofibroblasts in severe fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) remain largely unknown. We analyzed the apoptotic pathways activated in mesenchymal cells of IPF and in a mouse model of TGFα-induced pulmonary fibrosis. We found that fibrocytes and myofibroblasts in fibrotic lung lesions have acquired resistance to Fas-induced apoptosis, and an FDA-approved anti-fibrotic agent, nintedanib, effectively induced apoptotic cell death in both. In support, comparative gene expression analyses suggest that apoptosis-linked gene networks similarly dysregulated in both IPF and a mouse model of TGFα-induced pulmonary fibrosis. TGFα mice treated with nintedanib show increased active caspase 3-positive cells in fibrotic lesions and reduced fibroproliferation and collagen production. Further, the long-term nintedanib therapy attenuated fibrocyte accumulation, collagen deposition, and lung function decline during TGFα-induced pulmonary fibrosis. These results highlight the importance of inhibiting survival pathways and other pro-fibrotic processes in the various types of mesenchymal cells and suggest that the TGFα mouse model is relevant for testing of anti-fibrotic drugs either alone or in combination with nintedanib.
Collapse
Affiliation(s)
- Rajesh K Kasam
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Satish K Madala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
17
|
Jian X, Qu L, Wang Y, Zou Q, Zhao Q, Chen S, Gao X, Chen H, He C. Trichostatin A‑induced miR‑30a‑5p regulates apoptosis and proliferation of keloid fibroblasts via targeting BCL2. Mol Med Rep 2019; 19:5251-5262. [PMID: 31059100 PMCID: PMC6522919 DOI: 10.3892/mmr.2019.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Keloids are benign fibrous overgrowths that occur as a result of abnormal wound healing following cutaneous injury. MicroRNAs (miRNAs/miRs) are short non-coding RNAs that serve critical roles in numerous important biological processes, such as cell proliferation, differentiation and apoptosis. However, their role in keloid development remains largely unknown. In the present study, the role of miR-30a-5p, a miRNA regulated by Trichostatin A (TSA), in apoptosis within cultured keloid fibroblasts was investigated. An MTT assay was used to detect the proliferation of cultured keloid fibroblasts treated with TSA. Cell apoptosis and cell cycle phases were analyzed using flow cytometry. In addition, an miRNA microarray was performed to compare expression profiles between cultured keloid fibroblasts treated with or without 1,000 nM TSA. Reverse transcription-quantitative polymerase chain reaction analysis was conducted to estimate miRNA expression levels. The direct target of miR-30a-5p was identified using a dual-luciferase reporter assay. Western blotting was employed to assess protein expression levels in keloid fibroblasts. The results demonstrated that TSA inhibited the proliferation of keloid fibroblasts in a time- and dose-dependent manner. The miRNA microarray revealed alterations in the expression of numerous miRNA sequences in response to TSA when compared with controls. Notably, the expression of miR-30a-5p was downregulated in keloid tissues. In addition, overexpression of miR-30a-5p induced apoptosis by targeting B-cell lymphoma 2, which was similar to that observed in response to TSA. These results provide important information regarding a novel miR-30a-5p-mediated signaling pathway induced by TSA treatment, and suggest a potential use for TSA and miR-30a-5p as effective therapeutic strategies for keloids.
Collapse
Affiliation(s)
- Xiaoqing Jian
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Le Qu
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Yunlin Wang
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Qianlei Zou
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Qing Zhao
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Hongduo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| | - Chundi He
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries In Mice by Modifying Oxidative Stress and Apoptosis. Molecules 2019; 24:molecules24081498. [PMID: 30995821 PMCID: PMC6514788 DOI: 10.3390/molecules24081498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
Collapse
|
19
|
Nie Y, Zhang D, Jin Z, Li B, Wang X, Che H, You Y, Qian X, Zhang Y, Zhao P, Chai G. Lanatoside C protects mice against bleomycin-induced pulmonary fibrosis through suppression of fibroblast proliferation and differentiation. Clin Exp Pharmacol Physiol 2019; 46:575-586. [PMID: 30854687 DOI: 10.1111/1440-1681.13081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
It has been established that lanatoside C, a FDA-approved cardiac glycoside, reduces proliferation of cancer cell lines. The proliferation of fibroblasts is critical to the pathogenesis of pulmonary fibrosis (PF), a progressive and fatal fibrotic lung disease lacking effective treatment. In this study we have investigated the impact of lanatoside C on a bleomycin (BLM)-induced mouse model of PF and through the evaluation of fibroblast proliferation and activation in vitro. We evaluated explanted lung tissue by histological staining, western blot analysis, qRT-PCR and survival analysis, demonstrating that lanatoside C was able to protect mice against BLM-induced pulmonary fibrosis. The proliferation of cultured pulmonary fibroblasts isolated from BLM-induced PF mice was suppressed by lanatoside C, as hypothesized, through the induction of cell apoptosis and cell cycle arrest at the G2/M phase. The Akt signalling pathway was involved in this process. Interestingly, the production of α-SMA, fibronectin, and collagen I and III in response to TGF-β1 in healthy mouse fibroblasts was suppressed following lanatoside C administration by inhibition of TGF-β1/Smad signalling. In addition, TGF-β1-induced migration in lung fibroblasts was also impeded after lanatoside C treatment. Together, our data revealed that lanatoside C alleviated BLM-induced pulmonary fibrosis in mice via attenuation of growth and differentiation of fibroblasts, suggesting that it has potential as a candidate therapy for PF patients.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Zhang
- Department of Laboratory Medicine, Research Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zhewu Jin
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Boyu Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaqian You
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohang Qian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhang
- Department of Orthopedic, Lu'an Fourth People's Hospital, Lu'an, Anhui, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Diao J, Wei J, Yan R, Fan G, Lin L, Chen M. Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats. J Physiol Biochem 2018; 75:39-51. [DOI: 10.1007/s13105-018-0648-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
21
|
Arnoldussen YJ, Skaug V, Aleksandersen M, Ropstad E, Anmarkrud KH, Einarsdottir E, Chin-Lin F, Granum Bjørklund C, Kasem M, Eilertsen E, Apte RN, Zienolddiny S. Inflammation in the pleural cavity following injection of multi-walled carbon nanotubes is dependent on their characteristics and the presence of IL-1 genes. Nanotoxicology 2018; 12:522-538. [PMID: 29742950 DOI: 10.1080/17435390.2018.1465139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Upon inhalation, multi-walled carbon nanotubes (MWCNTs) may reach the subpleura and pleural spaces, and induce pleural inflammation and/or mesothelioma in humans. However, the mechanisms of MWCNT-induced pathology after direct intrapleural injections are still only partly elucidated. In particular, a role of the proinflammatory interleukin-1 (IL-1) cytokines in pleural inflammation has so far not been published. We examined the MWCNT-induced pleural inflammation, gene expression abnormalities, and the modifying role of IL-1α and β cytokines following intrapleural injection of two types of MWCNTs (CNT-1 and CNT-2) compared with crocidolite asbestos in IL-1 wild-type (WT) and IL-1α/β KO (IL1-KO) mice. Histopathological examination of the pleura 28 days post-exposure revealed mesothelial cell hyperplasia, leukocyte infiltration, and fibrosis occurring in the CNT-1 (Mitsui-7)-exposed group. The pleura of these mice also showed the greatest changes in mRNA and miRNA expression levels, closely followed by CNT-2. In addition, the CNT-1-exposed group also presented the greatest infiltrations of leukocytes and proliferation of fibrous tissue. WT mice were more prone to development of sustained inflammation and fibrosis than IL1-KO mice. Prominent differences in genetic and epigenetic changes were also observed between the two genotypes. In conclusion, the fibrotic response to MWCNTs in the pleura depends on the particles' physico-chemical properties and on the presence or absence of the IL-1 genes. Furthermore, we found that CNT-1 was the most potent inducer of inflammatory responses, followed by CNT-2 and crocidolite asbestos.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Vidar Skaug
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Mona Aleksandersen
- b Department of Basic Sciences and Aquatic Medicine , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Erik Ropstad
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kristine Haugen Anmarkrud
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Elin Einarsdottir
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Fang Chin-Lin
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Cesilie Granum Bjørklund
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Mayes Kasem
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Einar Eilertsen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Ron N Apte
- d The Shraga Segal Department of Microbiology, Immunology, and Genetics, The Faculty of Health Sciences , Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Shanbeh Zienolddiny
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|
22
|
Yao Z, Yang B, Liu Z, Li W, He Q, Peng X. Genetic polymorphisms of Bcl-2 promoter in cancer susceptibility and prognosis: a meta-analysis. Oncotarget 2018; 8:25270-25278. [PMID: 28445963 PMCID: PMC5421928 DOI: 10.18632/oncotarget.15751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/29/2017] [Indexed: 11/25/2022] Open
Abstract
Bcl-2 is critical for tumorigenesis. However, previous studies on the association of Bcl-2 promoter polymorphisms with predisposition to different cancer types are somewhat contradictory. Therefore, we performed this meta-analysis regarding the relationship between Bcl-2 promoter single nucleotide polymorphisms (SNPs) and cancer susceptibility and prognosis. Up to August 2016, 32 original publications were identified covering two Bcl-2 promoter SNPs (rs2279115 and rs1801018). Our results showed statistically significant association between rs2279115 and cancer susceptibility and prognosis in all four genetic models but not in rs1801018. Subgroups analysis indicated that rs2279115 was associated with a significantly higher risk of cancer susceptibility in Asia but not in Caucasian. Furthermore, rs2279115 was associated with a significantly higher risk in digestive system cancer and endocrine system cancer but not in breast cancer, respiratory cancer and hematopoietic cancer. Simultaneously, rs2279115 was correlated with a significantly higher risk of cancer prognosis in Asia but not in Caucasian. Considering these promising results, rs2279115 may be a tumor marker for cancertherapy in Asia. Sensitivity analysis show four gene model were stable, and no publication bias was observed in all four gene model. Large sample size, different ethnic population and different cancer type are warranted to validate this association.
Collapse
Affiliation(s)
- Zhongqiang Yao
- Department of Medical Oncology, 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, Shanxi Province, P. R. China
| | - Binhui Yang
- Department of Medical Oncology, 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, Shanxi Province, P. R. China
| | - Zhongqiu Liu
- Department of Medical Oncology, 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, Shanxi Province, P. R. China
| | - Wei Li
- Department of Medical Oncology, 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, Shanxi Province, P. R. China
| | - Qihua He
- Department of Medical Oncology, 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, Shanxi Province, P. R. China
| | - Xingchun Peng
- Department of Centre of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, P. R. China
| |
Collapse
|
23
|
Probing into the Mechanism of Alkaline Citrus Extract Promoted Apoptosis in Pulmonary Fibroblasts of Bleomycin-Induced Pulmonary Fibrosis Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9658950. [PMID: 29770156 PMCID: PMC5892277 DOI: 10.1155/2018/9658950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/07/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
We extracted the primary pulmonary fibroblasts of the normal and bleomycin-induced pulmonary fibrosis mice and investigated the functioning mechanism of citrus alkaline extract (CAE) in the induction of pulmonary fibroblast apoptosis. The expression intensity of vimentin of the pulmonary fibroblasts in the model mice was higher than that in the normal mice. Meanwhile, the positive expression rate and expression intensity of alpha smooth muscle actin (α-SMA) of the pulmonary fibroblasts in the model mice were higher than those in the normal mice. Results of MTT showed that pulmonary fibroblast activity of the normal and model mice has been significantly inhibited by CAE in a concentration-dependent manner. The results of flow cytometer analysis showed that the proportion of pulmonary fibroblast apoptosis in the model mice has been profoundly increased by CAE treatment in a dosage-dependent manner. Besides we found that the expression of Cleaved-Caspase 3, Cleaved-Caspase 8, Cleaved-poly-ADP-ribose polymerase (Cleaved-PARP), and Fas and Fas Ligand (FasL) was markedly increased after CAE treatment. A further study showed that the expression of Cyclooxygenase-2 (COX-2) and prostaglandin E receptor 2 (EP2) was dependant on the concentration of CAE, indicating that CAE-regulated receptor apoptosis of Fas was probably related to COX-2. The results of fluorescence detection of oxidative stress showed that the level of oxidative stress was significantly increased after CAE treatment. Furthermore, the results of Western Blot showed that the phosphorylation level of p38 (p-p38) was markedly increased, suggesting that CAE probably has regulated COX-2 through increased p-p38 following oxidative stress. Our results therefore suggest that CAE can effectively induce pulmonary fibroblast apoptosis of the normal and model mice, and its functioning mechanism is probably related to the p38/COX-2/Fas signaling pathway regulated by oxidative stress.
Collapse
|
24
|
Abstract
Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.
Collapse
|
25
|
Zhai CG, Xu YY, Tie YY, Zhang Y, Chen WQ, Ji XP, Mao Y, Qiao L, Cheng J, Xu QB, Zhang C. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J Mol Cell Cardiol 2018; 114:243-252. [DOI: 10.1016/j.yjmcc.2017.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
|
26
|
Liu X, Wong SS, Taype CA, Kim J, Shentu TP, Espinoza CR, Finley JC, Bradley JE, Head BP, Patel HH, Mah EJ, Hagood JS. Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution. J Transl Med 2017; 97:256-267. [PMID: 28165468 PMCID: PMC5663248 DOI: 10.1038/labinvest.2016.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved caspase-9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase-3, -8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its glycophosphatidylinositol anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1-/-) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1-/- mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- Respiratory Department, Second Hospital of Jilin University, Changchun, China
| | - Simon S Wong
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Carmen A Taype
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeeyeon Kim
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Tzu-Pin Shentu
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Celia R Espinoza
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | | | - John E Bradley
- Department of Microbiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Brian P Head
- Department of Anesthesiology, UCSD, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - Hemal H Patel
- Department of Anesthesiology, UCSD, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | - Emma J Mah
- Department of Chemical and Biochemical Engineering, University of California-Irvine, Irvine, CA, USA
| | - James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
27
|
Thirunavukkarasu M, Selvaraju V, Tapias L, Sanchez JA, Palesty JA, Maulik N. Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: the role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway. J Physiol Biochem 2015; 71:623-33. [DOI: 10.1007/s13105-015-0426-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 01/16/2023]
|
28
|
Trejo-Vargas A, Hernández-Mercado E, Ordóñez-Razo RM, Lazzarini R, Arenas-Aranda DJ, Gutiérrez-Ruiz MC, Königsberg M, Luna-López A. Bik subcellular localization in response to oxidative stress induced by chemotherapy, in Two different breast cancer cell lines and a Non-tumorigenic epithelial cell line. J Appl Toxicol 2015; 35:1262-70. [PMID: 26059411 DOI: 10.1002/jat.3173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/27/2015] [Accepted: 04/12/2015] [Indexed: 11/09/2022]
Abstract
Cancer chemotherapy remains one of the preferred therapeutic modalities against malignancies despite its damaging side effects. An expected outcome while utilizing chemotherapy is apoptosis induction. This is mainly regulated by a group of proteins known as the Bcl-2 family, usually found within the endoplasmic reticulum or the mitochondria. Recently, these proteins have been located in other sites and non-canonic functions have been unraveled. Bik is a pro-apoptotic protein, which becomes deregulated in cancer, and as apoptosis is associated with oxidative stress generation, our objective was to determine the subcellular localization of Bik either after a direct oxidative insult due to H2 O2 , or indirectly by cisplatin, an antineoplastic agent. Experiments were performed in two human transformed mammary gland cell lines MDA-MB-231 and MCF-7, and one non-tumorigenic epithelial cell line MCF-10A. Our results showed that in MCF-7, Bik is localized within the cytosol and that after oxidative stress treatment it translocates into the nucleus. However, in MDA-MB-231, Bik localizes in the nucleus and translocates to the cytosol. In MCF10A Bik did not change its cellular site after either treatment. Interestingly, MCF10A were more resistant to cisplatin than transformed cell lines. This is the first report showing that Bik is located in different cellular compartments depending on the cancer stage, and it has the ability to change its subcellular localization in response to oxidative stress. This is associated with increased sensitivity when exposed to toxic agents, thus rendering novel opportunities to study new therapeutic targets allowing the development of more active and less harmful agents.
Collapse
Affiliation(s)
- Aglaé Trejo-Vargas
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., México.,Unidad Médica en Genética Humana, Centro Médico Nacional Siglo XXI, México, D.F., Mexico.,Posgrado en Biologia Experimental
| | - Elisa Hernández-Mercado
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., México.,Unidad Médica en Genética Humana, Centro Médico Nacional Siglo XXI, México, D.F., Mexico
| | | | - Roberto Lazzarini
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., México
| | | | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., México
| | - Armando Luna-López
- Instituto Nacional de Geriatria, SSA, Posgrado en Biologia Experimental, UAMI, México, D.F., Mexico
| |
Collapse
|
29
|
Abstract
Our aim was to investigate the effects of anti-vascular endothelial growth factor (anti-VEGF) antibody Bevacizumab on endometrial explants and on apoptotic gene expression levels in the rat endometriosis model. Endometriotic implants were surgically formed, and rats treated with (i) 1 mg/kg single subcutaneous injection of depot leuprolide acetate; (ii) 2.5 mg/kg of single intaperitoneal injection of bevacizumab; (iii) intraperitoneal injection of saline. Histopathologic scores and adhesion scores of endometriotic foci and levels of Bcl-2-associated X protein (Bax), Cytochrome c (Cyt-c), B-cell lymphoma/leukemia 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) mRNA gene expressions of endometriotic foci. Bevacizumab treatment decreased the endometriotic explant size compared with control. Bevacizumab-treated rats had lower total adhesion scores when compared with the control group. Semi-quantitative evaluation of the persistence of endometrial epithelial cells in the explants showed a lower score in gonadotropin-releasing hormone (GnRH) agonist-treated rats compared with control rats. In Bevacizumab increased expression of Bax 3.1-fold, Cyt-c 1.3-fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold compared with the control group. The GnRH agonist increased expression of Bax 3.0 fold, Cyt-c 1.3 fold and decreased expression of Bcl-2 0.4-fold, Bcl-xl 0.8-fold, compared with the control group. This study suggests that a novel angiogenesis inhibitor, anti-VEGF antibody bevacizumab is as effective as GnRH agonist in the regression of the endometriotic lesions in rat endometriosis model. One possible mechanism of this effect is the induction of apoptosis.
Collapse
|
30
|
Su X, Wang P, Yang S, Zhang K, Liu Q, Wang X. Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS. Int J Biochem Cell Biol 2015; 60:82-92. [PMID: 25578562 DOI: 10.1016/j.biocel.2014.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/15/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
Abstract
Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuang Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Zhang X, Weng W, Xu W, Wang Y, Yu W, Tang X, Ma L, Pan Q, Wang J, Sun F. Role of Bcl-2 -938 C>A polymorphism in susceptibility and prognosis of cancer: a meta-analysis. Sci Rep 2014; 4:7241. [PMID: 25430556 PMCID: PMC5384243 DOI: 10.1038/srep07241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
The association between B-cell lymphoma 2 (Bcl-2) polymorphism and cancer is under debate and remains elusive. This meta-analysis was performed to evaluate the relationships of Bcl-2 -938 C>A polymorphism (rs2279115) with susceptibility and prognosis of cancer. Odds ratios (ORs) were used to measure the association between Bcl-2 polymorphisms and cancer risk. Hazard ratios (HRs) were used to measure the association between Bcl-2 polymorphisms and cancer prognosis. On the basis of 26 studies about Bcl-2 -938C>A polymorphism and cancer, we found Bcl-2 -938 C>A polymorphism was significantly associated with increased cancer risk in dominant model (OR = 1.12, 95%CI: 1.00-1.25, P = 0.04), recessive model (OR = 1.38, 95%CI: 1.11-1.71, P = 0.004), allelic model (OR = 1.15, 95%CI: 1.04-1.28, P = 0.007) and homozygote comparison(OR = 1.44, 95%CI: 1.11-1.87, P = 0.006). Furthermore, Bcl-2 -938 C>A polymorphism was significantly associated with increased cancer risk in Asians but not in Caucasians. Moreover, Bcl-2 -938 C>A polymorphism was not significantly associated with the prognosis of cancer (AA vs CA: OR = 0.99, 95%CI: 0.77-1.27, P = 0.93; AA vs CC: OR = 0.92, 95%CI: 0.65-1.30, P = 0.63; AC vs CC: OR = 0.94, 95%CI: 0.80-1.11, P = 0.48; CC vs AA+CA: OR = 1.21, 95%CI: 0.69-2.13, P = 0.50; AA vs CC+CA: OR = 0.99, 95%CI: 0.48-2.04, P = 0.97). Studies with larger samples and gene-environment interactions are needed to validate our findings.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Wenhao Weng
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Wen Xu
- Department of Clinical laboratory medicine, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Yulan Wang
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Wenjun Yu
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Xun Tang
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Lifang Ma
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Qiuhui Pan
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Jiayi Wang
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| | - Fenyong Sun
- Department of Clinical laboratory medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China, 200072
| |
Collapse
|